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Abstract

Matrix-valued data, where the sampling unit is a matrix consisting of rows

and columns of measurements, are emerging in numerous scientific and business

applications. Matrix Gaussian graphical model is a useful tool to characterize the

conditional dependence structure of rows and columns. In this article, we employ

nonconvex penalization to tackle the estimation of multiple graphs from matrix-

valued data under a matrix normal distribution. We propose a highly e�cient

nonconvex optimization algorithm that can scale up for graphs with hundreds of

nodes. We establish the asymptotic properties of the estimator, which requires

less stringent conditions and has a sharper probability error bound than exist-

ing results. We demonstrate the e�cacy of our proposed method through both

simulations and real functional magnetic resonance imaging analyses.
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1 Introduction

Gaussian graphical model has been widely used to describe the conditional dependence

relationship, which is encoded in a partial correlation matrix, among a set of interacting

variables. There have been a large number of statistical methods proposed to estimate

a sparse Gaussian graphical model (Meinshausen and Bühlmann, 2006; Yuan and Lin,

2007; Friedman et al., 2008; Ravikumar et al., 2011; Cai et al., 2011, among others).

There are also extensions from estimation of a single graph to multiple graphs across

groups (Guo et al., 2011; Danaher et al., 2014; Zhu et al., 2014; Lee and Liu, 2015;

Cai et al., 2016). All those methods assume the vector of interacting variables follow a

normal distribution. In recent years, matrix-valued data, where each sampling unit is

a matrix consisting of rows and columns of measurements, are rapidly emerging. Ac-

cordingly, the matrix normal distribution is becoming increasingly popular in modeling

such matrix-valued observations (Zhou, 2014). Under this distribution, there have been

some recent development of sparse graphical model estimation that aims to characterize

the dependence of rows and columns of matrix data (Yin and Li, 2012; Leng and Tang,

2012; Tsiligkaridis et al., 2013). In this article, we aim at estimation of multiple graphs

for matrix data under a matrix normal distribution.

Our motivation is brain connectivity analysis based on resting-state functional mag-

netic resonance imaging (fMRI). Meanwhile, our proposal is equally applicable to many

other network data analyses. Brain functional connectivity reveals the synchronization

of brain systems through correlations in neurophysiological measures of brain activity.

When measured during resting-state, it maps the intrinsic functional architecture of

the brain (Varoquaux and Craddock, 2013). Brain connectivity analysis is now at the

foreground of neuroscience research. Accumulated evidences have suggested that con-

nectivity network alters with the presence of numerous neurological disorders, and such

alternations hold useful insights of disease pathologies (Fox and Greicius, 2010). In a

typical functional connectivity study, the fMRI data are collected for multiple subjects

from the disease group and normal control. For each individual subject, the observed

fMRI data takes the form of a region by time matrix, where the number of brain re-
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gions is usually in the order of 102 and the number of time points around 150 to 200.

From this matrix, a region by region correlation matrix is estimated to describe the

brain connectivity graph, one for each diagnostic group separately. In this graph, nodes

represent brain regions, and links measure dependence between the brain regions, where

partial correlation is a commonly used correlation measure (Fornito et al., 2013). Brain

connectivity analysis is then turned into the problem of estimation of partial correlation

matrices under Gaussian graphical models across multiple groups.

Our proposal integrates matrix normal distribution, multiple partial correlation ma-

trices estimation, and nonconvex penalization. Such an integration distinguishes our

proposal from the existing solutions. For the matrix-valued data, directly applying the

existing graphical model estimation methods assuming a vector normal distribution, in

e↵ect, requires the columns of the matrix data to be independent, which is obviously

not true. For instance, for fMRI, the columns correspond to time series of repeat-

edly measured brain activities and are highly correlated. Whitening may help reduce

the between-column correlation. In Section 5, we compare and show that our method

substantially outperforms two state-of-the-art vector normal based multi-graph estima-

tion methods, Lee and Liu (2015) and Cai et al. (2016), both facilitated by whitening.

Among the few solutions on graphical model estimation under a matrix normal distri-

bution (Yin and Li, 2012; Leng and Tang, 2012; Zhou, 2014), none tackle estimation of

multiple graphs across di↵erent populations, but instead only focus on a single graph.

Our proposal is also di↵erent from two recent multi-graph estimation methods of Qiu

et al. (2016) and Han et al. (2016), in both study goals and estimation approaches.

Specifically, Qiu et al. (2016) aimed to estimate a graph at any given location, e.g., age,

whereas Han et al. (2016) aimed to capture and summarize the commonality underlying

a collection of individual graphs. By contrast, our goal is to simultaneously estimate

multiple graphs, one from each of a given group of subjects. Besides, Qiu et al. (2016)

proposed a two-step procedure, which first obtained a smoothed estimate of the sample

covariance matrix through kernel smoothing, then plugged into the constrained `1 min-

imization method of Cai et al. (2011) for precision matrix estimation. Han et al. (2016)

first obtained an estimate of all the individual graphs, using again Cai et al. (2011),
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then plugged into an objective function that minimizes the Hamming distance between

the targeting median graph and the individual graphs. For our proposal, we employ a

likelihood based loss function, plus a combination of a nonconvex sparsity penalty and a

nonconvex group sparsity penalty to induce both sparsity and similarity across multiple

partial correlation matrices. Our choice of loss function is to ensure both theoretical

properties and positive-definiteness of the estimator. Meanwhile, our choice of penalty

function is motivated by the belief that, the true graph is approximately sparse, and the

di↵erence of graphs across multiple groups is approximately sparse too. In other words,

those graphs may exhibit di↵erent connectivity patterns, but are also encouraged to be

similar to each other. Moreover, nonconvex penalization in high-dimensinoal models has

often been shown to outperform its convex counterpart both in theory and in practice

(Fan and Li, 2001a; Zhang, 2010; Shen et al., 2012). In the context of graphical model

under a vector normal distribution, nonconvex penalization has been shown to deliver

more precise and concise graph estimates (Fan et al., 2009; Shen et al., 2012).

The novelty of our proposal lies in both the computational and the theoretical contri-

butions. Computationally, recognizing that nonconvex optimization is more challenging

than convex optimization, we propose a highly e�cient and scalable algorithm through

a combination of two modern optimization techniques, the minorize-maximization algo-

rithm (MM, Hunter and Lange, 2004), and the alternating direction method of multipli-

ers (ADMM, Boyd et al., 2011). The proposed algorithm is fast, yielding a comparable

computation time as its convex counterpart. It is also much faster than the competing

methods of Lee and Liu (2015) and Cai et al. (2016). In addition, our method scales

reasonably well and can work for graphs with the number of nodes ranging to hundreds.

It is noteworthy that this range covers the typical size of a brain connectivity network

in neuroimaging analysis.

Theoretically, we study the asymptotic properties of the proposed optimization prob-

lem and establish sharp theoretical results. We focus on two scenarios: imposing only

the sparsity penalty, and imposing only the group sparsity penalty. Such an investigation

would shed new insights on the connection and di↵erence of the two types of penalties,

and also facilitate a direct comparison with existing theoretical results.
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Specifically, the first scenario corresponds to performing sparse graph estimation

across multiple groups separately. In the context of single graph estimation under the

vector normal distribution, theoretical analysis of correct identification of sparse struc-

ture has been investigated in Ravikumar et al. (2011); Fan et al. (2014); Loh and Wain-

wright (2014). Compared to Ravikumar et al. (2011), who employed a convex `1 penalty

and thus required the irrepresentable condition, our sparsistency result does not require

this rather stringent condition due to the use of the nonconvex penalty. Compared

to Fan et al. (2014), we obtain a sharper probability error bound and an improved

minimum signal strength condition. Moreover, we do not require a consistent initial

estimator as Fan et al. (2014) did. Compared to Loh and Wainwright (2014), our result

is directly comparable. But we develop a new proof technique that can easily generalize

to multiple graphs. In the context of single graph estimation under the matrix nor-

mal distribution, Leng and Tang (2012) provided the estimation and sparseness pursuit

guarantee; however, their results were established for some unknown local minimizer of

their optimization function. By contrast, we obtain the theoretical properties for the

actual local optimum computed by the optimization algorithm. In addition, Zhou (2014)

studied estimation error, whereas we focus on the sparsity pattern reconstruction of the

graphical dependency.

The second scenario corresponds to estimation of multiple graphs jointly. Both

Danaher et al. (2014) and Zhu et al. (2014) studied multiple graph estimation with

fusion type penalties. However, Danaher et al. (2014) did not provide any theoretical

result on graph recovery, whereas Zhu et al. (2014) obtained sparsistency for the global,

but not local, solution of their optimization function. Both Lee and Liu (2015) and Cai

et al. (2016) provided the theoretical guarantee for multi-graph structure recovery, but

none provided the positive-definiteness guarantee for the resulting estimator.

The rest of the article is organized as follows. Section 2 presents the model and the

penalized objective function. Section 3 develops the optimization algorithm. Section 4

studies the asymptotic properties. Section 5 presents the simulations, and Section 6

the fMRI data analyses. Section 7 concludes the paper with a discussion. All technical

proofs are relegated to an online Supplementary Appendix.
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2 Model

2.1 Penalized optimization

Suppose the observed data, Xki, i = 1, . . . , nk, k = 1, . . . , K, are from K heterogeneous

populations, with nk number of observations from the kth group. Each observation Xki

is a p⇥ q matrix, with p denoting the spatial dimension and q the temporal dimension.

We assume Xki follows a matrix normal distribution, i.e.,

Xk1, . . . ,Xknk

i.i.d.⇠ N(Mk,⌃kS ⌦⌃kT ), k = 1, · · · , K,

where Mk = E[Xki], ⌃kS 2 IRp⇥p and ⌃kT 2 IRq⇥q denote the spatial and temporal

covariance matrices, respectively, and ⌦ is the Kronecker product. This assumption

of matrix normal distribution has been frequently adopted in numerous applications

involving matrix-valued observations (Yin and Li, 2012; Leng and Tang, 2012). It is

also scientifically plausible in the context of neuroimaging analysis. For instance, the

standard neuroimaging processing software, such as SPM (Friston et al., 2007) and FSL

(Smith et al., 2004), adopt a framework that assumes the data are normally distributed

per voxel (location) with a noise factor and an autoregressive structure, which shares a

similar spirit as the matrix normal formulation. We further discuss potential relaxation

of this assumption in Section 7.

Our primary object of interest is the spatial partial correlation matrix,

⌦k = Diag(⌃kS)
�1/2

⌃
�1
kS Diag(⌃kS)

�1/2
, k = 1, · · · , K.

Under the normal distribution, a zero partial correlation coe�cient implies the condi-

tional independence of two nodes given all others in the graph. By contrast, the mean

term Mk and the temporal correlation matrix are to be treated as nuisance parameters.

This is mainly driven by our motivating application of brain connectivity analysis, where

the primary interest is to estimate the connectivity pattern of spatial regions of the brain.

Nevertheless we note that our proposed methodology is applicable to estimation of the

temporal partial correlation matrix as well.

Under the matrix normal distribution, a natural solution seeks to minimize over
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(⌦1, . . . ,⌦K) the negative log likelihood function, aside from a constant,

KX

k=1

nk

n
trace(⌦k

b�k)� log det(⌦k)
o
, (1)

where b�k is a sample correlation matrix �k; for instance,

b�k = DiagScale

(
nkX

i=1

(Xki � X̄k)(Xki � X̄k)
T

)
, k = 1, · · · , K ,

where DiagScale(C) = Diag(C)�1/2CDiag(C)�1/2 for any square matrix C. That is, we

plug into (1) a set of consistent correlation estimators. The estimator b�k was studied by

Zhou (2014), and its rate of convergence has been established in the high-dimensional

regime, which would facilitate our subsequent asymptotic investigation. Directly solving

(1), however, may encounter some challenges. First, the number of unknown parameters

in {⌦k}Kk=1 may far exceed the sample size, causing inversion of b�k problematic. Second,

we are generally interested in finding pairs of nodes that are conditionally independent

given the others. However, minimizing (1) would not yield any exact zero estimates in

{⌦k}Kk=1, rendering the interpretation di�cult. Third, it is often desirable to encourage

the estimated graphs to be similar across groups, under the belief that the di↵erences

of graphical structure would usually concentrate on some local areas of the nodes. For

instance, in brain connectivity analysis, the brain region connections are usually sparse

(Zhang et al., 2015), and the di↵erences of brain connections across di↵erent populations

usually localize in some subnetworks of the brain (Toussaint et al., 2014).

To address those challenges, we propose to estimate theK partial correlation matrices

{⌦k}Kk=1 by solving the following penalized optimization,

minimize
�max(⌦k)R; k=1,...,K

KX

k=1

nk

n
trace(⌦k

b�k)� log det(⌦k)
o
+

KX

k=1

nk

X

i 6=j

p�1k
(|!kij|) + nmin

X

i 6=j

p�2

⇣q
!2
1ij + · · ·!2

Kij

⌘
(2)

where �max(⌦k) denotes the largest eigenvalue of ⌦k, nmin = min1kK nk, a,R > 0,

�1k; k = 1, · · · , K, and �2 are the tuning parameters, and the penalty function p�(·) :

R+ ! R+ satisfies the following conditions:
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(i) p�(x) is nondecreasing and di↵erentiable on R+ and p�(0) = 0;

(ii) limx!0+ p
0
�(x) = �;

(iii) p�(x) + x
2
/b is convex for some constant b > 0;

(iv) p
0
�(x) = 0 for |x| > a� for some constant a � b/2.

A few remarks are in order. First, the condition a � b/2 ensures the existence of

p�(x), and di↵erent choices of a, b correspond to di↵erent nonconvex penalties. For

instance, a > 2, b = 2/(a � 1) leads to the penalty function of Fan and Li (2001a),

and a = b/2, b > 0 to that of Zhang (2010). Other types of nonconvex penalty can

also be used here, e.g., the truncated `1 penalty (Shen et al., 2012), or the `q penalty

with q < 1. Second, our penalty function consists of two parts, a sparsity penalty that

encourages sparsity in each individual partial correlation matrix, and a group sparsity

penalty that encourages common sparsity patterns across di↵erent partial correlation

matrices. Third, our penalty function is in general nonconvex, and using a nonconvex

penalty is beneficial in several ways. It leads to nearly unbiased parameter estimation,

is to facilitate cross-validation for parameter tuning, and can achieve a better sparsity

pursuit guarantee under less stringent assumptions (Fan et al., 2009; Shen et al., 2012).

2.2 Parameter tuning

Parameter tuning is always challenging for high-dimensional models, and we propose

the following cross-validation approach to tune the parameters in (2). Motivated by our

theoretical analysis in Section 4, we let �11 = �1

q
log(p_q)

n1q
, · · · ,�1K = �1

q
log(p_q)
nKq , where

p_q = max(p, q), and let � = (�1,�2)T . We select � by minimizing a prediction criterion

using 5-fold cross-validation. That is, we divide the data set for each group into five parts

D1, · · · ,D5. Under group k, define b�
l

k and b�
�l

k to be the sample correlation matrices

calculated based on samples in Dl and {D1, · · · ,D5} \ Dl, l = 1, · · · , 5, respectively.

Similarly, define b⌦
�l

k (�) to be the partial correlation matrix calculated based on b�
�l

k ,

l = 1, · · · , 5, under the tuning parameter �. Then we define the criterion as,

CV(�) =
1

5K

5X

l=1

KX

k=1

h
� log det

n
b⌦�l

k (�)
o
+ trace

n
b�
l

k
b⌦�l

k (�)
o
� p

i
.
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The optimal tuning parameter for each data partition is selected as �? = argmin � CV(�),

which is then used to obtain the final cross-validated estimator (b⌦1, · · · , b⌦K). Minimiza-

tion of CV(�) is carried out using a simple grid search over the domain of the tuning

parameters. Following both the common practice in nonconvex penalization and our

own theoretical analysis, we choose not to tune a and b in p�(·), but instead set b = 2a

and a equal to some constant divided by �1. We choose not to tune R either, since

our method is not sensitive to the value of R as long as it is reasonably large. We also

make some remarks comparing the cross-validation based tuning under a convex versus

a nonconvex penalty. When comparing the goodness-of-fit of two selected models, it

is essentially comparing the likelihood function evaluated at the constrained maximum

likelihood estimator (MLE), i.e., the MLE over the selected support of the parameters.

Since a convex penalty such as `1 does not yield a constrained MLE; rather, it shrinks

the MLE to achieve an optimal bias-variance trade-o↵, the convex penalized estimator’s

cross-validation score is not suitable for model comparison. By contrast, a nonconvex

penalized estimator is nearly identical to the constrained MLE given the selected sup-

port (Fan and Li, 2001a; Zhang, 2010; Shen et al., 2012). As such, a nonconvex penalty

is better suited to cross-validation tuning for sparsity identification. In graphical model

estimation with a convex penalty, cross-validation and the more traditional Bayesian

information criterion have been shown to perform poorly (Liu et al., 2010). We further

compare the two penalty functions numerically in Section 5.

3 Computation

Nonconvex optimization is in general more challenging than convex optimization. In this

section, we develop a highly e�cient and scalable optimization algorithm for nonconvex

minimization of (2). The algorithm consists of two core components: the minorize-

maximization algorithm that optimizes (2) through a sequence of convex relaxations

(Hunter and Lange, 2004), and the alternating direction method of multipliers that

optimizes each convex relaxation (Boyd et al., 2011). We first summarize our optimiza-

tion procedure in Algorithm 1, then discuss each individual component in detail. We

conclude this section with a discussion regarding the overall computational cost.
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1 Initialize solution
⇣
b⌦

(0)

1 , · · · , b⌦
(0)

K

⌘
=
⇣
Diag(b�1)�1

, · · · ,Diag(b�K)�1
⌘
.

2 Initialize weights b(0)kll0 = �1I(l 6= l
0), c(0)ll0 = �2I(l 6= l

0), 1  l, l
0  p, k = 1, · · · , K.

3 Initialize MM iteration counter t = 0. . MM updates
4 repeat

5 Initialize ⇥
(0)
k = 0, e⌦

(0)

k = b⌦
(t)

k , �(0)
k = b⌦

(t)

k , and ADMM iteration counter
m = 0.

6 repeat . ADMM updates

7 Decompose ⇢

⇣
�

(m)
k �⇥

(m)
k

⌘
� nk

nmin

b�k = UDU>.

8 Define the diagonal matrix Q with

Qii = argmin 0<xR xDii � log(x) + cx2

2 ; i = 1, . . . , p .

9 Compute ⌦
(m+1)
k = UQUT . . ADMM primal update

10 For 1  l, l
0  p, k = 1, · · · , K, let

sk = S
b
(t)

kll0/⇢

⇣
!̃
(m+1)
kll0 + ✓

(m)
kll0

⌘
,

⇣
�
(m+1)
1ll0 , · · · , �(m+1)

Kll0

⌘
=

 
1� c

(t)
ll0

⇢ksk2

!

+

(s1, · · · , sK) .

. ADMM primal update

11 Set ⇥(m+1)
k = ⇥

(m)
k + e⌦

(m+1)

k ��
(m+1)
k . . ADMM dual update

12 Set m = m+ 1.
13 until ADMM stopping criteria is satisfied.

14 Set ⌦(t+1)
k = �

(m+1)
k , k = 1, · · · , K.

15 Set b(t+1)
kll0 = nk

nmin
p
0
�1
(|!(t)

kll0 |), 1  l, l
0  p, k = 1, · · · , K. . Weights updating

16 Set c(t+1)
ll0 = p

0
�2

 r
PK

k=1

⇣
!
(t)
kll0

⌘2
!
, 1  l, l

0  p. . Weights updating

17 Set t = t+ 1.

18 until B(t+1)
k = B(t)

k , k = 1, · · · , K and C(t+1) = C(t).

Algorithm 1: The MM algorithm and ADMM algorithm for solving (2).

3.1 Sequential convex relaxation through MM algorithm

The MM algorithm is commonly employed for solving nonconvex optimization approxi-

mately. Its key idea is to decompose the objective function into di↵erence of two convex

functions. In our setting, we linearize the nonconvex penalty based on the previous

iterate x
(t), i.e.,

p� (|x|) = p�

�
|x(t)|

�
+ p

0
�

�
|x(t)|

�
(|x|� |x(t)|),
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to obtain a convex approximation at x
(t). Accordingly, we solve the nonconvex opti-

mization (2) by considering a sequence of convex relaxations until we get a stationary

point. Specifically, based on
⇣
b⌦

(t)

1 , · · · , b⌦
(t)

K

⌘
at step t, we minimize the following convex

relaxation,

KX

k=1

nk

nmin

n
trace(⌦k

b�k)� log det(⌦k)
o
+

KX

k=1

X

l<l0

b
(t)
kll0 |!kll0 |+

X

i<i0

c
(t)
ll0

vuut
KX

k=1

!2
kll0 , (3)

subject to �max(⌦k)  R; k = 1, . . . , K, where

b
(t)
kll0 =

nk

nmin
p
0
�1
(|!(t)

kll0 |), c
(t)
ll0 = p

0
�2

0

@

vuut
KX

k=1

⇣
!
(t)
kll0

⌘2
1

A .

We then obtain the solution
⇣
b⌦

(t+1)

1 , · · · , b⌦
(t+1)

K

⌘
at the (t+ 1)th step, and iterate over

t until convergence.

3.2 Alternating direction method of multipliers

To solve each relaxation (3), we propose an ADMM algorithm. Specifically, we introduce

K new variables �k = (�kll0)1l,l0p, such that �k = ⌦k, and K associated dual variables

⇥k = (✓kll0)1l,l0p, k = 1, · · · , K. The ADMM algorithm solves (3) through iteratively

applying the following updating scheme, for k = 1, . . . , K, and 1  l < l
0  p,

⌦(m+1)
k = argmin

�max(⌦)R

⇢
nk

nmin

⇣
trace(⌦b�k)� log det⌦

⌘
+

⇢

2

���⌦��(m)
k +⇥(m)

k

���
2

2

�
, (4a)

⇣
�(m+1)
kll0

⌘K
k=1

= argmin

�2RK

(
⇢

2

KX

k=1

⇣
�k � !(m+1)

kll0 � ✓(m)
kll0

⌘2
+

KX

k=1

b(t)kll0 |�k|+ c(t)ll0 k�k2

)
, (4b)

⇥(m+1)
k = ⇥(m)

k +⌦(m+1)
k ��(m+1)

k ,

The first update (4a) can be carried out e�ciently according to the next lemma.

Lemma 1. Consider the following optimization problem,

minimize
⌦⌫0,�max(⌦)R

trace(⌦�)� log det⌦+
c

2
k⌦k2F

Let � = UDU> be the eigen-decomposition of �. The solution to the above problem is

given by

⌦
? = UQU>

,
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where Q is a diagonal matrix with diagonal elements

Qii = argmin
0<xR

xDii � log(x) +
cx

2

2
; i = 1, . . . , p.

The second update (4b) has an analytical solution according to the next lemma.

Lemma 2. Consider the following generic minimization problem,

minimize
x2RK

1

2

KX

k=1

(xk � ak)
2 +

KX

k=1

bk|xk|+ ⌫

vuut
KX

k=1

x2
k.

Its solution is given by

x? =

8
<

:1� ⌫

"
KX

k=1

(Sbk(ak))
2

#�1/2
9
=

;
+

{Sb1(a1), · · · , SbK (aK)} ,

where Sb(a) = Sign(a)(|a|� b)+ is the soft-thresholding function.

The proofs of Lemma 1 and 2 are given in the Appendix.

3.3 Overall computational cost

We make a few remarks regarding the overall computation of our algorithm. First, the

per-iteration computational complexity for carrying out the ADMM step in Algorithm

1 is O(Kp
3). Such a cubic dependence on p is essentially inevitable if one is to obtain a

positive-definite matrix estimate. If positive-definiteness is not required, there are some

alternative loss functions such as the pseudo-likelihood loss, and faster algorithms are

possible. We have chosen the likelihood loss partly because of the positive-definiteness

requirement, and partly because it is more amenable to the theoretical analysis. Sec-

ond, although nonconvex optimization is in general more challenging, our nonconvex

algorithm achieves a comparable computation time as its convex counterpart, as we

report in Section 5. This is due to the fast convergence of the step that tackles noncon-

vexity, i.e., the MM step of convex relaxations. Our numerical study shows that the MM

step usually converges in only a few iterations. Consequently, the main computational

cost of the algorithm is dominated by the convex optimization step of ADMM. Third,

our optimization algorithm scales reasonably well, and can handle networks with the
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number of nodes up to a few hundreds. It is noteworthy that, in functional connectivity

analysis, the typical size of a region-based brain network is in tens to a few hundreds.

As such, our method is well suited for brain connectivity type applications. Finally, we

comment that some of the steps in our algorithm can be parallelized to further speed

up the computation.

4 Asymptotics

Our asymptotic analysis focuses on two scenarios. We first study the case when there

is only the sparsity penalty, i.e., when �2 = 0. We then study the case when there is

only the group sparsity penalty, i.e., when �1 = 0. Considering these cases provides

new insights to the connection and di↵erence of the two types of penalty functions.

Meanwhile, it allows a direct comparison with existing theoretical results in Gaussian

graphical models. We also note that we did not pursue the scenario where both �1 and

�2 are non-zero, for two reasons. Although it is undoubtedly of interest to study the

theoretical properties when both penalties are present, such a characterization would

naturally require an explicit quantification of similarity between the true graphs. This

kind of knowledge is almost surely unknown in reality, making the asymptotic result

less relevant practically. Moreover, there are lack of tools to overcome some technical

di�culties in analyzing the KKT conditions when both sparse and group sparse penalties

are employed. There is no existing work of this type even for the vector normal case.

We defer this pursuit as potential future research.

That being said, we also clarify on our theoretical contributions. For the separate

graph estimation scenario with �2 = 0, we provide a new sparsistency result that achieves

a sharper error bound, requires less stringent conditions, and holds for the actual local

optimum of the estimation algorithm. For the multi-graph joint estimation scenario with

�1 = 0, we establish the sparsistency for the actual local instead of global minimizer,

and guarantee both multi-graph structure recovery, symmetry and positive-definiteness.

Moreover, we develop a new proof technique that permits a direct generalization from the

single graph case to the multi-graph case. This proof technique is new in the literature,

and is potentially useful for theoretical analysis of other models as well.
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4.1 Sparsity penalty only with �2 = 0

First we consider the case where we impose the sparsity penalty only and set �2 = 0

in (2). Let A
0
k = {(i, j) : !0

kij 6= 0} denote the support of the true partial correlation

matrix ⌦
0
k = (!0

kij), i, j = 1, . . . , p, k = 1, · · · , K. We define the oracle estimator b⌦k,A0
k

as

b⌦k,A0
k

= argmin
(i,j):!0

kij=0,(i,j)/2A0
k

n
trace

�b�k⌦
�
� log det

�
⌦
�o

, (5)

which is essentially the MLE over {A0
k}Kk=1. Moreover, let nmin = min1kK nk and

nmax = max1kK nk. We impose the following assumptions.

(A1) Let �
0
k = Diag(⌃kS)�1/2

⌃kS Diag(⌃kS)�1/2 denote the true correlation matrix.

Assume that, for all k = 1, · · · , K,

c
�1
0 < �min(�

0
k)  �max(�

0
k) < c0 and c

�1
0 < �min(⌃

0
kT )  �max(⌃

0
kT ) < c0,

holds for some positive real number c0.

(A2) Let c1 = maxk k�0
kk1,1, c2 = maxk kIkk1,1, where Ik = 1

2 [⌦
0
k]

�1 ⌦s [⌦
0
k]

�1 is the

Fisher information matrix in group k, and kAk1,1 = max1jp

Pn
k=1 |Ajk| is the

`1/`1-operator norm of matrix A. Let s0 = max1kK max1jp

Pp
i=1 I((i, j) 2

A
0
k), where I is the indicator function. Assume that

2c1c2c3
�
1 + 2c21c2

�
s0

s
log(p _ q)

nkq
 1, k = 1, · · · , K ,

where c3 is some absolute constant.

Assumption (A1) is a commonly imposed condition when analyzing the theoretical prop-

erties of many types of precision matrix estimators; see, for example, Fan et al. (2009);

Cai et al. (2016). Assumption (A2) restricts the scaling of the graph sparsity level mea-

sured by s0 as a function of sample size n and graph size p. Similar scaling has been

used in Fan et al. (2009); Loh and Wainwright (2014). It is also noteworthy that the

quantities c0, c1, c2, and s0 can grow with the sample size, the spatial dimension, and

the temporal dimension. Under these assumptions, we have the following result.
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Theorem 1. Under Assumptions (A1) and (A2), and the condition that,

min
(i,j)2A0

k

|!0
kij| >

n
2c2c3 + (1 + c

2
1c2)c3

�
c0 + 2c�1

1

�2o
s

log(p _ q)

nkq
, (6)

for k = 1, · · · , K, there exist �1 and a such that the oracle estimator b⌦k,A0
k
is the unique

minimizer of problem (2) when R =
p
2a, b = 2a, and �2 = 0, with probability at least

1� 6K
(p_q)2 , as n, p ! 1.

This theorem shows that the oracle estimator is the unique minimizer of (2) under

�2 = 0. That is, when the maximum node degree s0 does not grow too fast as (n, p)

goes to infinity, for some choice of the tuning parameters, solving (2) could reconstruct

the true structure of the K graphs with probability tending to one. This result holds

when the minimum signal satisfies the condition (6). If we further assume ci, i = 1, 2, 3,

are all constants, then the minimum signal condition (6) roughly requires that

min
(i,j)2A0

k

|!0
kij| � O

 s
log(p _ q)

nkq

!
, k = 1, · · · , K. (7)

Comparing (7) to the minimum signal strength condition in Fan et al. (2014), their

condition is suboptimal in terms of dependence on column/row sparsity s0, in that it

requires min(i,j)2Au |!0
ij| > O

✓
s
2
0

q
log p
n

◆
. By contrast, we only require min(i,j)2Au |!0

ij| >

O

✓q
log p
n

◆
. Our result is comparable to that of Loh and Wainwright (2014). However,

their proof used a primal-dual witness technique, whereas our proof proceeds in two

steps, by first establishing the rate of convergence for the oracle estimator, and then

proving that the oracle estimator is the unique local minimum. An advantage of our

two-step proof is that it is straightforward to generalize to the multiple partial correlation

matrices case when a group sparsity penalty is further imposed. Finally, unlike Leng

and Tang (2012) that established the oracle property for some unknown local minimizer

of their objective function, we obtain the result for our actual local minimizer.

4.2 Group sparsity penalty only with �1 = 0

Next we consider the case where we impose the group sparsity penalty only and set

�1 = 0 in (2). For this case, it is impossible to recover the oracle estimator unless
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A
0
1 = · · · = A

0
K , since the graph estimators obtained by using only the group sparsity

penalty would be identical across all groups. On the other hand, it is still feasible

to recover the oracle estimator over A
u = [K

k=1A
0
k. Specifically, we define the oracle

estimator b⌦1,Au , · · · , b⌦K,Au as

b⌦k,Au = argmin
(i,j):!0

kij=0,(i,j)/2Au

n
trace(b�k⌦)� log det(⌦)

o
,

which is essentially the MLE over the joint set Au. We also modify the assumption (A2)

slightly and introduce the next assumption.

(A3) Let s̃0 = max1jp

Pp
i=1 I((i, j) 2 A

u). Assume that

2c1c2c3
�
1 + 2c21c2

�
s̃0

s
log(p _ q)

nkq
 1, k = 1, · · · , K.

Assumption (A3) is directly comparable to (A2). In (A3), s̃0 is the sparsity level of the

joint of all K graphs, whereas s0 in (A2) is the maximum sparsity level of all graphs.

Easily s0  s̃0; and when the sparisity pattern di↵ers significantly across di↵erent groups,

s̃0 can be much larger than s0. In this sense, the group sparsity penalty is most e↵ective

when the sparsity patterns are similar across di↵erent groups. Under (A1) and (A3), we

have the following result.

Theorem 2. Under Assumptions (A1) and (A3), and the condition that

min
(i,j)2Au

vuut
KX

k=1

�
!0
kij

�2
> 2c2c3

s
K log(p _ q)

nminq

+(1 + c
2
1c2)c3

�
c0 + 2c�1

1

�2
r

nmax

nmin

s
K log(p _ q)

nminq
, (8)

for k = 1, . . . , K, there exist �2 and a such that the oracle estimator b⌦k,Au , k = 1, · · · , K

is the unique minimizer of (2) when R =
p
2a, b = 2a, and �1 = 0, with probability at

least 1� 6K
(p_q)2 , as n, p ! 1.

This theorem says that, if the size of the union of supports A
0
k is not too large, the

oracle estimator is the unique local optimum of (2) under �1 = 0, and can recover the
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true graph structure with probability tending to one. Again, if we treat ci, i = 1, 2, 3, as

constants, then the condition (8) becomes

min
(i,j)2Au

vuut
KX

k=1

�
!0
kij

�2
> O

 r
nmax

nmin

s
K log(p _ q)

nminq

!
. (9)

Comparing the two minimum signal strength conditions (7) and (9) reveals some useful

insights about the two penalties. It is noted that neither condition is stronger nor

weaker than the other. When the sample sizes n1, · · · , nK are well balanced, and the

sparsity patterns are similar across all groups, adding a sparsity group penalty is to

facilitate the graph recovery. This can be seen by inspecting the extreme case where

n1 = · · · = nK = ñ and the sparsity patterns are identical. In this case, the condition for

using the group sparsity penalty reduces to min(i,j)2Au

r
PK

k=1(!0
kij)

2

K � O

⇣q
log(p_q)

ñq

⌘
,

which is clearly less stringent than the condition (7) required for using the sparsity

penalty, because min(i,j)2Au

r
PK

k=1(!0
kij)

2

K � mink min(i,j)2A0
k
|!0

kij|. On the other hand, if

the sample sizes are highly unbalanced, or the sparsity patterns are markedly di↵erent

across groups, then using the sparsity penalty would require a less stringent condition.

Comparing to some existing vector-based multi-graph analysis, our result is for the actual

local minimizer, rather than the global minimizer as in Zhu et al. (2014). Moreover, we

guarantee both multi-graph structure recovery and ensure positive-definiteness of the

estimator, while Lee and Liu (2015); Cai et al. (2016) can not guarantee the latter.

5 Simulations

5.1 Setup

We study the finite-sample performance of our method through simulations. To evaluate

the accuracy of sparsity identification, we employ the average false positive (FP) and

average false negative (FN) rates, defined as,

FP =
1

K

KX

k=1

P
1l<l0p I(!ll0k = 0, !̂ll0k 6= 0)
P

1l<l0p I(!ll0k = 0)

n
1� I

�
⌦k,�ll 6= 0

�o
,

FN =
1

K

KX

k=1

P
1l<l0p I(!ll0k 6= 0, !̂ll0k = 0)
P

1l<l0p I(!ll0k 6= 0)
I
�
⌦k,�ll 6= 0

�
,

17



where ⌦k,�ll are the o↵-diagonal elements of ⌦k. To evaluate the accuracy of parameter

estimation, we employ the entropy loss (EL) and quadratic loss (QL), defined as,

ELk = trace
�
⌦

�1
k
b⌦k

�
� log det

�
⌦

�1
k
b⌦k

�
� p,

QLk = trace
n�

⌦
�1
k
b⌦k � I

�2o
, k = 1, · · · , K.

We generate the data from a matrix normal distribution. We consider three spatial

dependence structures: a chain graph, a hub graph, and a random graph, as shown

in Figure 1. We fix the temporal dependence structure as an order-one autoregressive

model. We focus on the two-group graph estimation, i.e., with K = 2, although our

method can be equally applied to more than two groups. We first generate a graph

following one of the three structures in Figure 1 for one group, then construct the graph

for the other group by randomly adding a few edges to the first graph. We vary the

number of per-group subjects nk = {10, 20}, the spatial dimension p = {100, 200}, and

the temporal dimension q = {50, 100}. In the interest of space, we report the results

when nk = 10 in the online Supplementary Appendix.

Figure 1 about here

5.2 Comparison

We compare our method with some competing alternative solutions. The first is a matrix

Gaussian multi-graph estimation method using the convex penalty, i.e., a combination

of the `1 and the group `1 penalty. The second category are two state-of-the-art vector

Gaussian multi-graph estimation methods, Lee and Liu (2015) and Cai et al. (2016).

Both estimate multiple graphs that share a common structure, and both utilize the

convex penalty. Since both methods have been designed for the vector-valued rather

than the matrix-valued data, we first apply whitening to reduce the temporal correla-

tions among the columns of the matrix data, then apply Lee and Liu (2015) and Cai

et al. (2016). All parameter tunings are done via 5-fold cross-validation. Tables 1 to 3

summarize the results based on 100 data replications for the three spatial graph struc-

tures in Figure 1. In summary, our proposed method clearly outperforms the alternative

solutions in terms of both sparsity identification and graph estimation accuracy.
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Compared with the convex counterpart, our proposed nonconvex method achieves a

smaller false positive, as well as a smaller estimation error. For instance, under the chain

graph and nk = 20, p = q = 100, the average entropy loss for the first graph for our

method is 0.093, with the standard deviation SD = 0.015, and that for the convex method

is 4.030, with SD = 2.160. Meanwhile, the average false positive rate for our method

is 0.003, with SD = 0.005, and that for the convex method is 0.059, with SD = 0.058.

Similar numerical advantages of the nonconvex solution are consistently observed for

di↵erent graph structures, sample sizes, and spatial and temporal dimensions. These

results, to some extent, also reflect the advantage of a nonconvex penalty compared to

a convex one when the parameter tuning is done via cross-validation.

Compared with the method of Lee and Liu (2015), again, our proposal performs much

better in both sparsity identification and graph estimation accuracy. In particular, the

method of Lee and Liu (2015) yields a much higher false positive rate than our approach,

while the false negative rates of the two are comparable. Besides, the estimation error

of our method is 3 to 10 times smaller than that of Lee and Liu (2015). Compared

with the method of Cai et al. (2016), our proposal performs about the same in terms

of sparsity identification, but substantially improves in graph estimation. Actually, the

graph estimation error of Cai et al. (2016) is the worst among all solutions, and in some

situations, its estimation error is 1000 times higher than that of our proposed method.

Since both Lee and Liu (2015) and Cai et al. (2016) relied on some convex penalties,

these results partially reflect the conflict between selection consistency and estimation

accuracy that is not uncommon when employing a convex penalty (Shen et al., 2012).

Moreover, it shows the advantage of directly working with the matrix data, rather than

working with the vector-valued data after whitening.

Tables 1-3 about here

5.3 Computation

We also examine in detail the computational cost of our proposed solution. All compu-

tations were done on a single core, Xeon E5-2690 v3 at 2.6GHz and 128G memory. We
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first report and compare the running time of various methods for the simulation exam-

ples in Section 5.2. The last column of Tables 1 to 3 records the average running time, in

seconds, rounded up to integers. It is seen that our proposed method is slower than its

convex counterpart, but only slightly, and the two running times are comparable. For in-

stance, for the chain graph with nk = 20, p = 200, q = 100, the average running time for

our method is 474 seconds, and that for the convex solution is 398 seconds. This is due

to that the MM step of convex relaxation of our nonconvex objective function usually

converges in only a few iterations. Consequently, the main computational cost of our

algorithm is dominated by the convex optimization step of ADMM. On the other hand,

we have observed a 4 to 50 fold slowdown in running time for the other two competing

methods of Lee and Liu (2015) and Cai et al. (2016). For the aforementioned setup, the

average time for Lee and Liu (2015) is 9,308 seconds, and for Cai et al. (2016) is 7,875

seconds. This is partly because those two alternatives use the interior point method in

optimization, which slows down significantly when the graph size increases. As a further

illustration, we also report the computational time when the number of network nodes

gradually increases from p = 25 to p = 500 in the online Supplementary Appendix. Our

method is found to be comparable to the convex solution in terms of running time, but

is much faster than Lee and Liu (2015) and Cai et al. (2016), especially when the graph

dimension p is large.

6 Data analysis

6.1 Autism spectrum disorder study

Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disor-

der, and its estimated prevalence was 1 in every 68 American children according to the

Centers for Disease Control and Prevention in 2014. It is characterized by symptoms

such as social di�culties, communication deficits, stereotyped behaviors and cognitive

delays (Rudie et al., 2013). We analyzed a resting-state fMRI dataset from the Autism

Brain Imaging Data Exchange (ABIDE) study (Di Martino et al., 2014). The imaging

was performed on Siemens magneto trio scanners, with the scan parameters: voxel size
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= 3⇥ 3⇥ 4mm, slice thickness = 4mm, number of slices = 34, repetition time = 3s, and

echo time = 28ms. During imaging acquisition, all subjects were asked to lie still, stay

awake, and keep eyes open under a white background with a black central fixation cross.

After removing the images with poor quality or substantial missing values, we focused

on a dataset of 795 subjects, among whom 362 have ASD, and 433 are normal controls.

See Table 4 for the basic demographic information of the study subjects. All fMRI scans

have been preprocessed through a standard pipeline, including slice timing correction,

motion correction, denoising by regressing out motion parameters and white matter and

cerebrospinal fluid time courses, spatial smoothing, band-pass filtering, and registration.

Each brain image was then parcellated into 116 regions of interest using the Anatomical

Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The time series of

voxels within the same region were then averaged, resulting in a spatial-temporal data

matrix for each individual subject, with the spatial dimension p = 116 and the temporal

dimension q = 146. We also comment that, other than simple averaging, there are alter-

native approaches to summarize the voxel data within each region (Kang et al., 2016).

Our proposed method is equally applicable to the data with a di↵erent summary.

Of scientific interest is to understand how brain functional connectivity di↵ers be-

tween the ASD subjects and normal controls. We applied our nonconvex penalized

multi-graph estimation method to this data, and tuned the parameters using 5-fold

cross-validation. A quick examination of the quantile-quantile plot (not shown here)

suggested the normality holds approximately for this data. Figure 2 reports the results.

To facilitate the graphical presentation, we plot only the top 2% of the identified links for

the autism and normal control groups. The dashed links are the ones found common in

both groups, while the solid links are unique to each group. Our findings are in general

consistent with the ASD literature. For instance, we have observed decreased connec-

tivity between the two hemispheres, as shown by the solid links in the control group

between the left and right half of the graph (Vissers et al., 2012). We also found some

brain regions with di↵erent connectivity patterns between the two groups of subjects,

such as inferior frontal gyrus and fusiform gyrus, which have been noted in previous

studies too (Rudie et al., 2013; Di Martino et al., 2014; Tyszka et al., 2014).
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Table 4 about here

Figure 2 about here

6.2 Attention deficit hyperactivity disorder study

Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed

child-onset neurodevelopmental disorders and has an estimated childhood prevalence

of 5 to 10% worldwide (Pelham et al., 2007). Symptoms include di�culty in staying

focused and paying attention, di�culty in controlling behavior, and over-activity. These

symptoms may persist into adolescence and adulthood, resulting in a lifelong impairment

(Biederman et al., 2000). We analyzed a resting-state fMRI dataset from the ADHD-200

Global Competition. The fMRI images were acquired on Siemens allegra 3T scanners at

New York University, with the scan parameters: voxel size = 3⇥3⇥4mm, slice thickness

= 4mm, number of slices = 33, repetition time = 2s, and echo time = 15ms. During

acquisition, all subject were asked to stay awake and not to think about anything under a

black screen. For each subject, one or two fMRI scans were acquired, and for each scan, a

quality control assessment (pass or questionable) was given by the data curators. We only

used the scans that pass the quality control. If both scans of a subject passed the quality

control, we arbitrarily chose the first scan. If neither scan passed the quality control, we

removed that subject from further analysis. This results in 187 subjects, among whom

96 are combined ADHD subjects and 91 are typically developing controls. See Table

4 for the demographic information. All the scans have been preprocessed using the

Athena pipeline, including slice timing correction, motion correction, denoising, spatial

smoothing, band-pass filtering, and registration. Each image was then parcellated using

the AAL atlas, and the resulting data is a spatial-temporal matrix, with the spatial

dimension p = 116 and the temporal dimension q = 172.

Our study goal is to estimate and compare the functional connectivity network be-

tween the ADHD and control groups. We applied our method, tuned by 5-fold cross-

validation. The quantile-quantile plot suggested the data are approximately normal.

Figure 3 shows the results of the top 2% of the identified links for the two groups. We
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found a number of brain regions that exhibit di↵erent connectivity patterns between

the ADHD and control groups, including frontal gyrus, cingulate gyrus, cerebellum and

cerebellar vermis. Such finds are generally in agreement with the ADHD literature.

Specifically, the prefrontal cortex is responsible for many higher-order mental functions,

including those that regulate attention and behavior, and it is commonly believed that

ADHD is associated with alterations in the prefrontal cortex (Arnsten and Li, 2005).

The cingulate gyrus is associated with cognitive process, and there are evidences of an-

terior cingulate dysfunctions in ADHD patients (Bush et al., 2005). The cerebellum is

responsible for motor control and cognitive functions such as attention and language, and

dysfunction in the cerebellum and anomaly in the cerebellar vermis in ADHD patients

have been reported (Toplak et al., 2006; Goetz et al., 2014).

Figure 3 about here

7 Discussion

In this article, we have proposed a nonconvex penalized method to simultaneously esti-

mate multiple graphs from matrix-valued data. We have developed an e�cient optimiza-

tion algorithm, and established some sharp theoretical results. Numerical analysis has

demonstrated clear advantages of our method compared to some alternative solutions.

We have advocated a nonconvex penalty, since it produces a nearly unbiased esti-

mator, is better suited for cross-validation tuning, and can achieve a better theoretical

guarantee under less stringent assumptions. Meanwhile, we recognize its potential lim-

itations. In terms of prediction and estimation accuracy, a nonconvex penalty tends to

work better when the signal in the data is sparse and has a relatively large magnitude.

On the other hand, a convex penalty tends to perform better if the signal is not sparse

and if there are many small signals. This phenomenon has been constantly observed in

the context of high-dimensional linear model selection and graph estimation (Fan et al.,

2009; Zhang, 2010; Shen et al., 2012). We also clarify that, the proposed penalized op-

timization formulation in (2) is in general a nonconvex problem. However, (2) can be

convex for the special cases when �1 = 0 or �2 = 0 under some choice of the parameters,
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e.g., R =
p
2a, b = 2a. The convexity allows us to establish the desired theoretical

properties for those special cases. This is a strategy commonly used in high-dimensional

theoretical analysis. For instance, for variable selection, typically, it is only shown that

there exist some tuning parameter values at which the solution is selection consistent or

attains the oracle property (Fan and Li, 2001b; Zhang, 2010; Shen et al., 2013).

A key assumption for our proposal is the matrix normal distribution. Such an as-

sumption is widely used, and is scientifically plausible in the context of brain connectivity

analysis. On the other hand, we recognize that this assumption may not always hold.

There are two possible ways to relax this assumption. The first is to consider a di↵er-

ent loss function; for instance, the D-trace loss function (Zhang and Zou, 2012), or the

pseudo-likelihood loss function (Lee and Hastie, 2015). The penalty function developed

in our solution can be coupled with those alternative loss functions. We have chosen the

likelihood based loss function, because it is more amenable to the theoretical analysis

thanks to the strong convexity property of the negative log-likehood loss function, and

because it yields a positive-definite estimator for the precision matrix. The second type

of relaxation comes from recent development that extend a vector Gaussian graphical

model to a semiparametric model (Liu et al., 2012), or a fully nonparametric model (Lee

et al., 2016). Parallel extension of those methods to matrix-valued data is warranted for

future research.

We have primarily focused on graph estimation in this article, which is a di↵erent

problem than graph inference, even though both can produce, in e↵ect, a sparse rep-

resentation of the graph structure. We recognize that graph-based inference is a very

challenging problem, and is currently an active area of research that receives increasing

attention (Janková and van de Geer, 2015; Xia and Li, 2017). An alternative solution

is Bayesian graph estimation (Peterson et al., 2015; Zhu et al., 2016), which could au-

tomatically produce a valid inference for all the parameters, provided that the prior is

appropriately specified. However, a major challenge for the class of Bayesian solutions

is the computation and the scalability to large graphs. The sampling method used in

Bayesian analysis is computationally much more expensive than the optimization in the

frequentist solution. For the Gaussian graphical model, each Markov chain Monte Carlo
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(MCMC) iteration requires O(p3) operations, and the number of MCMC steps required

for mixing is usually much larger than the number of ADMM steps in our optimization.

Scalable Bayesian graph estimation is an important future direction.
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Table 1: Chain graph. Reported are the average and standard deviation (in parenthesis) of the

accuracy criteria based on 100 data replications. Also reported is the average running time (in

seconds). Evaluation criteria include the false positive rate (FP), the false negative rate (FN),

the entropy loss (ELk), and the quadratic loss (QLk). We compare the proposed nonconvex

based multi-graph estimation method (denoted as Nonconvex) with its convex counterpart

(denoted as Convex), the method of Lee and Liu (2015) (denoted as Lee & Liu), and the

method of Cai et al. (2016) (denoted as Cai et al.).

nk p q Method FP FN EL1 EL2 QL1 QL2 Time

20 100 100 Nonconvex 0.003 (0.005) 0.000 (0.000) 0.093 (0.015) 0.105 (0.015) 0.230 (0.036) 0.265 (0.038) 116
Convex 0.059 (0.058) 0.000 (0.000) 4.030 (2.160) 3.520 (1.700) 7.850 (4.410) 7.080 (3.640) 85
Lee & Liu 0.413 (0.058) 0.000 (0.000) 1.475 (0.043) 0.960 (0.059) 3.991 (0.121) 2.562 (0.181) 1050
Cai et al. 0.005 (0.005) 6e-04 (0.002) 14.40 (1.100) 16.90 (2.000) 48.00 (5.000) 55.50 (9.300) 631

50 Nonconvex 0.001 (0.003) 0.000 (0.000) 0.194 (0.028) 0.216 (0.027) 0.484 (0.072) 0.547 (0.069) 159
Convex 0.053 (0.045) 0.000 (0.000) 6.500 (3.350) 5.460 (2.440) 13.10 (7.410) 11.70 (5.800) 102
Lee & Liu 0.382 (0.008) 0.000 (0.000) 1.835 (0.070) 1.253 (0.070) 5.063 (0.218) 3.486 (0.216) 1096
Cai et al. 7e-04 (7e-04) 0.000 (0.000) 7.200 (0.750) 9.300 (1.500) 22.10 (2.300) 28.30 (4.700) 608

200 100 Nonconvex 0.000 (0.001) 0.000 (0.000) 0.192 (0.023) 0.196 (0.018) 0.475 (0.056) 0.475 (0.044) 474
Convex 0.032 (0.032) 0.000 (0.000) 11.40 (5.020) 9.110 (3.780) 22.70 (10.40) 18.70 (8.130) 398
Lee & Liu 0.166 (0.002) 0.000 (0.000) 2.800 (0.059) 1.600 (0.044) 7.200 (0.170) 4.000 (0.120) 9308
Cai et al. 1e-04 (2e-04) 0.000 (0.000) 13.50 (1.200) 19.10 (2.400) 41.20 (3.800) 54.20 (7.800) 7875

50 Nonconvex 0.000 (0.000) 0.000 (0.000) 0.390 (0.039) 0.384 (0.034) 0.972 (0.099) 0.933 (0.085) 730
Convex 0.023 (0.027) 0.000 (0.000) 16.70 (6.510) 13.10 (4.550) 34.10 (14.50) 27.20 (10.400) 672
Lee & Liu 0.212 (0.031) 0.000 (0.000) 3.400 (0.088) 1.900 (0.180) 8.900 (0.220) 5.000 (0.520) 11770
Cai et al. 0.001 (0.001) 0.000 (0.000) 8.200 (0.680) 10.50 (1.800) 23.70 (1.700) 29.00 (4.300) 7281

Table 2: Hub graph. The setup is the same as Table 1.

nk p q Method FP FN EL1 EL2 QL1 QL2 Time

20 100 100 Nonconvex 0.006 (0.006) 0.000 (0.000) 0.086 (0.013) 0.111 (0.018) 0.408 (0.070) 0.459 (0.077) 226
Convex 0.199 (0.049) 0.000 (0.000) 1.290 (0.894) 1.360 (0.861) 4.31 (2.76) 4.180 (2.580) 197
Lee & Liu 0.467 (0.024) 0.000 (0.000) 1.100 (0.033) 1.000 (0.037) 3.500 (0.180) 3.90 (0.260) 1072
Cai et al. 5e-04 (0.001) 0.000 (0.000) 20.90 (3.300) 22.40 (3.200) 577.5 (169.4) 574.5 (155.4) 603

50 Nonconvex 0.012 (0.007) 0.001 (0.003) 0.183 (0.025) 0.309 (0.049) 0.875 (0.149) 1.130 (0.162) 272
Convex 0.193 (0.055) 0.001 (0.003) 2.450 (1.330) 2.530 (1.170) 8.010 (4.370) 7.340 (3.620) 257
Lee & Liu 0.399 (0.016) 0.000 (0.000) 1.500 (0.060) 1.600 (0.073) 6.000 (0.460) 6.500 (0.570) 1108
Cai et al. 0.005 (0.003) 9e-05 (6e-04) 17.00 (2.300) 18.40 (2.400) 412.4 (94.70) 419.5 (94.20) 611

200 100 Nonconvex 0.001 (0.001) 0.000 (0.000) 0.171 (0.020) 0.198 (0.024) 0.818 (0.106) 0.797 (0.097) 915
Convex 0.099 (0.028) 0.000 (0.000) 2.870 (1.680) 2.630 (1.390) 10.40 (4.950) 8.280 (3.880) 857
Lee & Liu 0.247 (0.021) 0.000 (0.000) 2.100 (0.054) 1.900 (0.065) 6.600 (0.250) 7.200 (0.430) 9073
Cai et al. 0.002 (0.001) 0.000 (0.000) 48.80 (15.10) 47.50 (13.40) 1615 (835.8) 1418 (680.7) 7533

50 Nonconvex 0.001 (0.000) 0.002 (0.003) 0.354 (0.034) 0.470 (0.073) 1.710 (0.214) 1.740 (0.249) 1295
Convex 0.098 (0.029) 0.000 (0.001) 7.480 (3.840) 6.280 (2.890) 25.20 (13.90) 18.90 (9.770) 1089
Lee & Liu 0.222 (0.011) 1e-04 (5e-04) 3.300 (0.089) 2.700 (0.079) 11.70 (0.560) 11.80 (0.660) 11136
Cai et al. 0.006 (0.001) 5e-05 (3e-04) 30.90 (3.500) 30.60 (3.100) 721.7 (141.4) 649.1 (112.8) 7297
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Table 3: Random graph. The setup is the same as Table 1.

nk p q Method FP FN EL1 EL2 QL1 QL2 Time

20 100 100 Nonconvex 0.005 (0.005) 0.000 (0.000) 0.121 (0.016) 0.146 (0.016) 0.328 (0.044) 0.457 (0.054) 195
Convex 0.143 (0.045) 0.001 (0.002) 2.230 (1.160) 3.010 (1.430) 4.850 (2.730) 6.540 (3.510) 178
Lee & Liu 0.471 (0.030) 0.000 (0.000) 0.950 (0.034) 1.400 (0.043) 2.600 (0.120) 3.700 (0.150) 1107
Cai et al. 0.006 (0.006) 0.030 (0.008) 10.50 (1.000) 6.900 (0.660) 40.80 (5.700) 23.90 (3.700) 605

50 Nonconvex 0.029 (0.008) 0.001 (0.002) 0.276 (0.034) 0.409 (0.094) 0.736 (0.094) 1.200 (0.293) 176
Convex 0.304 (0.061) 0.001 (0.002) 1.690 (0.854) 2.050 (0.883) 3.720 (1.990) 4.510 (2.190) 153
Lee & Liu 0.390 (0.011) 3e-04 (8e-04) 1.300 (0.048) 1.800 (0.068) 3.800 (0.160) 5.200 (0.280) 1145
Cai et al. 0.005 (0.005) 0.026 (0.009) 8.100 (0.800) 6.100 (0.600) 29.20 (3.900) 22.00 (3.600) 580

200 100 Nonconvex 0.022 (0.001) 0 (0.001) 0.284 (0.021) 0.459 (0.077) 0.776 (0.057) 1.830 (0.355) 1206
Convex 0.333 (0.016) 0.001 (0.001) 1.610 (0.073) 2.510 (0.075) 3.78 (0.18) 6.120 (0.193) 1082
Lee & Liu 0.204 (0.033) 0.002 (0.001) 3.000 (0.057) 4.000 (0.089) 8.000 (0.180) 10.90 (0.310) 9600
Cai et al. 0.007 (0.010) 0.079 (0.006) 14.60 (0.800) 13.10 (0.780) 60.00 (6.000) 96.20 (11.60) 8310

50 Nonconvex 0.020 (0.003) 0.020 (0.006) 0.700 (0.058) 1.810 (0.169) 1.850 (0.157) 6.480 (0.638) 1303
Convex 0.299 (0.033) 0.009 (0.002) 3.400 (0.645) 5.030 (0.873) 7.900 (1.470) 11.90 (2.090) 1071
Lee & Liu 0.334 (0.024) 0.006 (0.003) 3.800 (0.088) 6.000 (0.140) 10.70 (0.290) 22.70 (1.400) 11904
Cai et al. 0.004 (0.004) 0.077 (0.008) 11.10 (0.880) 13.20 (0.980) 38.50 (3.700) 98.60 (14.10) 7959

Table 4: Demographic information of the ASD dataset and the ADHD dataset.

ASD study ADHD study

Group Case Control Case Control

Sample size 362 433 96 91
Age (mean ± sd) 16.72 ± 8.253 16.27 ± 6.893 11.38 ± 2.757 12.38 ± 3.112
Male/female 341/48 348/85 73/23 44/47

Chain graph Hub graph Random graph

Figure 1: Three types of graphs used in our simulation studies
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Figure 2: Estimated connectivity networks for the ABIDE data. The left panel is for
the ASD group, and the right panel for the normal control. Shown are the top 2% links,
where the dashed links are the ones found common in both groups, and the solid links
are unique to each group.
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Figure 3: Estimated connectivity networks for the ADHD data. The left panel is for the
ADHD group, and the right panel for the normal control. Shown are the top 2% links,
where the dashed links are the ones found common in both groups, and the solid links
are unique to each group.

32



Supplementary Appendix for “Multiple Matrix
Gaussian Graphs Estimation”

Yunzhang Zhu and Lexin Li

This appendix collects the proofs of the two lemmas in the ADMM step of the opti-
mization algorithm in Section 3, a number of technical lemmas, the proofs of Theorems
1 and 2 in Section 4, and some additional simulation results.

A Proof of Lemmas 1 and 2 of the ADMM optimization

Proof of Lemma 1. It su�ces to show that ⌦? satisfies the optimality condition,

trace
⇥
{�� (⌦?)�1 + c⌦?}(⌦�⌦?)

⇤
� 0 for any �max(⌦)  R and ⌦ ⌫ 0 .

Substituting ⌦? = UQU> and � = UDU>, it su�ces to show that

trace
�
(D �Q�1 + cQ)(U>⌦U �Q)

 
� 0 for any �max(⌦)  R and ⌦ ⌫ 0 .

Let e⌦ = U>⌦U . Since �max(⌦) = �max(e⌦), it is then equivalent to show

(Dii �Q�1
ii + cQii)(e⌦ii �Qii) � 0 for any �max(e⌦)  R and e⌦ ⌫ 0 .

This holds true, because for any 0 < x  R,

(Dii �Q�1
ii + cQii)(x�Qii) � 0,

and 0 < e⌦ii  �max(e⌦)  R for any 1  i  p. This completes the proof.

Proof of Lemma 2. Note that the subgradient of
PK

k=1 bk|xk| + ⌫
qPK

k=1 x
2
k is of

the structure {t + s : t, s 2 Rk, |tk|  bk; k = 1, . . . , K, and ksk2  ⌫}. Therefore, if
k (Sb1(a1), · · · , SbK (aK)) k2  ⌫, we have that

a = {b1Sign(a1), . . . , bKSign(bK)}+ {Sb1(a1), · · · , SbK (aK)}
2 {t+ s : t, s 2 Rk, |tk|  bk; k = 1, . . . , K, and ksk2  ⌫} ,

which implies that x? = 0 when k {Sb1(a1), · · · , SbK (aK)} k2  ⌫. Moreover, when
k {Sb1(a1), · · · , SbK (aK)} k2 > ⌫, the optimality condition becomes

xk =

(
ak � Sign(xk)bk � ⌫ xk

kxk2 , if |ak| > bk,

0, if |ak|  bk,

1



which implies that

x?
k =

2

41� ⌫qPK
k=1{Sbk(ak)}2

3

5Sbk(ak); k = 1, . . . , K,

where we have used the fact that x?
k, if nonzero, must have the same sign as ak. This

completes the proof.

B Technical Lemmas in preparation for Theorems 1 and 2

We present a number of technical lemmas that would facilitate the proofs of Theorems
1 and 2. We first introduce some notations. For a function f(x), let @f(x) denote
the subgradient of f(·) at x. For a symmetric matrix C 2 Rp⇥p, let Cij or (C)ij

denote its (i, j)th entry, and let vec(C) =
np

1 + I(i 6= j)Cij

o

ij
2 R

p(p+1)
2 denote its

scaled vectorization (Alizadeh et al., 1998), where I(·) is the indicator function. Let

vecB(C) =
np

1 + I(i 6= j)Cij

o

(i,j) or (j,i)2B
denote a sub-vector of vec(C) excluding

components with indices not in the index set B. Let CB denote a matrix of the same
dimension ofC, such that (CB)ij = Cij when (i, j) 2 B, and (CB)ij = 0 when (i, j) /2 B.

Define the symmetric Kronecker product C⌦sC 2 R
p(p+1)

2 ⇥ p(p+1)
2 as (C ⌦s C) vec(�) =

vec (C�C) for any symmetric matrix � (Alizadeh et al., 1998).

Lemma B.1. For any positive-definite symmetric matrix C � 0,

r (log detC) = � vec(C�1), (S1)

r2 (log detC) = C�1 ⌦s C
�1. (S2)

Moreover, for a positive-definite symmetric matrix �0
and its inverse ⌦0 = (�0)�1

,

define I = r2
�
�1

2 log det⌦
0
�
. Then,

vec(C)>I vec(C) =
1

2
trace

�
�0C�0C

�
. (S3)

Proof of Lemma B.1: We first show that, for any symmetric matrices C1 and C2,

vec(C1)
> vec(C2) =

X

ij

(1 + I(i 6= j))(C1)ij(C2)ij =
X

i,j

(C1)ij(C2)ij = trace(C1C2).

This implies (S1). Next it follows from the Taylor’s expansion of the log det function
that

log det(C +�)� log det(C)

= trace(C�1�)� 1

2
trace

�
(C�1�)2

�
+ o(kC�1/2�C�1/2k2F )

= vec(C�1)> vec(�)� 1

2
vec(�)> vec(C�1�C�1) + o(kC�1/2�C�1/2k2F )

= vec(C�1)> vec(�)� 1

2
vec(�)>

�
C�1 ⌦s C

�1
�
vec(�) + o(kC�1/2�C�1/2k2F ).

2



This implies (S2) holds true.
Given (S2), I = 1

2�
0 ⌦s �

0. Then,

vec(C)>I vec(C) =
1

2
vec(C)> vec(�0C�0) =

1

2
trace(C�0C�0),

which proves (S3). This completes the proof.

The next lemma gives the optimality condition for a general convex optimization
problem. Its proof can be found in a standard convex analysis textbook, e.g., Hiriart-
Urruty and Lemaréchal (2012), and as such is omitted.

Lemma B.2. Let f(x) be a subdi↵erentiable convex function and X be a closed convex

set. Then x? 2 X is a solution of the convex optimization problem: minimize x2X f(x), if
and only if there exists a subdi↵erentiable g 2 @f(x?) such that g>(x�x?) � 0 for all x 2
X . Su�ciently, if there exists an x? 2 X such that 0 2 @f(x?), then x?

is a solution to

this optimization problem.

For a p ⇥ p symmetric positive-definite matrix �0, let ⌦0 =
⇥
�0
⇤�1

= (!ij)1i,jp.
Let A0 denote the support of ⌦0, and s0 = maxi

Pp
j=1 !

0
ij 6= 0 is the maximum number

of nonzeros across rows/columns of ⌦0. Let �1 = k�0k1,1 and �2 =
��I�1

A0,A0

��
1,1,

where I = r2
�
�1

2 log det⌦
0
�
, IA0,A0 is the |A0|⇥ |A0| submatrix of I that extracts the

corresponding entries whose indices belong to A0, and |A0| is the size of A0. Furthermore,
let b� be an estimator of �0. Consider the following optimization problem,

minimize
⌦⌫0,!ij=0,(i,j)/2A0

trace(⌦b�)� log det(⌦). (S4)

We call its solution an oracle estimator with respect to A0. The next two lemmas
first give the su�cient optimality condition for this oracle estimator, then establish its
existence, uniqueness, and its consistency property.

Lemma B.3. (Optimality condition for the oracle estimator) If an estimator b⌦A0 =
(!̂ij)1i,jp satisfies that,

b⌦A0 ⌫ 0, !̂ij = 0 for (i, j) /2 A0, and vecA0

⇣
b�� b⌦

�1

A0

⌘
= 0,

then it must be a solution to the optimization problem (S4).

Proof of Lemma B.3: By focusing on vecA0(⌦), (S4) becomes a convex optimization
problem with the constraint ⌦ ⌫ 0. Applying Lemma B.2 to this problem, we obtain a
su�cient optimality condition,

⌦ ⌫ 0,!ij = 0 for (i, j) /2 A0, and vecA0 {r log det(⌦)} = 0.

Moreover, together with r log det(⌦) = � vec(⌦�1) from Lemma B.1-(S1), we have that

vecA0 {r log det(⌦)} = vecA0

n
b⌃�⌦�1

o
. This completes the proof.

3



Lemma B.4. (Existence, uniqueness and consistency of the oracle estimator) On the

event that
⇢��b�� �0

��
1  1

2�1�2s0(1 + 2�2
1�2)

�
(S5)

the oracle estimator, b⌦A0 = argmin⌦⌫0,!ij=0,(i,j)/2A0 trace(⌦b⌃)� log det(⌦), exists and

is unique, and we have that

kb⌦A0 �⌦0k1  2�2
��b�� �0

��
1. (S6)

Proof of Lemma B.4: We outline the major steps of our proof. First we show that
the oracle estimator, if exists, must be unique. Then we construct a mapping from an
L1-band to itself and use the Brouwer fixed point theorem to prove the existence of an
oracle estimator based on the fixed point of this mapping. Finally, the L1 bound (S6)
for the oracle estimator follows from the the fact that the fixed point must belong to the
L1-band.

First, we show that, if the oracle estimator exists, then it must be unique. Toward
that end, we note that the objective function of the optimization problem (S4) is strongly
convex in ⌦, because r2l(⌦) = ⌦�1 ⌦s ⌦�1 � 0. Moreover, the constraint set at which
⌦(A0)c = 0 is convex. These facts, together with Theorem 27.1(e) of Rockafellar (1997),
implies that the oracle estimator is unique if it exists.

Next, we prove the existence of the oracle estimator, as well as (S6) on the event
(S5). For any ⌦ with !ij = 0 for (i, j) /2 A0, let � = vecA0(⌦ �⌦0). The construction
of an oracle estimator relies on the Brouwer fixed point theorem. Toward that end,
we construct a mapping TA0(·) and a L1-band Br =

�
� 2 R|A0| : k�k1  r

 
with a

suitable r > 0, such that: (i) � is the fixed point of TA0(·) if and only if ⌦ = ⌦0 +�

satisfies the score equation vecA0

⇣
b��⌦�1

⌘
= 0 with !ij = 0 for (i, j) /2 A0; (ii) TA0(·)

maps Br into itself; and (iii) ⌦0 +� ⌫ 0 for any k�k1  r. Suppose such a mapping
can be constructed. Then by the Brouwer fixed point theorem, TA0(�) must have a
fixed point �?, and it satisfies that k�?k1  r. Let �? be a matrix such that �?

ij = 0
for any (i, j) /2 A0 and vec(�?) = �?. Then, ⌦? = ⌦0 + �? must satisfies the score
equation and is positive-definite. Hence, by Lemma B.3, ⌦? is an oracle estimator, and
the size of the L1-band gives the rate of convergence of this oracle estimator in that
k⌦? �⌦0k1 = k�?k1  r.

There remains to be shown that we can indeed construct such a mapping that satifies
(i)–(iii) with r  2�2kb� � �0k1. The construction of the mapping TA0(·) is motivated
by the score equation of the oracle estimator b⌦A0 . In particular, note that b⌦A0 satisfies
a score equation in terms of p⇥ p matrix ⌦A0 : b�A0 � {(⌦A0)�1}A0 = 0, or equivalently,
b� = b⌦A0 �⌦0 satisfies an equation in �,

vecA0

�
�0 +⇤� (�+⌦0)�1

�
= 0, (S7)

where ⇤ = b�� �0. Then we define a mapping TA0(·) : R|A0| ! R|A0| as

TA0(�) = � � 2I�1
A0,A0vecA0

�
�0 +⇤� (�+⌦0)�1

 
, (S8)

4



where � = vecA0

�
�
�
2 R|A0|. Then � is the fixed point of TA0(·) if and only if � satisfies

the score equation (S7). This proves (i).
Next we show that there exists an L1-band Br =

�
� 2 R|A0| : k�k1  r

 
, with

a suitable r > 0, such that TA0(·) maps Br into itself. For any �, suppose that � =
vecA0

�
�
�
2 Br, where r is to be determined later. We expand (� + ⌦0)�1 at �0 via

the matrix perturbation formula as follows,

�(�+⌦0)�1 + �0 = ��0
�
Ip⇥p +��0

��1
+ �0

= ��0P1
k=0

�
���0

�k
+ �0 = �0��0 +R(�), (S9)

where R(�) = ��0P1
k=2

�
���0

�k
. Validity of this expansion, that is, the convergence

of the above infinite series, is to be justified later by appropriately choosing a suitable
radius r for �. Combining (S9) with (S8) leads to

TA0(�) = � � 2I�1
A0,A0vecA0

�
�(�+⌦0)�1 + �0 +⇤

 

= � � 2I�1
A0,A0vecA0

�
�0��0

�
� 2I�1

A0,A0vecA0 {R(�) +⇤} . (S10)

Moreover, by the definition of I and Lemma B.1-(S3), we have that I vec(�) = 1
2 vec(�

0��0),
which further implies that

IA0,A0vecA0(�) =
1

2
vecA0

�
�0��0

�
.

This, together with (S10), implies that TA0(�) = �I�1
A0,A0vecA0 {R(�) +⇤}. Therefore,

kTA0(�)k1  2�2 k{R(�)}A0k1 + 2�2k⇤k1.

To bound kR(�)k1, note that, for any matrix C,

k�0��0k1  �2
1k�k1, k�0�Ck1  �1k�Ck1  �1s0k�k1kCk1.

Then k�0
�
��0

�kk1 
�
�1s0k�k1

�k�1
�2
1k�k1 for any integer k � 1. Henceforth,

kR(�)k1 
1X

k=2

k�0
�
��0

�kk1  �3
1s0k�k21

1X

k=1

�
�1s0k�k1

�k�1
=

�3
1s0k�k21

1� �1s0k�k1
,

where the requirement that �1s0k�k1 < 1 would ensure the validity of the expansion
in (S9), and is to be verified later by an appropriate choice of r. Now

kTA0(�)k1  �2
��R(�)

��
1 + �2k⇤k1  �2�3

1s0k�k21
1� �1s0k�k1

+ �2k⇤k1.

Henceforth, to ensure kTA0(�)k1  r, we require that �2�3
1s0r

2

1��1s0r
+�2k⇤k1  r, or (�3

1�2s0+

�1s0)r2�(1+�1�2s0k⇤k1)r+�2k⇤k1  0. A solution to this quadratic inequality exists
if J = (1� �1�2s0k⇤k1)2 � 4�3

1�
2
2s0k⇤k1 � 0. A su�cient condition for this is

⇣
1 + 2�2

1�2 +
q
(1 + 2�2

1�2)
2 � 1

⌘
�1�2s0k⇤k1  1, (S11)
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which is ensured by (S5).
The choice of r is important as it determines the convergence rate of the oracle

estimator in the `1 norm. We choose the smallest possible r > 0 satisfying the quadratic
inequality,

r =
1 + �1�2s0k⇤k1 �

p
I

2�1s0(1 + �2
1�2)

=
2�2k⇤k1

1 + �1�2s0k⇤k1 +
p
I
. (S12)

This choice of r ensures that the expansion in (S9) is valid, because �1s0k�k1  �1s0r 
2�1�2s0k⇤k1 < 1 by (S11). Moreover, the mapping TA0(·) constructed as above maps
Br into itself with r specified in (S12). This proves (ii).

It is also ensured that ⌦0 +� ⌫ 0 for any k�k1  r, because ⌦0 +� is invertible,
with its inverse equal to �0 � �0��0 �R(�), for any k�k1  r. This proves (iii).

Finally, an application of the fixed point theorem yields that there exists �? such
that ⌦? = ⌦0 +�? satisfies the score equation, is positive-definite, and

k⌦? �⌦0k1 = k�?k1  r  2�2kb�� �0k1.

This completes the proof.

We make a few remarks regarding to these two lemmas. First, a similar convergence
rate has been obtained in Zhou et al. (2011). The key di↵erence between our result and
Zhou et al. (2011) is the norm used. We focus on the convergence rate in terms of the
L1 norm, whereas Zhou et al. (2011) used the Frobenius norm. The L1 norm result
is more refined, in that one can easily bound the Frobenius norm by the size of the
support times the L1 norm bound. Second, the main technique in the proof of Lemma
B.4 is inspired by the fixed point argument as used in Loh and Wainwright (2014). It is
di↵erent from the approach of Zhou et al. (2011).

Recall our proposed penalized estimation formulation in Equation (2) of the paper,

minimize
�max(⌦k)R; k=1,...,K

KX

k=1

nk

n
trace(⌦k

b�k)� log det(⌦k)
o
+

KX

k=1

nk

X

i 6=j

p�1k
(|!kij|) + nmin

X

i 6=j

p�2

⇣q
!2
1ij + · · ·!2

Kij

⌘
.

Denote the objective function in this problem as L(⌦1, . . . ,⌦K). The next two lemmas
give the su�cient optimality condition for this optimization problem when �1 = �11 =
. . . = �1K or �2 is equal to zero.

Lemma B.5. If there exists Ak ✓ {(i, j) : 1  i 6= j  p} such that b⌦k and Ak satisfy

the following optimality conditions:

!̂kij 6= 0 and

⇣
b⌦�1

k

⌘

ij
� �̂kij + p0�(|!̂ij|) = 0 for any (i, j) 2 Ak,

!̂kij = 0 and

����
⇣
b⌦�1

k

⌘

ij
� �̂kij

����  � for any (i, j) /2 Ak,
⇣
b⌦�1

k

⌘

ii
= �̂kii, i = 1, . . . , p, b⌦k ⌫ 0, and �max(b⌦k) 

p
2a.

(S13)
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Then b⌦k must be a solution of the optimization problem (2) of the paper when �2 = 0
and R =

p
2a, k = 1, . . . , K.

Proof of Lemma B.5: We first show that the objective function L(⌦1, . . . ,⌦K) in
(2) is convex when �2 = 0 and R =

p
2a. Applying B.1-(S2), we obtain that

r2nk

n
trace(⌦k

b�k)� log det(⌦k)
o
= nk⌦

�1
k ⌦s ⌦

�1
k ⌫ nmin

�2
max(⌦k)

I p(p+1)
2 ⇥ p(p+1)

2

⌫ nmin

2a
I p(p+1)

2 ⇥ p(p+1)
2

.

This result, combined with the fact that p�(x)+x2/2a is convex, implies that L(⌦1, . . . ,⌦K)
is convex when �2 = 0 and R =

p
2a.

Next, in view of Lemma B.2, we only need to show that (S13) constitutes conditions
for b⌦k to be in the constraint set, and the subgradient of the objective function contains
0 at b⌦k, which together would imply that b⌦k must be the solution of the optimization
problem (2). Toward that end, we first note that the last condition in (S13) is only the
constraint of the optimization problem. We then show that the first two conditions are
equivalent to saying that the subgradient of the objective function contains 0. This is
true because the subderivative of the objective function with respect to !kij at b⌦k is

⇣
b⌦�1

k

⌘

ij
� �̂kij + p0�(|!̂kij|),

when !̂kij 6= 0; and is the interval

✓⇣
b⌦�1

k

⌘

ij
� �̂kij � � ,

⇣
b⌦�1

k

⌘

ij
� �̂kij + �

◆
,

when !̂kij = 0. Here we have used the fact that @p�1(0) = [��1,�1]. This completes the
proof.

Lemma B.6. If there exists Au ✓ {(i, j) : 1  i 6= j  p} such that b⌦k and Au
satisfy

the following optimality conditions:

qPK
k=1 !̂

2
kij 6= 0 for any (i, j) 2 Au

and

qPK
k=1 !̂

2
kij = 0 for any (i, j) /2 Au

nk

⇢⇣
b⌦�1

k

⌘

ij
� �̂kij

�
+ nmin

@p�2

⇣qPK
k=1 !̂

2
kij

⌘

@!kij
= 0 for (i, j) 2 Au, k = 1, . . . , K ,

s
PK

k=1 n
2
k

⇢⇣
b⌦�1

k

⌘

ij
� �̂kij

�2

 �2nmin for (i, j) /2 Au, k = 1, . . . , K ,
⇣
b⌦

�1

k

⌘

ii
= �̂kii, b⌦k ⌫ 0, and �max(b⌦k) 

p
2a for k = 1, . . . , K ,

(S14)

Then b⌦k must be a solution of the optimization problem (2) of the paper when �1 = 0
and R =

p
2a, k = 1, . . . , K.

7



Proof of Lemma B.6: The proof again makes use of Lemma B.2 and is similar to
that of Lemma B.5. First, we show that the objective function L(⌦1, . . . ,⌦K) in (2) is
convex when �1 = 0 and R =

p
2a. We apply Lemma B.1 and obtain that

r2
n
trace(⌦b�k)� log det(⌦)

o
= ⌦�1⌦s⌦

�1 ⌫ 1

�2
max(⌦)

I p(p+1)
2 ⇥ p(p+1)

2
⌫ 1

2a
I p(p+1)

2 ⇥ p(p+1)
2

.

This result, combined with the fact that p�(x)+
x2

2a is convex, implies that L(⌦1, . . . ,⌦K)

is convex when �1 = 0 and R =
p
2a.

Next, in view of Lemma B.2 again, we only need to show that (S14) constitutes
conditions for b⌦k to be in the constraint set, and the subgradient of the objective
function contains 0 at b⌦k. Toward that end, we note that the last condition in (S14) is
the constraint set. We then show that the first three conditions ensure that 0 is contained
in the subgradient of the objective function. This is true because the subderivative of
the objective function with respect to !kij at b⌦k is

nk

⇢⇣
b⌦�1

k

⌘

ij
� �̂kij

�
+ nmin

@p�2

✓qPK
k=1 !̂

2
kij

◆

@!kij

when
qPK

k=1 !̂
2
kij 6= 0; and is the interval

2

4

vuut
KX

k=1

n2
k

⇢⇣
b⌦�1

k

⌘

ij
� �̂kij

�2

� �2nmin ,

vuut
KX

k=1

n2
k

⇢⇣
b⌦�1

k

⌘

ij
� �̂kij

�2

+ �2nmin

3

5

when
qPK

k=1 !̂
2
kij = 0. Here we have used the fact that the subgradient of p�2(k · k2) at

0 is @p�2(kxk2)
��
x=0

= {x : kxk2  �2}. This completes the proof.

Lemmas B.5 and B.6 provide sets of su�cient optimality conditions for the solution
of problem (2) in the paper, which are to be used later in the proofs of Theorem 1 and
2. Finally, we have the following result for b�k in our optimization problem (2).

Lemma B.7. Under Assumption (A1), we have that

P
 
kb�k � �0

kk1 � c3

s
log(p _ q)

nq

!
 1� 2

(p _ q)2
, k = 1, · · · , K,

where c3 is some constant.

Proof of Lemma B.7: By Theorem 4.1 of Zhou (2014), we have that

P
 
kb�k � �0

kk1 � c03

p
qk⌃0

kTkF
trace(⌃0

kT )

s
log(p _ q)

nq

!
 1� 2

(p _ q)2
, k = 1, · · · , K,

for some constant c03. Then the conclusion of this lemma follows immediately, by setting

c3 = c03c
2
0, and the inequality that

p
qk⌃0

kT kF
trace(⌃0

kT )
 (⌃0

kT )  c20.
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C Proof of Theorem 1

We first outline the main steps of our proof. Our aim is to prove that, there exist �1

and a such that the oracle estimator b⌦k,A0
k
is indeed a minimizer of the optimization

problem (2) of the paper when �2 = 0. By Lemma B.5, we only need to show that the
oracle estimator satisfies (S13). We plan to verify this in three steps.

In the first step, we plan to show that, when

�1  a�1

(
min

(i,j)2A0
k

|!0
kij|� 2c2c3

s
log(p _ q)

nkq

)
, (S15)

with probability at least 1 � 2K
(p_q)2 , we have

⇣
b⌦�1

k,A0
k

⌘

ij
� �̂kij +

@p�1 (|!̂kij |)
@!kij

= 0 holds for

any (i, j) 2 A0
k, k = 1, . . . , K. Su�ciently, we plan to show that

|!̂kij| � a�1 and
⇣
b⌦�1

k,A0
k

⌘

ij
� �̂kij = 0 for any (i, j) 2 A0

k and k = 1, . . . , K. (S16)

In the second step, we plan to show that, when

�1 � 2(1 + c21c2)c3

s
log(p _ q)

nkq
, (S17)

with probability at least 1� 2K
(p_q)2 , we have

����
⇣
b⌦�1

k,A0
k

⌘

ij
� �̂kij

����  �1 for any (i, j) /2 A0
k and k = 1, . . . , K . (S18)

Finally, in the third step, we plan to show that, when a satisfies that

a >
1

2

(
c0 + 4c2c3s0

s
log(p _ q)

nkq

)2

, (S19)

the oracle estimator satisfies that, with probability at least 1� 2K
(p_q)2 ,

�max(b⌦k,A0
k
) 

p
2a for k = 1, . . . , K. (S20)

For step 1, we prove (S16). Note that b⌦k,A0
k
is the oracle estimator over A0

k, k =

1, . . . , K. By applying Lemma B.3 with A0 = A0
k, we have that

⇣
b⌦�1

k,A0
k

⌘

ij
� �̂kij = 0 for

any (i, j) 2 A0
k, k = 1, . . . , K. This proves the second part in (S16). For the first part

in (S16), by the triangular inequality, Lemma B.4, and Lemma B.7, with probability at
least 1� 2

(p_q)2 , we have that, for each k = 1, . . . , K,

min
(i,j)2A0

k

|!̂kij| � min
(i,j)2A0

k

|!0
kij|� max

(i,j)2A0
k

|!̂kij � !0
kij| � min

(i,j)2A0
k

|!0
kij|� 2c2kb�k � �0

kk1

� a�1 + 2c2c3

s
log(p _ q)

nkq
� 2c2kb�k � �0

kk1 � a�1,
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where the second to last inequality uses (S15). Henceforth, with probability at least
1� 2K

(p_q)2 , (S16) holds for all k = 1, . . . , K.

For step 2, we prove (S18). Let b�k = b⌦k,A0
k
� ⌦0

k, and ⇤k = b�k � �0
k. Note that

under Assumption (A2),
��b⌦�1

k,A0
k
� b�k

��
1 =

��( b�k +⌦0
k)

�1 � �0
k �⇤k

��
1 

��( b�k +⌦0
k)

�1 � �0
k

��
1 + k⇤kk1

=
��

1X

j=1

�0
k(� b�k�

0
k)

j
��
1 + k⇤kk1  c21k b�kk1 +

��R( b�)
��
1 + k⇤k1

 2c21c2k⇤kk1 + k⇤kk1 + k⇤kk1 = 2(1 + c21c2)k⇤kk1,

where the second to last inequality uses the fact that k b�kk1  k⇤kk and Lemma B.4.
This, together with (S17), implies that, for each k = 1, . . . , K,

P
⇣��b⌦�1

k,A0
k
� b�k

��
1  �1

⌘
� P

�
2(1 + c21c2)k⇤kk1  �1

�

� P
 
k⇤kk1  2c3

s
log(p _ q)

nkq

!
� 1� 2

(p _ q)2
.

Henthforth, with probability at least 1� 2K
(p_q)2 , (S18) holds for all k = 1, . . . , K.

For step 3, we prove (S20); i.e., we show that b⌦k,A0
k
are the interior points of the

constraints �max(⌦k) 
p
2a; k = 1, · · · , K, with probability at least 1� 2K

(p_q)2 . We first
note that,

�max(b⌦k,A0
k
) = �max(⌦

0
k,A0

k
+ b�k)  �max(⌦

0
k,A0

k
) + �max( b�k)  c0 + �max( b�k). (S21)

To bound �max( b�k), we note that

�max( b�k) = sup
kuk2=1

uT b�u = sup
kuk2=1

X

(i,j)2A0
k

uiuj
b�kij  k b�kk1 sup

kuk2=1

X

(i,j)2A0

|uiuj|

 k b�kk1 sup
kuk2=1

s⇣ X

(i,j)2A0

u2
i

⌘⇣ X

(i,j)2A0

u2
j

⌘

 k b�kk1 sup
kuk2=1

q
s0kuk22s0kuk22 = s0k b�kk1.

Then, applying Lemmas B.4 and B.7, we obtain that �max( b�k)  2c2s0 maxk k⇤kk1 
4c2c3s0

q
log(p_q)

nkq
, with probability at least 1 � 2

(p_q)2 . This result, in combination with

(S19) and (S21), implies that �max(b⌦k,A0
k
)  c0+4c2c3s0

q
log(p_q)

nkq


p
2a. That is, (S20)

holds with probability at least 1� 2K
(p_q)2 .

Combining steps 1 to 3, if the tuning parameters �1, R, and a satisfy the condition

2(1 + c21c2)c3
q

log(p_q)
nkq

 �1  a�1
n
min(i,j)2Au |!0

kij|� 2c2c3
q

log(p_q)
nkq

o

R =
p
2a and a >

✓
c0+4c2c3s0

r
log(p_q)

nkq

◆2

2 ,

(S22)
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then with probability at least 1� 6K
(p_q)2 , the optimization problem (2) is convex and the

oracle estimator is the unique minimizer of (2). The existence of �1 and a that satisfies
(S22) is ensured by

min
(i,j)2A0

k

|!0
kij| �

(
c0 + 4c2c3s0

s
log(p _ q)

nkq

)2

(1+c21c2)c3

s
log(p _ q)

nkq
+2c2c3

s
log(p _ q)

nkq
,

which is true due to Assumption (A2) and the minimum signal condition (6) of Theorem
1. This completes the proof.

D Proof of Theorem 2

The proof of this theorem follows a similar structure as that of Thoerem 1. Again we
first outline the main steps of the proof. Our aim is to prove that, there exist �2 and a
such that the oracle estimator b⌦k,Au is indeed a minimizer of the optimization problem
(2) of the paper when �1 = 0. By Lemma B.6, we only need to show that the oracle
estimator satisfies (S14). We plan to verify it in three steps.

In the first step, we plan to show that, when

�2  a�1

0

@ min
(i,j)2Au

vuut
KX

k=1

�
!0
kij

�2 � 2c2c3

s
K log(p _ q)

nminq

1

A (S23)

with probability at least 1� 2K
(p_q)2 , we have

nk

⇣⇥b⌦�1
k,Au

⇤
ij
� �̂kij

⌘
+ nmin

@p�2

✓qPK
k=1 !̂

2
kij

◆

@!kij
= 0

for any (i, j) 2 Au and k = 1, . . . , K. Su�ciently, we plan to show that,
vuut

KX

k=1

!̂2
kij � a�2 and

⇥b⌦�1
k,Au

⇤
ij
= �̂kij for any (i, j) 2 Au and k = 1, . . . , K. (S24)

In the second step, we plan to show that, when �2 satisfies

nmin�2

nk

p
K

� 2(1 + c21c2)c3

s
log(p _ q)

nkq
for any k = 1, · · · , K , (S25)

with probability at least 1� 2K
(p_q)2 , we have that

vuut
KX

k=1

n2
k

⇢⇣
b⌦�1

k,Au

⌘

ij
� �̂kij

�2

 �2nmin for any (i, j) /2 Au (S26)
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Su�ciently, we plan to show that
����
⇣
b⌦�1

k,Au

⌘

ij
� �̂kij

���� 
nmin�2

nk

p
K

; for (i, j) /2 Au and k = 1, . . . , K. (S27)

Finally, in the third step, we plan to show that, when a satisfies that

a � 1

2

 
c0 + 4c2c3s̃0

s
log(p _ q)

nminq

!2

(S28)

the oracle estimator satisfies that, with probability at least 1� 2K
(p_q)2 ,

�max(b⌦k,Au) 
p
2a for k = 1, . . . , K. (S29)

For step 1, we prove (S24). Note that b⌦k,Au is the oracle estimator over Au. By

applying Lemma B.3 with A0 = Au, we have that
⇣
b⌦�1

k,Au

⌘

ij
� �̂kij = 0 for any (i, j) 2 Au

and k = 1, . . . , K. Moreover, by triangular inequality, the condition (S23), and Lemma
B.7, with probability at least 1� 2

(p_q)2 , we have that, for each k = 1, . . . , K,

min
(i,j)2Au

vuut
KX

k=1

!̂2
kij � min

(i,j)2Au

vuut
KX

k=1

�
!0
kij

�2 � max
(i,j)2Au

vuut
KX

k=1

(!̂kij � !0
kij)

2

� a�2 + 2c2c3

s
K log(p _ q)

nminq
�
p
K max

1kK
kb⌦k,Au �⌦0

kk1

� a�2 + 2c2c3

s
K log(p _ q)

nminq
� 2c2

p
K max

1kK
kb�k � �0

kk1 � a�2

Henceforth, with probability at least 1� 2K
(p_q)2 , (S24) holds.

For step 2, we prove (S26) and (S27). Let b�k = b⌦k,Au � ⌦0
k, and ⇤k = b�k � �0

k.
Note that under Assumption (A2),
��b⌦�1

k,Au � b�k

��
1 =

��( b�k +⌦0
k)

�1 � �0
k �⇤k

��
1 

��( b�k +⌦0
k)

�1 � �0
k

��
1 + k⇤kk1

=
��

1X

j=1

�0
k(� b�k�

0
k)

j
��
1 + k⇤kk1  c21k b�kk1 +

��R( b�)
��
1 + k⇤k1

 2c21c2k⇤kk1 + k⇤kk1 + k⇤kk1 = 2(1 + c21c2)k⇤kk1,

where the second to last inequality uses the fact that k b�kk1  k⇤kk and Lemma B.4.
This, together with (S25), implies that, for each k = 1, . . . , K,

P
✓��b⌦�1

k,Au � b�k

��
1  nmin�2

nk

p
K

◆
� P

✓
2(1 + c21c2)k⇤kk1  nmin�2

nk

p
K

◆

� P
 
k⇤kk1  2c3

s
log(p _ q)

nkq

!
� 1� 2

(p _ q)2
.
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Henceforth, with probability at least 1� 2K
(p_q)2 , (S26) and (S27) hold.

For step 3, we prove (S29); i.e., we show that b⌦k,Au are the interior points of the
constraints �max(⌦k) 

p
2a; k = 1, · · · , K, with probability at least 1� 2K

(p_q)2 . We first
note that,

�max(b⌦k,Au) = �max(⌦
0
k,Au + b�k)  �max(⌦

0
k,Au) + �max( b�k)  c0 + �max( b�k). (S30)

To bound �max( b�k), we note that

�max( b�k) = sup
kuk2=1

uT b�u = sup
kuk2=1

X

(i,j)2A0
k

uiuj
b�kij  k b�kk1 sup

kuk2=1

X

(i,j)2A0

|uiuj|

 k b�kk1 sup
kuk2=1

s⇣ X

(i,j)2A0

u2
i

⌘⇣ X

(i,j)2A0

u2
j

⌘

s̃0  k b�kk1 sup
kuk2=1

q
kuk22s̃0kuk22 = s̃0k b�kk1.

Then, applying Lemmas B.7 and B.4, we obtain that �max( b�k)  2c2s̃0 maxk k⇤kk1 
4c2c3s̃0

q
log(p_q)

nkq
, with probability at least 1 � 2

(p_q)2 . This result, in combination with

(S19) and (S30), implies that �max(b⌦k,Au)  c0+4c2c3s̃0
q

log(p_q)
nkq


p
2a. That is, (S29)

holds with probability at least 1� 2K
(p_q)2 .

Combining steps 1 to 3, if the tuning parameters �2, R, and a satisfy the condition

2(1+c21c2)c3
p
nmaxp

nmin

q
K log(p_q)

nminq
 �2 

min
(i,j)2Au

qPK
k=1(!0

kij)
2�2c2c3

r
K log(p_q)

nminq

a ,

R =
p
2a and a � 1

2

⇣
c0 + 4c2c3s̃0

q
log(p_q)
nminq

⌘2
,

(S31)

then with probability at least 1� 6K
(p_q)2 , the optimization problem (2) is convex and the

oracle estimator is the unique minimizer of (2). The existence of �1 and a that satisfies
(S22) is ensured by

min
(i,j)2Au

vuut
KX

k=1

�
!0
kij

�2 � 2c2c3

s
K log(p _ q)

nminq
+

(
c0 + 4c2c3s̃0

s
log(p _ q)

nminq

)2

(1 + c21c2)c3
p
nmaxp

nmin

s
K log(p _ q)

nminq
,

which is true due to Assumption (A3) and the minimum signal condition (8) of Theorem
2. This completes the proof.
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E Additional simulations

We report here the simulation results in Section 6 of the paper when the sample size
nk = 10. Tables S1-S3 correspond to Tables 1-3 of the paper.

We also graphically report the F1 score, which is a composite measure of the accuracy
of sparsity identification. It is defined as

F1 =
�
true positive rate�1 + (1� false positive rate)�1

 �1
.

In Figure S1, we report the F1 scores when nk = 20, p = 200, and q = 100.
Finally, as a further illustration, we report in Figure S2 the computational time, in

seconds, when the number of network nodes gradually increases from p = 25 to p = 500,
with the sample size fixed at nk = 10, and the temporal dimension q = 50. It is seen
that, for all three graph structures, our method is comparable to the convex solution
in terms of running time, but is much faster than Lee and Liu (2015) and Cai et al.
(2016), especially when the graph dimension p is large. This plot also reflects, to some
extent, the scalability of our approach to networks with the number of nodes up to a
few hundreds.
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Figure S1: The F1 score comparison of our method, the convex counterpart, Lee and
Liu (2015), and Cai et al. (2016), with nk = 20, p = 200, and q = 100.

Table S1: Chain graph. Reported are the average and standard deviation (in parenthesis) of

the accuracy criteria based on 100 data replications. Also reported is the average running time

(in seconds). Evaluation criteria include the false positive rate (FP), the false negative rate

(FN), the entropy loss (ELk), and the quadratic loss (QLk). We compare the proposed noncon-

vex based multi-graph estimation method (denoted as Nonconvex) with its convex counterpart

(denoted as Convex), the method of Lee and Liu (2015) (denoted as Lee & Liu), and the

method of Cai et al. (2016) (denoted as Cai et al.).

nk p q Method FP FN EL1 EL2 QL1 QL2 Time

10 100 100 Nonconvex 0.002 (0.004) 0.000 (0.000) 0.201 (0.033) 0.221 (0.028) 0.499 (0.083) 0.561 (0.071) 161
Convex 0.053 (0.049) 0.000 (0.000) 7.59 (3.33) 6.460 (2.510) 15.50 (7.460) 13.80 (5.990) 149
Lee & Liu 0.379 (0.009) 0.000 (0.000) 1.801 (0.051) 1.068 (0.049) 4.761 (0.159) 2.838 (0.146) 1159
Cai et al. 7e-04 (7e-04) 0.000 (0.000) 7.200 (0.780) 9.500 (1.500) 22.20 (2.400) 28.70 (4.600) 634

50 Nonconvex 0.001 (0.001) 0.000 (0.001) 0.411 (0.060) 0.502 (0.098) 1.04 (0.158) 1.290 (0.253) 326
Convex 0.035 (0.015) 0.000 (0.001) 6.950 (2.280) 6.080 (1.560) 13.60 (5.040) 12.50 (3.700) 287
Lee & Liu 0.270 (0.007) 0.000 (0.000) 2.849 (0.123) 1.597 (0.087) 7.597 (0.345) 4.499 (0.283) 1381
Cai et al. 0.002 (0.002) 0.000 (0.000) 4.400 (0.430) 5.300 (0.390) 13.00 (1.100) 15.50 (1.300) 615

200 100 Nonconvex 0.000 (0.000) 0.000 (0.000) 0.406 (0.043) 0.415 (0.039) 1.010 (0.107) 0.997 (0.095) 805
Convex 0.019 (0.022) 0.000 (0.000) 15.00 (6.630) 10.80 (3.950) 30.10 (14.80) 22.3 (9.000) 720
Lee & Liu 0.213 (0.035) 0.000 (0.000) 3.400 (0.096) 1.900 (0.170) 8.900 (0.250) 5.000 (0.480) 11769
Cai et al. 6e-04 (0.001) 0.000 (0.000) 8.200 (0.930) 10.10 (1.500) 23.70 (2.100) 28.00 (3.600) 7790

50 Nonconvex 0.000 (0.000) 0.000 (0.000) 0.817 (0.083) 0.855 (0.090) 2.060 (0.216) 2.100 (0.230) 2579
Convex 0.015 (0.008) 0.000 (0.001) 16.00 (5.320) 13.00 (3.530) 31.40 (11.80) 26.40 (8.060) 2307
Lee & Liu 0.215 (0.010) 0.000 (0.000) 5.200 (0.140) 3.100 (0.120) 14.000 (0.410) 8.400 (0.390) 24491
Cai et al. 0.004 (9e-04) 0.000 (0.000) 5.900 (0.240) 5.000 (0.210) 16.00 (0.720) 13.70 (0.670) 6797
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Table S2: Hub graph. The setup is the same as Table S1.

nk p q Method FP FN EL1 EL2 QL1 QL2 Time

10 100 100 Nonconvex 0.008 (0.007) 0.002 (0.003) 0.190 (0.029) 0.320 (0.058) 0.920 (0.175) 1.120 (0.189) 302
Convex 0.172 (0.054) 0.011 (0.1) 3.410 (1.880) 3.030 (1.490) 11.20 (7.210) 9.020 (5.350) 241
Lee & Liu 0.388 (0.014) 0.000 (0.000) 1.600 (0.061) 1.300 (0.063) 5.700 (0.390) 5.400 (0.520) 1096
Cai et al. 0.004 (0.003) 0.000 (0.000) 16.70 (2.000) 18.30 (2.000) 404.8 (81.20) 416.1 (79.10) 600

50 Nonconvex 0.002 (0.001) 0.029 (0.011) 0.383 (0.067) 0.856 (0.129) 1.910 (0.431) 3.080 (0.493) 483
Convex 0.063 (0.032) 0.014 (0.010) 5.540 (1.540) 5.400 (1.240) 18.60 (5.620) 16.60 (4.410) 278
Lee & Liu 0.311 (0.020) 0.002 (0.003) 2.400 (0.130) 2.600 (0.130) 10.20 (1.000) 11.40 (1.200) 1292
Cai et al. 0.008 (0.002) 0.005 (0.004) 9.200 (1.200) 10.30 (1.100) 138.6 (32.40) 146.8 (29.80) 610

200 100 Nonconvex 0.001 (0.001) 0.003 (0.003) 0.377 (0.036) 0.550 (0.071) 1.810 (0.217) 1.900 (0.221) 1359
Convex 0.09 (0.043) 0.001 (0.002) 8.690 (3.700) 6.540 (2.370) 29.30 (13.70) 19.10 (7.940) 1109
Lee & Liu 0.217 (0.011) 2e-04 (6e-04) 3.000 (0.089) 3.000 (0.090) 11.40 (0.660) 12.60 (0.760) 11261
Cai et al. 0.006 (0.001) 0.000 (0.000) 30.10 (3.300) 30.10 (3.000) 686.1 (127.7) 630.3 (108.5) 7528

50 Nonconvex 0.000 (0.000) 0.016 (0.004) 0.789 (0.100) 1.210 (0.113) 3.930 (0.598) 4.710 (0.523) 3415
Convex 0.025 (0.011) 0.008 (0.004) 11.60 (2.540) 10.80 (2.000) 39.30 (9.140) 33.70 (7.080) 2973
Lee & Liu 0.160 (0.003) 0.004 (0.001) 5.200 (0.050) 4.600 (0.050) 21.60 (0.500) 21.80 (0.500) 17690
Cai et al. 0.006 (5e-04) 0.002 (0.002) 9.800 (0.700) 9.900 (0.720) 83.20 (11.90) 81.90 (11.70) 6987

Table S3: Random graph. The setup is the same as Table S1.

nk p q Method FP FN EL1 EL2 QL1 QL2 Time

10 100 100 Nonconvex 0.01 (0.007) 0 (0.001) 0.281 (0.037) 0.352 (0.051) 0.744 (0.098) 1.250 (0.214) 198
Convex 0.151 (0.048) 0.001 (0.002) 2.860 (1.070) 3.840 (1.490) 6.250 (2.630) 9.060 (4.240) 144
Lee & Liu 0.386 (0.010) 3e-04 (9e-04) 1.200 (0.036) 1.700 (0.051) 3.200 (0.120) 4.600 (0.170) 1172
Cai et al. 0.005 (0.005) 0.024 (0.008) 7.900 (0.730) 6.000 (0.450) 28.10 (3.300) 21.10 (2.500) 618

50 Nonconvex 0.006 (0.005) 0.022 (0.008) 0.692 (0.104) 1.310 (0.137) 1.870 (0.268) 4.100 (0.473) 335
Convex 0.111 (0.045) 0.016 (0.012) 5.720 (1.610) 5.980 (1.470) 12.70 (4.100) 13.60 (4.020) 294
Lee & Liu 0.304 (0.023) 0.005 (0.004) 2.000 (0.077) 2.200 (0.096) 5.400 (0.250) 6.200 (0.430) 1400
Cai et al. 0.006 (0.003) 0.027 (0.006) 5.500 (0.450) 5.300 (0.370) 18.90 (2.000) 18.90 (1.900) 622

200 100 Nonconvex 0.021 (0.006) 0.032 (0.008) 0.706 (0.067) 2.100 (0.184) 1.920 (0.185) 6.180 (0.507) 1386
Convex 0.272 (0.061) 0.012 (0.004) 4.320 (1.620) 5.300 (1.410) 9.900 (3.800) 12.00 (3.570) 1070
Lee & Liu 0.322 (0.020) 0.004 (0.002) 4.300 (0.099) 5.600 (0.120) 12.30 (0.360) 20.90 (1.100) 11977
Cai et al. 0.005 (0.005) 0.076 (0.009) 11.10 (0.930) 13.00 (1.200) 38.60 (3.600) 94.00 (14.90) 8735

50 Nonconvex 0.005 (0.004) 0.092 (0.011) 2.310 (0.239) 4.710 (0.246) 5.890 (0.614) 13.60 (0.921) 3589
Convex 0.111 (0.029) 0.045 (0.006) 7.400 (1.510) 9.420 (1.580) 16.40 (3.810) 20.90 (4.340) 2769
Lee & Liu 0.257 (0.014) 0.007 (0.003) 5.400 (0.150) 9.500 (0.290) 15.60 (0.530) 54.40 (5.100) 23671
Cai et al. 0.008 (0.003) 0.064 (0.008) 8.000 (0.590) 12.50 (0.880) 25.00 (1.800) 91.00 (15.50) 7137
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Figure S2: The running time comparison of our method, the convex counterpart, Lee
and Liu (2015), and Cai et al. (2016). The number of network nodes gradually increases
from p = 25 to p = 500, with nk = 10 and q = 50.
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