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Abstract
High-dimensional feature selection has become increasingly crucial for seeking parsimonious

models in estimation. For selection consistency, we derive one necessary and sufficient condition

formulated on the notion of degree-of-separation. The minimal degree of separation is necessary

for any method to be selection consistent. At a level slightly higher than the minimal degree of

separation, selection consistency is achieved by a constrained L0-method and its computational

surrogate–the constrained truncated L1-method. This permits up to exponentially many features

in the sample size. In other words, these methods are optimal in feature selection against any

selection method. In contrast, their regularization counterparts–the L0-regularization and trun-

cated L1-regularization methods enable so under slightly stronger assumptions. More importantly,

sharper parameter estimation/prediction is realized through such selection, leading to minimax

parameter estimation. This, otherwise, is impossible in absence of a good selection method for

high-dimensional analysis.

Key Words: Constrained regression, parameter and nonparametric models, nonconvex regularization, differ-

ence convex programming, (p, n) versus fixed p-asymptotics.

1 Introduction

Feature selection is one effective means for sparse modeling in knowledge discovery. Despite

progress in low-dimensional analysis, there remain many important issues. One such issue

is to what extent informative features can be reconstructed given a limited amount of data

at hand. Towards high-dimensional feature selection, we derive one necessary condition for

feature selection, which is attainable by the constrained method and is nearly attained by

the method of regularization. On this basis, we further explore these methods for parameter

estimation as a result of such a selection.
∗1School of Statistics, 2Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455. The
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Consider feature selection based on a random sample (Yi,xi)
n
i=1 from:

Yi = µi + εi;µi = xTi β
0; εi ∼ N(0, σ2); i = 1, · · · , n, (1)

where β0 = (β0
1 , · · · , β0

p) = (βA0 ,0Ac0)
T and xi = (xi1, · · · , xip)T are p-dimensional vectors

of regression coefficients and features (predictors), and xi is independent of random error

εi. In (1), feature selection estimates A0 = {j : β0
j 6= 0} of informative features, together

with estimation of true coefficients β0 = (βA0 ,0Ac0)
T , where 0Ac0 denotes a vector of 0’s

over its complement Ac0 of A0, and representation µ = βTx is generic, encompassing, for

instance, linear regression and basis pursuit (Chen et al., 2001). Of particular interest is a

high-dimensional situation in which p can be much larger than n, and A0 may depend on

(p, n) with p0 = |A0|, where |A| denotes the size of set A. This describes parametric and

nonparametric cases, with A0 corresponding to a true model as in the parametric case when

A0 is independent of (p, n), and a best approximation of a true model as in basis pursuit

otherwise.

Recently, considerable effort has been devoted to selection consistency under (1) to push

feature selection into an ultra-high dimensional situation. In a situation as such, little

is known about selection consistency for many methods in terms of (p, n)-asymptotics as

n, p → ∞, although some methods such as adaptive Lasso (Zou, 2006; Zou and Li, 2008)

have been examined for fixed p-asymptotics as n → ∞. For (p, n)-asymptotics, Bayesian

information criterion (BIC, Schwarz, 1978), which is derived under a fixed p-asymptotic

approximation of the posterior model probability, needs to be modified to accommodate a

higher-dimension. In Chen and Chen (2008), it is showed that a modified BIC is selection

consistent when p is of order of nκ for some κ > 0; Liu and Yang (2010) proved that

another modified BIC allows p to be an order of exp(cp0n) for some c > 0. It appears

that exponentially many features are possible for some methods. For L1-regularization–

Lasso (Tibshirani, 1996), Meinshausen and Buhlmann (2006), Zhao and Yu (2006), Zhang

and Huang (2006) and Wainwight (2009) proved that the Lasso is sign consistent and thus

selection consistent, under a strong irrepresentable assumption that is nearly necessary. As
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pointed in Zhang (2010), this assumption is restrictive because of nonadaptiveness of the

Lasso. For the smoothly clipped absolute deviation (SCAD, Fan and Li, 2001) regularization,

Kim et al. (2008), and Lv and Fan (2009) showed that some consistent local minimizers

exist for SCAD. More recently, Zhang (2010) proved that the minimum concavity penalty

(MCP) is selection consistent under a sparse Riesz condition and an information requirement,

where the sparse Riesz condition is weaker than the irrepresentable assumption; Shen et al.

(2012) showed that a global minimizer of the constrained L0-method is selection consistent,

under a “degree-of-separation” condition under the Hellinger distance. To understand how

a method performs in a high-dimensional situation, it is imperative that we study necessary

and sufficient conditions for selection consistency for feature selection, which is a nonconvex

problem itself.

This paper establishes results with selection consistency. First, we characterize consistent

feature selection for any method through one simple necessary condition in the L2-metric,

which is sufficient up to a constant factor. Now define a measure of the level of diffi-

culty for feature selection: Cmin = Cmin(β0,X) ≡ min{βA:A 6=A0,|A|≤p0}
1

nmax(|A0\A|,1)
‖XA0β

0
A0
−

XAβA‖2, XA and βA are the design matrix for subset A of predictors and the regression

coefficient vector over A, and ‖ · ‖ is the usual Euclidean-norm in Rn. The measure Cmin

defines the degree of separation between A0 and a least favorable candidate model for fea-

ture selection in the L2-norm, which occurs among candidate models of sizes p0 or less. As

indicated in Theorem 1, roughly, a requirement for selection consistency is

Cmin(β0,X) ≥ d1σ
2 log p

n
, (2)

for some positive constant d1 ≤ 1/4 that may depend on X. In short, the minimal degree

of separation is required for correct identification of informative features, translating to an

upper bound on p that is in an order of exp
(
nCmin

d1σ2

)
, for any method and (β0,X). This

further sharpens the result of Shen et al. (2012) in (1). In view of (2), the Lasso does not

achieve feature selection under (2), and it remains unknown if either the SCAD or MCP

does.
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This paper addresses an attainment issue of the necessary condition (2) with regard to

(p0, p, n). Specifically, we prove, in Theorems 2 and 3, selection consistency is achieved under

(2) by global minimizers of the constrained L0-method and its computational surrogate– the

truncated L1-method for some d1 > 0, respectively defined in (8) and (13). Most importantly,

as showed in Theorems 4 and 5, its regularization counterparts defined in (9) and (16) yield

selection consistency under a stronger version of (2):

C∗min ≥ d1σ
2 log p

n
, if α > 1, C∗min ≥ d1σ

2
p0 max

(
log p

p0
, 1
)

n
, if α = 1, (3)

for some d1 > 0, where C∗min ≡ min{βA:A 6=A0,|A|≤αp0}
1

nmax(|A0\A|,1)
‖XA0β

0
A0
−XAβA‖2. This

says that the L0-regularization and truncated L1-regularization methods are optimal when p0

is independent of (p, n), as in the parametric case, but may be suboptimal when p0 depends

on (p, n). In this sense, the constrained method is more preferable because of its theoretical

merits. Note that these two methods are not equivalent for a nonconvex problem, which is

unlike an L1 problem. Moreover, for these methods, selection consistency holds uniformly

over B0(u, l) = {β : p0 =
∑p

j=1 I(βj 6= 0) ≤ u,Cmin(β,X) ≥ l} with l = d1σ
2 log p

n
and

constant d1 > 0, which is called an L0-band with upper and lower radii u and l (u > l > 0),

and is a subset of an L0-ball that is most relevant to feature selection.

This paper also addresses another issue—parameter estimation involving feature selec-

tion. In a low-dimensional situation, it is known that Akaike’s information criterion (Akaike,

1973) is optimal in parameter estimation/prediction even if it can be inconsistent in feature

selection, c.f., Yang and Barron (1998). In other words, optimal parameter estimation can

be achieved without feature selection. In a high-dimensional situation, it is no longer the

case. In (1), the minimax rate of convergence in the L2-norm over an L0-ball B0(u, 0) is√
u log(p/u)

n
Raskutti et al. (2009), which is optimal for parameter estimation without feature

selection. As to be seen, sharper accuracy of parameter estimation can be achieved through

removal of noninformative features by a good selection method. In particular, as showed

in Theorems 2-6, a minimax rate
√

u
n

in the L2-risk over an L0-band B0(u, l) with some

u > l > 0 is achieved by the constrained L0-method as well as its regularization counterpart.
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Note that excluding a neighborhood of the origin for an L0-band B0(u, l) is necessary to

assure existence of a good selection method, as suggested by (2). Moreover, the correspond-

ing estimators defined by these methods are asymptotic minimax over B0(u, l), recovering

the optimal risk of the oracle estimator, defined as the least squares estimator given A0. In

short, sharper optimal parameter estimation is achieved by the constrained L0-method and

L0-regularization method. This is impossible without removal of noninformative features

(Raskutti et al., 2009). To our knowledge, it remains largely unknown if this property is

shared by other methods.

Finally, for constrained truncated L1-regression, we derive a constrained difference convex

(DC) algorithm that is showed to be equivalent to its unconstrained DC algorithm of Shen

et al. (2012) with respect to their solutions, although constrained L0-regression and L0-

regularization methods are not generally equivalent with regard to their global minimizers.

Importantly, we show that a local minimizer of the regularization criterion does share the

desirable properties as a global minimizer under stronger assumptions, c.f., Theorem 6.

The paper is organized in five sections. Section 2 derives the necessary condition (2) for

selection consistency. Section 3 constructs an optimal constrained method to address the

attainment issue, in addition to optimal parameter estimation. Section 4 derives parallel

results for its regularization counterpart. Section 5 establishes equivalence between a con-

strained DC algorithm and its unconstrained counterpart with regard to their solutions. The

appendix contains technical proofs.

2 Necessary conditions

This section establishes the necessary condition (2) by estimating the minimal degree of

separation required for selection consistency.

Selection consistency requires that P (Â 6= A0) → 0 as n, p → ∞ under the true proba-

bility P , for an estimate Â = {j : β̂j 6= 0; j = 1, · · · , p} of A0 = {j : β0
j 6= 0; j = 1, · · · , p}.

To derive a lower bound requirement for Cmin(β0,X), we construct an approximate least fa-
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vorable situation under P , over an L0-band B0(u, l), as defined in the Introduction, to avoid

superefficiency (Ibragimov and Has’minskii, 1981). Then we estimate the smallest possible

value of l > 0 under which selection consistency holds for Â over β0 ∈ B0(u, l), that is

sup
{β0∈B0(u,l)}

P
(
Â 6= A0

)
→ 0, as n, p→ 0.

Let r(p0,X) =
max1≤j≤p n

−1‖x(j)‖2
min

β0:|β0
j
|≥1;j∈A0,|A0|≤p0

Cmin(β0,X)
, where A0 = {j : β0

j 6= 0} and x(j) =

(x1j, · · · , xnj)T . Theorem 1 below gives a good estimate of l.

Theorem 1 (Necessity for selection consistency) For any Â and (u, l) with u > l > 0, we

have

sup
β0∈B0(u,l)

P
(
Â 6= A0

)
→ 0, as n, p→∞, (4)

implying that l > 1
4r(u,X)

σ2 log p
n

. Moreover, if r(u,X) ≤ 1
4d1

, where d1 > 0 is a constant

independent of (n, p), then l > d1σ
2 log p

n
with d1 ≤ 1/4.

Theorem 1 says that (2) is necessary to achieve selection consistency indeed for any

method, as characterized by (4), where the smallest possible l is 1
2r(u,X)

σ2 log p
n

, depending on

a design matrixX through r(u,X). GivenX, an upper bound of r(u,X) may be computed.

A loose bound, for instance, can be r(u,X) ≤ max1≤j≤p n
−1‖x(j)‖2

min|B|≤2p0,A0⊆B cmin(n−1XT
BXB)

by Lemma 1,

where cmin(·) denotes the minimum eigenvalue of a matrix. Sufficiently, r(u,X) is upper

bounded by a constant independent of (u, n, p) when x(j); j = 1, · · · , p, are standardized,

and min|B|≤2p0,A0⊆B cmin(n−1XT
BXB) is bounded away from zero.

Lemma 1 below gives a connection between Cmin and the true signal’s resolution level

γmin = γmin(β0) ≡ min{|β0
k| : k ∈ A0}.

Lemma 1

Cmin = min
A1 6=A0,|A1|≤p0

n−1‖(I − PA1)XA0β
0
A0
‖2

≥ min
|A1|≤p0

cmin

(
n−1XT

A0∩Ac1
(I − PA1)XA0∩Ac1

)
γ2

min

≥ min
|B|≤2p0,A0⊆B

cmin(n−1XT
BXB)γ2

min ≥ 0, (5)
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where PA1 is the projection matrix for XA1 with A1 ⊂ {1, · · · , p0}. In addition,

Cmin ≤ max
j∈A0

n−1‖x(j)‖2γ2
min ≤ cmax(n−1XT

A0
XA0)γ

2
min, (6)

where x(j) = (x1j, · · · , xnj)T , cmax(·) denotes the maximum eigenvalue of a matrix.

For verification of (2), it can be checked using a stronger but simpler condition according

to Lemma 1. That is,

γ2
min min

|B|≤2p0,A0⊆B
cmin(n−1XT

BXB) ≥ d1σ
2 log p

n
. (7)

One major difference between (7) and (2) is that (7) involves eigenvalues ofXT
BXB with |B| ≤

2p0 instead of those ofXB with |B| ≤ p0 in (2). As a result, (7) may not be tight in that (7) is

not satisfied but (2) is. This occurs, for instance, when min|B|≤2p0,A0⊆B cmin(n−1XT
BXB) = 0

but Cmin > 0. This is so when any p0 features are linearly independent but a set of d features

are linearly dependent for d > p0.

Concerning necessary conditions for selection consistency in the literature, Theorem 1

requires less regularity conditions, which are attainable up to a factor d1 as showed in Theo-

rems 2 and 3. To our knowledge, the best available lower bound is roughly γ2
min ≥ C0

log(p−u)
n

in Theorem 3 of Zhang (2010), under the sparse Riesz condition with a dimension restriction

M2u + 1 ≤ d∗ ≤ p for some M2 ≥ 16, and γ2
min ≥ C0

log(p−u)
n

. In particular, under the

assumptions there, Cmin ≥ d∗1σ
2 log(p−u)

n
by Lemma 1, for some constant d∗1 > 0. Moreover,

the assumptions of Theorem 1 may hold even when those of Theorem 3 of Zhang (2010)

are not met, which occurs, for instance, in presence of more than p0 linearly independent

noninformative features.

3 Constrained method

This section addresses the issue of attainment under the necessary condition (2). Specif-

ically, we aim at reconstruction of the oracle estimator—the least squares estimate β̂ol =

(β̂olA0
,0Ac0)

T given A0 by the constrained method, ultimately leading to reconstruction of A0.
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3.1 Constrained L0-method

Consider constrained least squares regression with the L0-constraint
∑p

j=1 I(βj 6= 0). The

constrained least squares criterion is

S(β) =
1

2

n∑
i=1

(yi − βTxi)2 subject to

p∑
j=1

I(βj 6= 0) ≤ K, (8)

where K > 0 is an integer valued tuning parameter. Note that (8) is not equivalent to its

unconstrained nonconvex counterpart–the L0-regularization:

1

2

n∑
i=1

(yi − βTxi)2 + λ

p∑
j=1

I(|βj| 6= 0), (9)

where λ > 0 is a regularization parameter corresponding to K in (8).

Moreover, tuning involves a discrete parameter K in (8), which is easier than that for (9)

with a continuous parameter λ > 0. This phenomenon has been also observed in Gu (1998)

for spline estimation.

The next theorem says that a global minimizer of (8) β̂L0 = (β̂L0

ÂL0
,0) consistently recon-

structs the oracle estimator at a degree of separation level that is slightly higher than the

minimal in (2). Without loss of generality, assume that a global minimizer of (8) exists.

Theorem 2 (Error bound for a global minimizer of (8)) Under (1), when K = p0, we have,

for any (p0, p, n)

P
(
β̂L0 6= β̂ol

)
≤ e+ 1

e− 1
exp

( n

18σ2

(
Cmin − 36

log p

n
σ2
))
. (10)

Assume that u < min(p, n) and constant d1 > 36. Let l = d1σ
2 log p

n
. As n, p → ∞, the

following results hold.

(A) Under (2), β̂L0 consistently reconstructs β̂ol, implying selection consistency of ÂL0

for A0. Moreover,

sup
β0∈B0(u,l)

P
(
ÂL0 6= A0

)
≤ sup
β0∈B0(u,l)

P
(
β̂L0 6= β̂ol

)
→ 0, (11)
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which agrees with the lower bound (4) in (p0, p, n) asymptotically, where B0(u, l) = {β : p0 =∑p
j=1 I(βj 6= 0) ≤ u,Cmin(β,X) ≥ l}.

(B) Under (2), n−1E‖X(β̂L0 − β0)‖2 = (1 + o(1))n−1E‖X(β̂ol − β0)‖2 = σ2 p0
n

. In

addition, β̂L0 is risk-minimax in that

sup
β0∈B0(u,l)

n−1E‖X(β̂L0 − β0)‖2 = (1 + o(1))n−1E‖X(β̂ol − β0)‖2 = σ2u

n

= inf
Tn

sup
β∈B0(u,l)

n−1E‖X(Tn − β0)‖2. (12)

Theorem 2 says that β̂L0 consistently reconstructs the oracle estimator β̂ol, which suffices

to establish the attainment of (2) and its uniform version (4) for selection consistency by ÂL0

in (p0, p, n) except a factor d1 > 0. This permits exponentially many candidate predictors

p ≤ p0 exp
(
nCmin

d1σ2

)
for reconstruction. Moreover, β̂L0 is risk-minimax optimal for parameter

estimation. This is achieved through tuning K over integers ranging from 0 to min(n, p).

3.2 Constrained truncated L1-method

We now examine an L0 surrogate—the truncated L1-constraint, which was suggested for the

method of regularization (Shen et al., 2012). Here the surrogate function J(|z|) is min((|z|, τ),

approximating the L0-function as τ → 0. With this surrogate function, the corresponding

constrained least squares criterion in (8) becomes:

S(β) =
1

2

n∑
i=1

(yi − βTxi)2 subject to
1

τ

p∑
j=1

min(|βj|, τ) ≤ K, (13)

where K and τ are nonnegative tuning parameters.

The next theorem presents a parallel result for a global minimizer of (13) β̂T = (β̂T
ÂT
,0)

as in Theorem 2.

Theorem 3 (Error bound for a global minimizer of (13)) Under (1), if K = p0 and 0 <

τ ≤ σ
√

6
(n+2)pcmax(XTX)

, then

P (β̂T 6= β̂ol) ≤ e+ 1

e− 1
exp

(
− n

20σ2

(
Cmin − 40σ2 log p

n

))
. (14)

All the results for β̂L0 in Theorem 2 continue to hold for β̂T when d1 > 40.
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For parameter estimation in (B), it is known that the minimax rate of convergence in

the L2-norm is
√

u log(p/u)
n

over B0(u, 0), c.f. Raskutti et al., (2009). Nevertheless, a sharper

rate of
√

p0
n

is achieved by the L0-penalty and its computational surrogate under “degree-of-

separation” condition, which can be made uniformly over an L0-band B0(u, l) with l > 0. In

other words, these methods are optimal with regard to parameter estimation, because they

recover the optimal L2-risk of the oracle estimator are asymptotic minimax.

4 Regularization-nearly necessary condition

4.1 L0-regularization

Now consider (9), where we assume, without loss of generality, that a global minimizer exists,

because the cost function (9) is bounded by zero almost surely. Denote by β̂l0 = (β̂l0
Âl0
,0) a

global minimizer of (9).

Theorem 4 (Error bound for a global minimizer of (9)) Under (1) and α > 1,

P (β̂l0 6= β̂ol) ≤ 4 exp
(
−
(nC∗min

18σ2
− (α + 1) log(p+ 1)− λ

2σ2

))
+4 exp

(
−
((α− 1)λ

3ασ2
− (1 +

1

α
)(log(p+ 1)− 2

3

))
. (15)

Moreover, if supβ0∈B0(u,l)
1
n
‖Xβ0‖2 ≤ c1 exp(c2p0) for some constant cj; j = 1, 2, then all

the results in Theorems 2 continue to hold under (3) with Cmin replaced by C∗min, when d1 >

9(α2+3α+2)
α−1

, and λ
n
∈
(3(α+1) log(p+1)σ2

2(α−1)n
, 1

9
C∗min

)
. Similarly, for α = 1, all the above results hold

under (3) with C∗min replaced by Cmin, when d1 > 225, and λ
n
∈
(

18σ2
p0 max

(
log p

p0
,1
)

n
, 1

9
Cmin

)
.

Theorem 4 derives parallel results of the constrained method under a condition that is

slightly stronger. This may be attributed to non-equivalence between these two methods in

tuning. Note that the case of α = 1 is suboptimal as compared to that of α > 1. This is in

contrast of the results in Theorems 2 and 3.
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4.2 Truncated L1-regularization

Next consider a global minimizer β̂tl = (β̂tl
Âtl
,0) of the computational surrogate of the L0-

regularization:

1

2

n∑
i=1

(yi − βTxi)2 +
λ

τ

p∑
j=1

min(|βj|, τ). (16)

For (16), we describe its global minimizer in a simple case to provide an insight into the

truncated L1 function as a computational surrogate of the L0-function.

Proposition 1 In the orthogonal design case, the truncated L1 penalty (TLP) estimate de-

fined by (16) becomes β̂olj I(|β̂olj | ≥
√

2λ) when τ ≤
√
λ/2, which reduces to the thresholding

rule defined by a global minimizer of the cost function of L0-regularization (9), and is{
β̂olj if |β̂olj | ≥ λ

2τ
+ τ ;

(|β̂olj | − λ
τ
)+sign(β̂olj ) if |β̂olj | ≤ λ

2τ
+ τ

when τ >
√
λ/2; j = 1, · · · , p. Here β̂olj is the ordinary least squares estimate for βj. Note

that there are two distinct global minimizers if |β̂olj | = λ
2τ

+ τ .

Proposition 1 suggests that the TLP function yields the thresholding rule of the L0-

regularization when the value of τ is small enough in that τ ≤
√
λ/2.

Theorem 5 (Error bound for a global minimizer of (16)) Under (1), if

0 < τ ≤
√

2λ
(n+1)cmax(XTX)

and α > 1, then P (β̂tl 6= β̂ol) is upper bounded by

min
( √

2|A0|n1/2τ

σ
√
πc
−1/2
min ( 1

n
XT
A0
XA0

)
exp

(
− n

(
γmin−τ

)2
2σ2c−1

min( 1
n
XT
A0
XA0

)

)
, |A0|Φ

(
− n1/2

(
γmin−τ

)
σc
−1/2
min ( 1

n
XT
A0
XA0

)

))
+4 exp

(
−
(nC∗min

20σ2 − (α + 1) log(p+ 1)− λ
2σ2

))
+4 exp

(
−
( (α−1)λ

3ασ2 − (1 + 1
α

)(log(p+ 1)− 5
3

))
. (17)

where Φ(·) is the cumulative distribution function of N(0, 1). If supβ0∈B0(u,l)
1
n
‖Xβ0‖2

≤ c1 exp(c2p0) for some constant cj; j = 1, 2, then all the results in Theorem 2 con-

tinue to hold under (3) with C∗min replaced by Cmin, when d1 > 10(α2+3α+2)
α−1

, and λ
n
∈
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(3(α+1) log(p+1)σ2

2(α−1)n
, 1

10
C∗min

)
and τ ≤

√
2λ

(n+1)cmax(XTX)
. Similarly, if α = 1, Then all the re-

sults continue to hold under (3) with Cmin replaced by C∗min, when d1 > 225, and λ
n
∈(

18σ2
p0 max

(
log p

p0
,1
)

n
, 1

10
Cmin

)
.

Theorem 5 says that the computational surrogate shares the desired statistical properties

of the L0-regularization. This occurs when τ is chosen to be sufficiently small, or τ ≤√
2λ

(n+1)cmax(XTX)
. This result suggests that tuning should be concentrated more on λ whereas

τ does not need a refined search. In practice, τ should not be too small.

5 Nonconvex minimization

To solve (16), we derive a constrained DC method by approximating the constraint function

in (16) by a sequence of nonincreasing approximating functions through DC programming.

This is a so-called prime approach for unconstrained regularization that is a dual problem

of (16), namely,

1

2

n∑
i=1

(yi − βTxi)2 +
λ

τ

p∑
j=1

min((|βj|, τ), (18)

where λ ≥ 0 is a regularizer or Lagrange multiplier for (16).

To proceed, we first decompose the nonconvex constraint in (16) into a difference to two

convex functions:

1

τ

p∑
j=1

min((|βj|, τ) = S1(β)− S2(β), (19)

where S1(β) = 1
τ

∑p
j=1 |βj| and S2(β) = 1

τ

∑p
j=1 max

(
|βj| − τ, 0

)
. Given (19), a sequence

of upper approximations of the constraint function is constructed by successively replacing

S2(β) by its minorization at iteration m:

S1(β)−
(
S2

(
β̂(m−1)

)
+
(
|β| − |β̂(m−1)|

)T∇S2

(
|β̂(m−1)|

)
), (20)

where ∇S2 = 1
τ
I(|β̂(m−1)| > τ) is a subgradient of S2 in |β|, and | · | is used for vectors,
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taking the absolute value in each component. At iteration m, the mth subproblem becomes

min
β
S(β), subject to

1

τ

p∑
j=1

|βj|I(|β̂(m−1)
j | ≤ τ) ≤ K −

p∑
j=1

I(|β̂(m−1)
j | > τ). (21)

Minimizing (21) in β yields its minimizer β̂(m). The process continues until termination.

A constrained DC algorithm is summarized as follows.

Algorithm 1:

Step 1. (Initialization) Supply a good initial estimate β̂(0), say the Lasso estimate.

Step 2. (Iteration) At iteration m, compute β̂(m) by solving (21). This can be done through

the constrained Lasso algorithm of Osborne et al. (2000), which is implemented in Lasso2

in the R-package.

Step 3. (Stopping rule) Terminate when S(β̂(m−1)) − S(β̂(m)) ≤ 0. Then the estimate

β̂T = β̂(m∗−1), where m∗ is the smallest index satisfying the termination criterion.

There is a connection between the prime approach and its dual approach in Shen et al.

(2012), although nonconvex problems (16) and (18) are not equivalent, where (18) is solved

through DC programming by approximating the cost function in (18) to minimize

S(β) +
λ

τ

p∑
j=1

|βj|I(|β̂(m−1)
j | ≤ τ) (22)

iteratively with respect to m. As to be shown in Lemma 2, the prime DC approach as

implemented by Algorithm 1 is equivalent to the dual DC approach implemented through

Algorithm 1 of Shen et al. (2012). The equivalence is established for their solutions, re-

gardless of the modes of implementation, because a coordinate decent method breaks down

for (16) but works for (18). Given the equivalence, no improvement of Algorithm 1 is ex-

pected over Algorithm 1 of Shen et al. (2012). We refer to Shen et al. (2012) for simulation

comparisons of various methods with regard to accuracy of selection and predictive accuracy.

Lemma 2 (Equivalence) The DC solution for (16), computed through (21) in Algorithm 1 is

equivalent to that for (18)x), computed using Algorithm 1 of Shen et al. (2012). Specifically,

given any λ, 0 ≤ λ < ∞, and initial value of Algorithm 1 for (18), there exist a K and

13



an initial value of Algorithm 1 of Shen et al. (2012) for (21) such that the DC solution of

(22) is also a DC solution of (21), and vice versa. Moreover, Algorithm 1 has the finite

termination property and S(β̂(m)) nonincreases in m, as its unconstrained counterpart.

Now consider a local minimizer of (16) β̂lo = (β̂lo
Âlo
,0) satisfying a local optimality

condition of (16):

−(x(j))T
(
Y −Xβ

)
+
λ

τ
bj = 0, j = 1, · · · , p (23)

where bj = sign(βj) if 0 < |βj| < τ ; bj ∈ [−1, 1] if βj = 0; bj = 0 if |βj| > τ ; bj = ∅ if

|βj| = τ , is the regular subdifferential of JT,τ (|βj|) at βj, and ∅ is the empty set. The reader

may consult Rockafellar (2003) for optimal conditions of continuous but nondifferentiable

functions.

Theorem 6 (Error bound for a local minimizer of (16)). Under (1), for β̂lo satisfying (23),

including the solution from Algorithm 1 of Shen et al. (2012), if τ 2 ≥ 4
√

2K∗λ
nmin|B|≤2K∗,A0⊆B cmin(n−1XT

BXB)

then,

P (β̂lo 6= β̂ol) ≤ min
( √

2|A0|n1/2
(

3τ/2
)

√
πσc
−1/2
min ( 1

n
XT
A0
XA0

)
exp

(
− n

(
γmin−3τ/2

)2
2σ2c−1

min( 1
n
XT
A0
XA0

)

)
,

|A0|Φ
(
− n1/2

(
γmin−3τ/2

)
σc
−1/2
min ( 1

n
XT
A0
XA0

)

))
+ (p− |A0|)Φ

(
− λ/τ

σmax1≤j≤p ‖x(j)‖

)
, (24)

where K? is the upper bound of the maximum number of non-zero predictors, with p0 ≤

K? ≤ min{n/2, p}. If cmax

(
XTX
n

)
p2τ 2 ≤ c1 exp(c2p0) for some constant c1 > 0, then all

the results in Theorem 4,5 continue to hold if τ ≤ γmin

2
, log p0

n
≤ cmin(n−1XA0

XA0
)γ2min

5σ2 , log p
n
≤

λ2

2τ2σ2nmax1≤j≤p ‖x(j)‖2 , sufficiently,

log p

n
<

(min|B|≤2K?,A0⊆B cmin(n−1XBXB))2γ2
min

256K?σ2

n

maxj∈A0 ‖x(j)‖2
,

where B0(u, l) is replaced by

{β ∈ Rp :

p∑
j=1

I(βj 6= 0) ≤ u, γ2
min(β) min

|B|≤2K∗,A0⊆B
cmin(n−1XBXB) ≥ l},

with l = 256σ2K∗ log p
n

maxj∈A0
‖x(j)‖2

n
.
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Theorem 6 says that a local minimizer of (16) achieves the objectives of a global minimizer

of (16) under stronger assumptions.

Lemma 3 Results in Theorems 1-6 continue to hold for fixed p with n→∞ with (2) replaced

by limn→∞ nCmin =∞.

6 Appendix

Proof of Theorem 1: Our proof constructs an approximated least favorable situation

for feature selection and uses Fano’s Lemma. According to Fano’s Lemma (Ibragimov

and Has’minskii, 1981), for any mapping T = T (Y1, · · · , Yn) taking values in {1, · · · , s},

s−1
∑s

j=1 Pj(T (Y1, · · · , Yn) = j) ≤
∑

1≤j,k≤s n
K(qj ,qk)+log 2

s2 log(s−1)
, where K(qj, qk) =

∫
qj log(qj/qk)

is the Kullback-Leibler information for densities qj versus qk corresponding Pj and Pk.

Let S = {βj}pj=0 be a collection of parameters with components equal to γmin or 0

satisfying that for any 1 ≤ j, j′ ≤ p + 1, ‖βj′ − βj‖2 ≤ 4γ2
min. For example, we may choose

β0 =
∑p0−1

k=1 γminδk, βj = β0−γminδj; j = 1, · · · , p0− 1 and βj = β0 +γminej; j = p0, · · · , p,

where δk is a vector of length p with its kth element being 1 and 0 otherwise. Let qj is

the corresponding probability density defined by βj, j = 0, · · · , p. Then we have, for any

βj,βj′ ∈ S, K(qj, qj′) = 1
2σ2n
‖X(βj − βj′)‖2 ≤ 2 max1≤j≤p ‖x(j)‖2γ2min

nσ2 ≤ 2r(p0,X)Cmin(β0,X)
σ2 by

Lemma 1. It follows from Fano’s lemma with S and s = p + 1 that s−1
∑

j∈S Pj(T = j) ≤
2nr(p0,X)Cmin(β0,X)+σ2 log 2

σ2 log p
, implying that

sup
{(β,X):Cmin(β0,X)≤R∗(p0,X)}

P (Â 6= A0) ≥ 1− 2nr(p0,X)Cmin(β0,X) + σ2 log 2

σ2 log p
, (25)

which is bounded below by a constant c∗ > 0 with R∗(p0,X) = σ2(1−c∗) log p
2nr(p0,X)

. For (4), if

supβ0∈B0(u,l) P
(
Â 6= A0

)
→ 0, then it follows from (25) that B0(u, l) can not interact with a

L0-ball B0(R∗(u,X), 0), thus l ≥ R∗(u,X) with l = 1
4r(u,X)

σ2 log p
n

, and d0 = 1
4r(u,X)

, for any

β0 ∈ B0(u, l). By (6), r(u,X) ≥ 1. Hence d1 ≤ 1/4. This completes the proof. 2

Proof of Lemma 1: The first inequality follows from Lemma 3 of Shen et al. (2012). For
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the second, note that

Cmin = n−1 min
A 6=A0,|A|≤p0

1

max(|A0 \ A|, 1)
‖(I − PA)XA0β

0
A0
‖2

≤ min
j∈A0

n−1‖(I − PA0\{j})XA0β
0
A0
‖2 ≤ min

j∈A0

(
n−1‖x(j)‖2β2

j

)
≤ γ2

min max
j∈A0

n−1‖x(j)‖2.

This together with maxj∈A0 n
−1‖x(j)‖2 ≤ cmax(n−1XT

A0
XA0) implies that the desired result.

This completes the proof. 2

Next we present a technical lemma to be used below.

Lemma 4 Let PA and PB be two projection matrices onto the column space of XA and XB,

respectively. For any integer r ≥ 2,

Tr
(
(PA − PB)r

)
≤ Tr

(
(PA − PB)2

)
≤ |A|+ |B| − 2|A ∩B|, (26)

where Tr denotes the trace of a matrix.

Proof: Before proceeding, we prove that 0 ≤ λmax
(
(PA−PB)2

)
≤ 1. Note that (PA−PB)2 is

non-negative definite. Then, for any x, 0 ≤ (
(
PA−PB)x

)T
(
(
PA−PB)x

)
= xT (PA−PB)2x,

implying that λmax
(
(PA−PB)2

)
= supx6=0

xT (PA−PB)2x
‖x‖2 ≥ 0, where |A| denotes size of set A,

and ‖ · ‖ is the usual L2-norm. Moreover, xT (PA − PB)2x = ((I − PA)x)T (PBx) + ((I −

PB)x)T (PAx). By inequality that 2ab ≤ a2 + b2 for any real numbers a, b, and the fact that

(I −PA)2 = (I −PA) and P 2
B = PB, ((I −PA)x)T (PBx) ≤ 1

2

(
xT (I −PA)2x+ xTP 2

Bx
)

=

1
2

(
xT (I − PA)x + xTPBx

)
. Thus xT (PA − PB)2x ≤ 1

2

(
xT (I − PA)x + xTPBx + xT (I −

PB)x+ xTPAx
)

= ‖x‖2. Hence λmax
(
(PA − PB)2

)
≤ 1.

For the first inequality in (26), first consider the case of even r. In this case, (PA−PB)r

is non-negative definite. By Lemma 6.5 of Zhou et al. (1998), Tr
(
(PA−PB)r

)
≤ Tr

(
(PA−

PB)2
)(
λmax(PA − PB)2

)r/2−1

≤ Tr
(
(PA − PB)2

)
, for any integer r ≥ 3. Next consider the

case of odd valued r. Now Tr
(
(PA − PB)r

)
≤ Tr

(
PA(PA − PB)r−1

)
≤ Tr

(
(PA − PB)r−1

)
,

which reduces to the case of even valued r.
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To prove the second inequality in (26), note that Tr
(
(PA − PB)2

)
= |A| + |B| −

2Tr(PAPB). If A ∩ B = ∅, Tr(PAPB) ≥ Tr(PA)λmin(PB) = 0 by Lemma 6.5 of Zhou

et al. (1998), implying the second inequality in (26). If A ∩ B 6= ∅, we write, without loss

of generality, XA = (x1, · · · ,x|A|−s, · · · ,x|A|) and XB = (x|A|−s+1, · · · ,x|A|, · · · ,x|A|+|B|−s)

with s ≤ |A| ≤ |B| and s = |A ∩ B|. Now we construct an orthonormal basis for the

column space of XA∩B: e|A|−s+1, · · · , e|A|, followed by two orthonormal bases that are or-

thogonal to it through the Gram-Schmidt orthogonalization. These are e1, · · · , e|A|−s and

e|A|+1, · · · , e|A|+|B|−s, in the column spaces of XA and XB, respectively. As a result of the

construction, PA =
∑|A|

i=1 eie
T
i and PB =

∑|A|+|B|−s
j=|A|−s+1 eje

T
j . Consequently,

Tr(PAPB) =

|A|∑
i=1

|A|+|B|−s∑
j=|A|−s+1

Tr(eie
T
i eje

T
j ) =

|A|∑
i=1

|A|+|B|−s∑
j=|A|−s+1

(eTi ej)
2

=

|A|∑
j=|A|−s+1

(eTj ej)
2 +

|A|−s∑
i=1

|A|+|B|−s∑
j=|A|+1

(eTi ej)
2 ≥

|A|∑
j=|A|−s+1

1 = s,

yielding the second inequality in (26). This completes the proof. 2

Proof of Theorem 2: We bound the reconstruction error directly. Note that |ÂL0| ≤ p0

when K = p0. If ÂL0 = A0 then β̂L0 = β̂ol. Let S(β) ≡ 1
2
‖Y − XAβA‖2. Note that

A ⊂ {1, · · · , p} can be partitioned into (A \ A0) ∪ (A0 ∩ A). Then

I ≡ P (β̂L0 6= β̂ol) ≤
∑

A⊂{1,··· ,p},A 6=A0,|A|≤p0

P (S(β̂L0

ÂL0
)− S(β̂olA0

) ≤ 0, ÂL0 = A)

≤
p0−1∑
k=0

p0−k∑
j=0

(
p− p0

j

)(
p0

k

)
P
(
S(β̂L0)− S(β̂ol) ≤ 0, Bkj

)
, (27)

where Bkj = {ÂL0 = A, |A0 ∩ A| = k, |A \ A0| = j}, and
(
n
k

)
is the binomial coefficient

indexed by n and k. On event Bkj, ‖Y −XAβ̂
L0‖2 ≥ ‖(I − PA)Y ‖2. Hence

2(S(β̂L0)− S(β̂ol)) ≥ ‖(I − PA)(XA0β
0
A0

+ ε)‖2 − ‖(I − PA0)ε‖2

= 2εT (I − PA)XA0βA0 + ‖(I − PA)XA0βA0‖2 − εT
(
PA − PA0

)
ε.

For any δ with 0 < δ < 1, and any A with |A0 ∩A| = k and |A \A0| = j; k = 0, · · · , p0 − 1,
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j = 1, · · · , p0 − k, P
(
S(β̂L0

A )− S(β̂olA0
) ≤ 0, Bkj

)
is upper bounded by

P
(
δ‖(I − PA)XA0βA0‖2 + 2εT (I − PA)XA0βA0 ≤ 0

)
+P
(
(1− δ)‖(I − PA)XA0βA0‖2 − εT

(
PA − PA0

)
ε ≤ 0

)
≡ I1(Bkj) + I2(Bkj).

Let L1(A) ≡ −2εT (I−PA)XA0βA0 and L2(A) ≡ εT
(
PA−PA0

)
ε, which follow N(0, 4σ2‖(I−

PA)XA0βA0‖2) and a weighted χ2-distribution, respectively. Let b(A) = ‖(I−PA)XA0βA0‖2.

An application of Markov’s inequality with the normal moment generating function yields

that

I1(Bkj) ≤ E exp
(t1L1(A)

σ2

)
exp

(
− δt1b(A)

σ2

)
≤ exp

(2t21 − δt1
σ2

niCmin

)
,

for any 0 < t1 < 1/2, where i ≡ p0− k, and nCmin ≤ b(A)
max(|A0\A|,1)

= b(A)
i

has been used in the

last inequality with |A0 \ A| = p0 − |A0 ∩ A| = p0 − k. For I2(Bkj), it follows from Lemma

4 that the moment generating function M(t) of εT
(
PA − PA0

)
ε/σ2 satisfies: logM(t) =∑∞

r=1(2r−1tr/r)Tr
(
PA−PA0)

r
)
≤ t(|A|− |A0|)+Tr

(
(PA−PA0)

2
)∑∞

r=2(2r−1tr/r) ≤ t(|A|−

|A0|) + t2/(1− 2t)Tr
(
(PA −PA0)

2 ≤ t(|A| − |A0|+ |A|+ |A0| − 2|A ∩A0|) = 2t|A \A0|, for

0 < t < 1/2. Similarly, for any 0 < t1 < 1/2,

I2(Bkj) ≤ E exp
(t1L2(A)

σ2

)
exp

(
− b(A)(1− δ)t1

σ2

)
≤ exp

(
− (1− δ)t2niCmin

σ2
+ 2t1j

)
.

Consequently, from (27) and bounds for I1(Bkj) and I2(Bkj),

I ≤
p0−1∑
k=0

p0−k∑
j=0

(I1(Bkj) + I2(Bkj)) ≤
p0∑
i=1

i∑
j=0

(
p− p0

j

)(
p0

p0 − i

)
(

exp
(2t21 − δt1

σ2
niCmin

)
+ exp

(
− (1− δ)t2

σ2
niCmin + 2t2j

))
.

For simplification, choose t1 = 1
3

and δ = 2t1+1
2

= 5
6

such that δt1 − 2t21 = (1 − δ)t1 = 1
18

.

Note that
(
a
b

)
≤ ab and log(p− p0) + log p0 ≤ log(p

2

4
) ≤ 2 log p− 1. Then

I ≤ 2

p0∑
i=1

i∑
j=0

(p− p0)jpi0 exp
(
− i

18σ2
nCmin +

2

3
j
)

= 2

p0∑
i=1

exp
(
− i
(nCmin

18σ2
− log p0

)) i∑
j=0

exp
(
j(

2

3
+ log(p− p0))

))
≤ 2

1− e−1
R
(

exp
(
− n

18σ2

(
Cmin − 36

log p

n
σ2
)))

,
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where R(x) = x/(1 − x) is the exponentiated logit function. Using the fact that I ≤ 1,

we obtain that I ≤
(

2
1−e−1 + 1

)
exp

(
− n

18σ2

(
Cmin − 36 log p

n
σ2
))

, leading to (10). Finally an

application of the pointwise bound in (10) to β0 ∈ B0(u, l) yields (11), implying consistency

by P
(
ÂL0 6= A0

)
≤ P

(
β̂L0 6= β̂ol

)
. The result in (A) is established.

For (B), we note that n−1E‖X(β̂ol − β0)‖2 = p0
2n

. Let D = 25σ2 andG = { 1
n
‖Xβ̂ −

Xβ0‖2 ≥ D}. Then

1

n
E‖X(β̂L0 − β0)‖2 =

1

n
E‖X(β̂L0 − β0)‖2(I(G) + I(Gc)) ≡ T1 + T2.

For T1, note that 1
4n
‖X(β̂L0 − β0)‖2 − 1

2n
‖ε‖2 ≤ 1

2n
‖Y − Xβ̂L0‖2 ≤ 1

2n
‖ε‖2, and T1 =

DP ( 1
n
‖X(β̂L0 −β0)‖2 ≥ D) +

∫∞
D
P ( 1

n
‖X(β̂L0 −β0)‖2 ≥ x)dx. For any x > 0, by Markov’s

inequality with t = 1
3
,∫ ∞

D

P (
1

n
‖X(β̂L0 − β0)‖2 ≥ x)dx

≤
∫ ∞
D

P
( 1

n
‖ε‖2 ≥ x

4

)
dx ≤

∫ ∞
D

E exp
(t‖ε‖2

σ2

)
exp

(
− nt x

4σ2

)
dx

≤
∫ ∞
D

exp
(
− nt

12σ2
(x− 24σ2)

)
dx =

12σ2

nt
exp

(
− n

12

)
= o(

p0

2n
).

Similarly, DP ( 1
n
‖X(β̂L0 − β0)‖2 ≥ D) ≤ 25σ2 exp

(
− nt

12σ2 (D − 24σ2)
)

= o( p0
2n

). Hence,

T1 = o( p0
2n

). For T2, note that

T2 ≤ DP (β̂L0 6= β̂ol) +
1

n
E‖Xβ̂ol −Xβ0‖2

= 25σ2P (β̂L0 6= β̂ol) +
p0

2n
= (o(1) + 1)

p0

2n
,

implying the risk result.

For minimaxity, note that

inf
β̂

sup
β0∈B0(u,l)

n−1E‖X(β̂ − β0)‖2 ≥ inf
β̂A0

sup
β0
A0
∈B
n−1E‖XA0(β̂A0 − β0

A0
)‖2,

where B = {βA0 : |A0| = u, n−1‖XA0βA0−XA0β
0
A0
‖2 ≥ l}. The result follows from the same

argument as that for the least squares estimate to be minimax, c.f., Judge and Bock (1978).

This completes the proof. 2
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Proof of Theorem 3: Our strategy is similar to that in the proof of Theorem 2. Let

S(β̂T ) ≡ 1
2
‖Y −XA1β̂

T
A1
−XA2β̂

T
A2
‖2, A = A1∪A2, A1 = {j ∈ A : |β̂Tj | > τ}, A2 = {j ∈ A :

|β̂Tj | ≤ τ} and ‖XA2β̂
T
A2
‖2 ≤ cmax(XTX)τ

∑
j∈A2
|β̂Tj |. Note that |A1|+ 1

τ

∑
j∈|A2| |β̂

T
j | ≤ p0.

Thus if A1 = A0 then β̂Tj = 0 for all j ∈ A2, implying that β̂T = β̂ol. Therefore, we only

consider the case of A1 6= A0.

Similarly, let Bkj = {Â = A : |A0 ∩ A1| = k, |A1 \ A0| = j}, then I ≡ P (β̂T
Â
6=

β̂olA0
) ≤

∑p0−1
k=0

∑p0−k
j=0 P (S(β̂TA) − S(β̂olA0

) ≤ 0, Bkj). On Bkj, we simplify S(β̂TA) − S(β̂olA0
).

An application of inequality ‖U − V ‖2 ≥ a−1
a
‖U‖2 − (a− 1)‖V ‖2 for U ,V ∈ Rp and some

a > 1, together with the fact that ‖Y −XA1β̂
T
A1
‖2 ≥ ‖Y −XA1β̂

ol
A1
‖2 yields that

S(β̂T ) ≥ a− 1

2a
‖Y −XA1β̂

T
A1
‖2 − a− 1

2
‖XA2β̂

T
A2
‖2

≥ a− 1

2a
‖(I − PA1)XA0βA0 + (I − PA1)ε‖2 − a− 1

2
pcmax(XTX)τ 2

≥ a− 1

a
εT (I − PA1)XA0βA0 +

a− 1

2a
‖(I − PA1)XA0βA0‖2

+
a− 1

2a
‖(I − PA1)ε‖2 − a− 1

2
pcmax(XTX)τ 2.

Let λ = a−1
2
pcmax(XTX)τ 2. Then

2
(
S(β̂T )− S(β̂ol)

)
≥ 2
(
S(β̂T )− 1

2
‖(I − PA0)ε‖2

)
= 2((a− 1)/a)εT (I − PA1)XA0βA0 + ((a− 1)/a)‖(I − PA1)XA0βA0‖2

−εT
(
I + (a− 1)PA1 − aPA0

)
ε/a− 2λ

= −1

a

(
ε− (a− 1)(I − PA1)XA0βA0

)T
(I − PA1)

(
ε− (a− 1)(I − PA1)XA0βA0

)
+(a− 1)‖(I − PA1)XA0βA0‖2 − εT

(
PA1 − PA0

)
ε− 2λ

For any 0 < δ < 1, let b1(A1) = (a − 1 − δ)‖(I − PA1)XA0βA0‖2, b2(A1) = δ‖(I −

PA1)XA0βA0‖2 − 2λ, L1(A1) = 1
a
(ε− (a− 1)(I −PA1)XA0βA0)

T
(
I −PA1

)
(ε− (a− 1)(I −

PA1)XA0βA0), L2(A1) = εT
(
PA1 − PA0

)
ε. Note that aL1(A1) follows σ2χ2

k, where the non-

central χ2
k distribution has degrees of freedom n−min(r(A1), n) with r(A1) ≤ |A1| being the
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rank of A1, and a non-central parameter (a− 1)2σ−2‖(I − PA1)XA0βA0‖2. Hence,

P
(
S(β̂TA)− S(β̂olA0

) ≤ 0, Bkj

)
≤ P

(
L1(A1) ≥ b1(A1)

)
+ P

(
L2(A1) ≥ b2(A1)

)
≡ I1(Bkj) + I2(Bkj),

where

I1(Bkj) ≤ E exp
( t1
σ2
L1(A1)

)
exp

(
− t1
σ2
b1(A1)

)
=

1

(1− 2t1/a)
n−r(A1)

2

exp
(
− t1(1− 2t1 − δ)
σ2(1 + (1− 2t1)/(a− 1))

niCmin

)
I2(Bkj) ≤ E exp

( t1
σ2
L2(A1)

)
exp

(
− t1
σ2
b2(A1)

)
≤ exp

(
− δt1
σ2
niCmin + 2t1j + 2t1λ/σ

2
)
,

for any 0 < t1 < 1/2, where the last inequality uses nCmin ≤ b(A)
|A0\A| with |A0 \ A| =

p0 − |A0 ∩ A| = p0 − k ≡ i. Consequently,

I ≤
p0∑
i=1

i∑
j=0

(
p− p0

j

)(
p0

p0 − i

)(
exp

(
− δt1
σ2
niCmin + 2t1j + t1λ/σ

2
)

+
1

(1− 2t1/a)
n−r(A1)

2

exp
(
− t1(1− 2t1 − δ)
σ2(1 + (1− 2t1)/(a− 1))

niCmin

))
.

To simplify this bound, choose t1 = 1
3
, δ = 1

6
, a = n+ 1 and λ ≤ σ2. Similarly,

I ≤ 2

p0∑
i=1

i∑
j=0

(p− p0)jpi0 exp
(
− i

20σ2
nCmin +

2

3
j +

1

3

)
= 2

p0∑
i=1

exp
(
− i
(nCmin

20σ2
− log p0

)) i∑
j=0

exp
(
j(1 + log(p− p0))

))
≤

( 2

e− 1
+ 1
)
R
(

exp
(
− n

20σ2

(
Cmin − 40

log p

n
σ2
)))

,

yielding (14). The rest of the results follow similarly as in the proof of Theorem 2. This

completes the proof. 2

Proof of Lemma 2: The finite termination property of Algorithm 1 follows from nonin-

creasingness of S(m)(β̂(m)) in m, as in the proof of Theorem 1 of Shen et al. (2012).
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Now consider the DC solution of (22) β̂(m) at iteration m for given K > 0. Let the

termination index be m∗. Then Karush-Kuhn-Tucker conditions imply that there exists a

Lagrange multiplier λ ≥ 0 such that the DC solution of (22) β̂(m∗) minimizes the Lagrange

function L(β, λ) = S(β)−λ(K−
∑p

j=1 |βj|I(β̂
(m∗−1)
j | > τ)), or equivalently. S̄(β) = S(β) +

λ
∑p

j=1 |βj|I(β̂
(m∗−1)
j | > τ), with respect to β. By Theorem 1 of Shen et al. (2012), β̂(m∗) =

β̂(m∗−1) at termination. Consequently, S̄(β̂(m∗)) = S̄(β̂(m∗−1)). This means that if Algorithm

1 of Shen et al. (2012) is initialized with β̂(m∗) then β̂(m∗) is also a DC solution of (21) with

respect to λ.

Conversely, for the solution of (22), the case of λ = 0 is trivial and is thus omitted.

Now for given λ > 0 and a DC solution of (22) β̂(m0) at iteration m, define K(m0) =

1
τ

∑p
j=1 |β̂

(m0)
j |I(|β̂(m0−1)

j | ≤ τ), where m0 the termination index of the unconstrained Algo-

rithm 1 of Shen et al. (2012), which is assured by Theorem 1 of Shen et al. (2012). Hence

a DC solution β̂(m0) of (22) is also a solution of (21) by checking Karush-Kuhn-Tucker con-

ditions for the constrained problem with K(m0). Similarly, if Algorithm 1 is initialized by

β̂(m0), then β̂(m0) is also a DC solution of (21). This is because β̂(m) = β̂(m0) for m ≥ m0.

This completes the proof. 2

Proof of Proposition 1: It suffices to minimize componentwisely: β̂j = arg minβj fj(βj),

with f(βj) = 1
2
(βj− β̂olj )2 +λmin(

|βj |
τ
, 1); j = 1, · · · , p. If |βj| ≤ τ , β̂j = (|β̂olj |− λ

τ
)+sign(β̂olj ),

otherwise, min|βj |>τ f(βj) = λ if βj = β̂olj . Moreover, min{βj :|βj |≤τ} f(βj) is
f(0) = 1

2
(β̂olj )2 when |β̂olj | ≤ λ

τ
;

f(sign(β̂olj )τ) = 1
2
(τ − |β̂olj |)2 + λ when |β̂olj | ≥ λ

τ
+ τ ;

f
(
(|β̂olj | − λ

τ
)sign(β̂olj )

)
= λ

τ
|β̂olj | − λ2

2τ2
when λ

τ
< |β̂olj | < λ

τ
+ τ ;

Then comparing f at 0, τ, (|β̂olj | − λ
τ
)+sign(β̂olj ) against f at λ, the TLP estimate is

β̂olj if |β̂olj | ≥ max( λ
2τ

+ τ, λ
τ
), or λ

τ
≥ |β̂olj | ≥ max(

√
2λ, τ);

(|β̂olj | − λ
τ
)sign(β̂olj ) if λ

2τ
+ τ ≥ |β̂olj | ≥ max(λ

τ
, τ), or τ ≥ |β̂olj | ≥ λ

τ
;

0 if min(λ
τ
, τ) ≥ |β̂olj |, or min(

√
2λ, λ

τ
) ≥ |β̂olj | ≥ τ ;

j = 1, · · · , p, leading to the desired result. This completes the proof. 2.

Proof of Theorem 5: We only present the proof for the case where α > 1. The proof for

the case α = 1 is similar, thus omitted. Write Âtl = Â1 ∪ Â2, Â1 = {j ∈ Âtl : |β̂tlj | > τ} and
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Â2 = {j ∈ Âtl : |β̂tlj | ≤ τ}. Then P (β̂tl 6= β̂ol) ≤ I1 + I2 + P
(
β̂olis not a solution of (23)

)
,

where the last term in this inequality is bounded by I6 in the proof of Theorem 4. Thus it

suffices to bound I1 = P
(
∪A1⊆{1,··· ,p}:A1 6=A0 (S(β̂tl) − S(β̃ol) ≤ 0, Â1 = A1

)
; I2 = P

(
Â1 =

A0, β̂
tl 6= β̂ol, β̂olis a solution of (23)

)
.

For I1, on Â1 = A1 with A1 6= A0, write S(β̂tl) as 1
2
‖Y − XA1β̂

tl
A1
− XÂ2

β̂tlA2
‖2 +

λ
τ

∑
j∈Â2
|β̂tlj | + λ|A1|. Note that ‖Y − XA1β̂

tl
A1
‖2 ≥ ‖(I − PA1)Y ‖2, and ‖XÂ2

β̂tl
Â2
‖2 ≤

cmax(XTX)τ
∑

j∈Â2
|β̂tlj |, and λ

τ
− a

2
cmax(XTX)τ ≥ 0 (by assumption) with real a > 1 to be

chosen. Using ‖U − V ‖2 ≥ a−1
a
‖U‖2 − (a− 1)‖V ‖2 for any vectors U, V ∈ Rn,

S(β̂tl)− λ|A1| ≥
a− 1

2a
‖Y −XA1β̂

tl
A1
‖2 − a− 1

2
‖XÂ2

β̂tl
Â2
‖2 +

λ

τ

∑
j∈Â2

|β̂tlj |

≥
(a− 1

2a
‖(I − PA1)Y ‖2

)
+
(λ
τ
− a− 1

2
cmax(XTX)τ

)∑
j∈Â2

|β̂tlj |

≥
(a− 1

2a
‖(I − PA1)XA0β

0
A0

+ (I − PA1)ε‖2
)
.

So 2
(
S(β̂tl) − S(β̂ol)

)
≥ − 1

a

(
ε − (a − 1)(I − PA1)XA0βA0

)T
(I − PA1)

(
ε − (a − 1)(I −

PA1)XA0βA0

)
+ (a− 1)‖(I − PA1)XA0βA0‖2 − εT

(
PA1 − PA0

)
ε+ 2λ(|A1| − p0).

Note that I1 ≤
∑p0−1

k=0

∑p−k
j=0

(
p0
k

)(
p−p0
j

)
P
(
S(β̂tl)− S(β̂ol) ≤ 0, Bkj

)
, where Bkj = {Â1 =

A1 6= A0 : |A1 \ A0| = j, |A1 ∩ A0| = k}. For any 0 < δ < 1, let b1
A1

= (a − 1 −

δ)‖(I − PA1)XA0βA0‖2 + λ(|A1| − p0), b2
A1

= δ‖(I − PA1)XA0βA0‖2 + λ(|A1| − p0), L1
A1

=

1
a
(ε−(a−1)(I−PA1)XA0βA0)

T
(
I−PA1

)
(ε−(a−1)(I−PA1)XA0βA0), L

2
A1

= εT
(
PA1−PA0

)
ε.

Note that aL1
A1

follows σ2χ2
k, where the non-central χ2

k distribution has degrees of freedom

n − min(r(A1), n) with r(A1) ≤ |A1| being the rank of A1, and a non-central parameter

(a − 1)2σ−2‖(I − PA1)XA0βA0‖2. For L2
A1

, it follows from Lemma 4 that the moment

generating function M(t) of L2
A1

satisfies: logM(t) =
∑∞

r=1(2r−1tr/r)Tr
(
PA1 − PA0)

r
)
≤

t(|A1| − |A0|) + Tr
(
(PA1 − PA0)

2
)∑∞

r=2(2r−1tr/r) ≤ t(|A1| − |A0|) + t2/(1 − 2t)Tr
(
(PA1 −

PA0)
2 ≤ t(|A| − |A0| + |A1| + |A0| − 2|A1 ∩ A0|) = 2t|A1 \ A0|, for 0 < t < 1/2. Let I1

kj =

P
(
L1
A1
≥ b1

A1

)
and I2

kj = P
(
L2
A1
≥ b2

A1

)
. Hence P

(
S(β̂tl)− S(β̂ol) ≤ 0, Bkj

)
≤ I1

kj + I2
kj.

For I lkj; l = 1, 2, note that ‖(I − PA1)XA0β
0
A0
‖2 ≥ niCmin if j ≤ [αi] ≡ α(p0 − k)

by definition of Cmin or if |A1 \ A0| ≤ α|A0 \ A1| (|A1| + (α − 1)|A1 ∩ A0| ≤ αp0) with
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|A0 \ A1| = p0 − |A0 ∩ A1| = i; or 0 if [αi] < j ≤ p. By Markov’s inequality,

I1
kj ≤ E exp

( t1
σ2
L1(A1)

)
exp

(
− t1
σ2
b1(A1)

)
=

1

(1− 2t1/a)
n−r(A1)

2

exp
(
− t1(1− 2t1 − δ)
σ2(1 + (1− 2t1)/(a− 1))

niCmin + t1λ(i− j)/σ2
)

I2
kj ≤ E exp

( t1
σ2
L2(A1)

)
exp

(
− t1
σ2
b2(A1)

)
≤ exp

(
− δt1
σ2
niCmin + 2t1j + t1λ(i− j)/σ2

)
,

for any 0 < t1 < 1/2. Therefore I1 ≤
∑p0−1

k=0

∑p−k
j=0

(
p−p0
j

)(
p0
k

)
(I1
kj + I2

kj), which is bounded by

p0∑
i=1

[αi]∑
j=0

(
p− p0

j

)(
p0

p0 − i

)(
exp

(
− δt1
σ2
niCmin + 2t1j + t1λ(i− j)/σ2

)
+

1

(1− 2t1/a)
n−r(A1)

2

exp
(
− t1(1− 2t1 − δ)
σ2(1 + (1− 2t1)/(a− 1))

niCmin + t1λ(i− j)/σ2
))

+

p0∑
i=1

p∑
j=[αi]+1

(
p− p0

j

)(
p0

p0 − i

)(
exp

(
2t1j + t1λ(i− j)/σ2

)
+

1

(1− 2t1/a)
n−r(A1)

2

exp
(
t1λ(i− j)/σ2

))
.

To simplify this bound, choose t1 = 1
3
, δ = 1

6
, a = n+ 1. Note that

∑b
j=0

(
a
j

)
≤ (a+ 1)b,

and
(
a
b

)
≤ ab, for any integers a, b > 0. Then

I1 ≤ 2

p0∑
i=1

pi0

[αi]∑
j=0

(
p− p0

j

)
exp

(
− inCmin

20σ2
+

2j

3
+

(i− j)λ
2σ2

)

+ 2

p∑
j=[αi]+1

(p− p0)j exp
(−(α− 1)jλ

3ασ2
+

2j

3

) [j/α]∑
i=0

(
p0

i

)

≤ 2

p0∑
i=1

exp
(
− i
(nCmin

20σ2
− log p0 − α log(p− p0 + 1)− λ

2σ2

))
+ 2

p∑
j=[αi]+1

exp
(
− j
((α− 1)λ

3ασ2
− log(p− p0)− 1

α
log(p0 + 1)− 2

3

))
.

Using the fact that I1 ≤ 1, log p0+α log(p−p0+1) ≤ (α+1)(log(p+1)−log(α+1)+ α
α+1

logα)

and 1
α

log(p0 + 1) + log(p− p0) ≤ (1 + 1
α

)(log(p + 1)− 1
α+1

log(α + 1)− α
α+1

log(1 + 1
α

)), we

obtain the second and third terms in the bound of (17).
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For I2, let E =
{

minj∈A0

∣∣β̂olj ∣∣ > τ
}

. As in the proof of Theorem 6, P (Ec) ≤ |A0|
(

Φ
(
−

n1/2
(
γmin−τ

)
σc
−1/2
min ( 1

n
XT
A0
XA0

)

)
−Φ
(
− n1/2

(
γmin+τ

)
σc
−1/2
min ( 1

n
XT
A0
XA0

)

))
On event E, β̂olA and β̂tlA must be local minimizers

of minβA
1
2
‖Y −XAβA‖2+ λ

τ

∑
j∈Â2
|βj|. Note that for any local solution β̂A satisfying |β̂Ā0

| >

τ with A0 ⊂ Ā0 ⊂ A and |β̂A2| ≤ τ with A2 = A \ Ā0, the local optimality condition for βtl
Ā0

is (x(j))T (Y −XĀ0
β̂tl
Ā0
−XA2β̂

tl
A2

) = 0 for j ∈ Ā0, implying β̂tl
Ā0

= (XT
Ā0
XĀ0

)−1XT
Ā0

(Y −

XA2β̂
tl
A2

). This together with that for βA2 : −(x(j))T (Y −XĀ0
β̂tl
Ā0
−XA2β̂

tl
A2

)+ λ
τ
sign(β̂tlj ) = 0

for j ∈ A2, implies that −XT
A2

(I − PĀ0
)(Y −XA2β̂

tl
A2

) + λ
τ
sign(β̂tlA2

) = 0 that is the local

optimality for (28). Hence both β̂olA2
and β̂tlA2

are local minimizers of

min
βA2

1

2
‖(I − PĀ0

)Y − (I − PĀ0
)XA2βA2‖2 +

λ

τ

∑
j∈A2

|βj|. (28)

By Rinaldo (2007), (I −PĀ0
)XA2β̂

tl
A2

= (I −PĀ0
)XA2β̂

ol
A2

and ‖β̂tlA2
‖1 = ‖β̂olA2

‖1 = 0. Thus

β̂tl = β̂ol on E, implying that I2 ≤ P (Ec). Combining the above bounds yields (17).

For (B), let D = 2Cmin + 4σ2 and G = { 1
n
‖Xβ̂tl −Xβ0‖2 ≥ D}. Then

1

n
E‖Xβ̂tl −Xβ0‖2 =

1

n
E‖Xβ̂tl −Xβ0‖2(I(G) + I(Gc)) ≡ T1 + T2.

For T1, note that 1
4n
‖Xβ̂tl−Xβ0‖2− 1

2n
‖ε‖2 ≤ 1

2n
‖Y −Xβ̂tl‖2 ≤ 1

2n
‖ε‖2+ λ

n
p0. Then for any

x > 0,
{

1
n
‖Xβ̂tl−Xβ0‖2 ≥ x

}
⊆
{
x
4
− λ

n
p0 ≤ 1

n
‖ε‖2

}
⊆
{
x
4
− Cmin

8
≤ 1

n
‖ε‖2

}
. By Markov’s

inequality with t = 1
3
, T1 = DP ( 1

n
‖Xβ̂tl −Xβ0‖2 ≥ D) +

∫∞
D
P ( 1

n
‖Xβ̂tl −Xβ0‖2 ≥ x)dx.

Note that the second term there is upper bounded by

∫∞
D
P
(

1
n
‖ε‖2 ≥ x

4
− Cmin

8

)
dx ≤

∫∞
D
E exp

(
t‖ε‖2
σ2

)
exp

(
− nt (x−2Cmin)

8σ2

)
dx

≤
∫∞
D

exp
(
− nt

σ2 (x− 2Cmin − σ2

1−2t
)
)
dx = o(p0

n
σ2),

so is DP ( 1
n
‖Xβ̂tl −Xβ0‖2 ≥ D), implying that T1 = o(p0

n
σ2). For T2, note that Cmin ≤

1
n
‖XA0β

0
A0
‖2. Then T2 ≤ DP (β̂tl 6= β̂ol) + 1

n
E‖Xβ̂ol −Xβ0‖2.

= (
2

n
‖XA0β

0
A0
‖2 + 4σ2)P (β̂tl 6= β̂ol) +

p0

n
σ2 = (o(1) + 1)

p0

n
σ2.

The desired result follows from the assumption on 1
n
‖XA0β

0
A0
‖2, (17) and (3).
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For minimaxity, note that

inf
β̂

sup
β0∈B0(u,l)

n−1E‖X(β̂ − β0)‖2 ≥ inf
β̂A0

sup
β0
A0
∈B
n−1E‖XA0(β̂A0 − β0

A0
)‖2,

where B = {βA0 : |A0| = u, n−1‖XA0βA0−XA0β
0
A0
‖2 ≥ l}. The result follows from the same

argument as that for the least squares estimate to be minimax, c.f., Judge and Bock (1978).

The proof for the case when α = 1 is similar, thus omitted. 2

Proof of Theorem 4: The proof is similar to that of Theorem 5 with some minor modifi-

cations. In the present case, no decomposition of Â is necessary.

Note that S(β̂l0)− λ|A| ≥ εT (I −PA)XA0β
0
A0

+ 1
2
‖(I −PA)XA0β

0
A0
‖2 + 1

2
‖(I −PA)ε‖2.

So 2
(
S(β̂l0) − S(β̂ol)

)
≥ 2εT (I − PA)XA0β

0
A0

+ ‖(I − PA)XA0β
0
A0
‖2 − εT

(
PA1 − PA0

)
ε +

2λ(|A|−p0). Let b1
A = δ‖(I−PA)XA0βA0‖2−λ(|A|−p0), b2

A = (1−δ)‖(I−PA)XA0βA0‖2−

λ(|A| − p0), L1
A = −2εT (I − PA)XA0βA0 and L2

A = εT
(
PA − PA0

)
ε. Note that L1

A follows

N(0, 4σ2‖(I − PA)XA0βA0‖2). Hence, for any δ with 0 < δ < 1,

P
(
S(β̂l0)− S(β̂ol) ≤ 0, Bkj

)
≤ P

(
δ‖(I − PA)XA0βA0‖2 + 2εT (I − PA)XA0βA0 + λ(|A| − p0) ≤ 0

)
+

P
(

(1− δ)‖(I − PA)XA0βA0‖2 − εT
(
PA − PA0

)
ε+ λ(|A| − p0) ≤ 0

)
≡ I1

kj + I2
kj,

where I lkj ≤ E exp
(
tl
σ2L

l
A

)
exp

(
− tl

σ2 b
l
A

)
; 0 < tl < 1/2, l = 1, 2. Note that ‖(I −

PA1)XA0β
0
A0
‖2 ≥ niCmin if j ≤ 2i ≡ 2(p0−k) by definition of Cmin or if |A1|+|A1∩A0| ≤ 2p0

with |A0 \ A1| = p0 − |A0 ∩ A1| = i; or ≥ 0 if αi < j ≤ p. Then

I1 ≤
∑p0

i=1

∑[αi]
j=0

(
p−p0
j

)(
p0
p0−i

)(
exp

(2t21−δt1
σ2 niCmin + t1

σ2λ(i− j)
)

+ exp
(
− (1−δ)t2

σ2 niCmin + t2
σ2λ(i− j) + 2t2j

))
+
∑p0

i=1

∑p
j=[αi]+1

(
p−p0
j

)(
p0
p0−i

)(
exp

(
t2λ
σ2 (i− j)

)
+ exp

(
t4λ
σ2 (i− j)

))
.

To simplify this bound, choose t1 = 1
3

and δ = 2t1+1
2

= 5
6

such that δt1 − 2t21 = (1 −

δ)t1 = 1
18

. Note that
(
a
b

)
≤ ab and log(p − p0) + log p0 ≤ log(p

2

4
) ≤ 2 log p − 1. Note that
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∑b
j=0

(
a
j

)
≤ (a+ 1)b, and

(
a
b

)
≤ ab, for any integers a, b > 0. Then

I1 ≤ 2

p0∑
i=1

pi0

[αi]∑
j=0

(
p− p0

j

)
exp

(
− inCmin

28σ2
+

2j

3
+

(i− j)λ
2σ2

)

+ 2

p∑
j=[αi]+1

(p− p0)j exp
(−(α− 1)jλ

3ασ2
+

2j

3

) [j/α]∑
i=0

(
p0

i

)

≤ 2

p0∑
i=1

exp
(
− i
(nCmin

18σ2
− log p0 − α log(p− p0 + 1)− λ

2σ2

))
+ 2

p∑
j=|αi|+1

exp
(
− j
((α− 1)λ

3ασ2
− log(p− p0)− 1

α
log(p0 + 1)− 2

3

))
.

This, together with the fact that I1 ≤ 1, log p0 + α log(p − p0 + 1) ≤ (α + 1)(log(p + 1) −

log(α + 1) + α
α+1

logα) and 1
α

log(p0 + 1) + log(p − p0) ≤ (1 + 1
α

)(log(p + 1) − 1
α+1

log(α +

1) − α
α+1

log(1 + 1
α

)), leads to (15). The risk and minimaxity results follows similarly as in

the proof of Theorem 5. This completes the proof. 2

Proof of Theorem 6: Let H =
{

minj∈A0

∣∣β̂olj ∣∣ > 3τ/2
}
∩
{

maxj /∈A0 |(x(j))T
(
Y −Xβ̂ol

)
| ≤

λ
τ

}
. Rewrite (23), for any subset A of non-zero coefficients and β,{

−(x(j))T
(
Y −Xβ

)
+ λ

τ
sign(βj)I(|βj| < τ) = 0, j ∈ A,

|(x(j))T
(
Y −Xβ

)
| ≤ λ

τ
, j /∈ A. (29)

Next we prove that β̂ol satisfies (29) on H. Note that the first event in H implies

that ∇jS2(β̂ol) − λ
τ
sign(β̂olj ) = 0; j = 1, · · · , p0. This, together with the property that

(x(j))T
(
Y −Xβ̂ol

)
= 0; j = 1, · · · , p0 yields the first equation of (29). The second event in

H implies the second equation of (29) by β̂ol.

For a unique minimum of (29) on H, suppose β̂lo
Â
6= β̂olA0

. Let A∗ = Â ∪ A0. Define

g(βA∗) = S(β), where β = (βA∗,0A∗c) and βA∗ = (β1, . . . , β|A∗|)
T . Then∣∣∣( ∂

∂βA∗
g(β̂loA∗)−

∂

∂βA∗
g(β̂olA∗)

)T (β̂loA∗ − β̂olA∗)
‖β̂loA∗ − β̂olA∗‖

∣∣∣ =
∣∣∣(XT

A∗XA∗(β̂
lo
A∗ − β̂olA∗)

+
λ

τ
sign(β̂loA∗)I(|β̂loA∗| ≤ τ)− λ

τ
sign(β̂olA∗)I(|β̂olA∗| ≤ τ)

)T (β̂loA∗ − β̂olA∗)
‖β̂loA∗ − β̂olA∗‖

∣∣∣,
where β̂olA∗ and β̂loA∗ can not attain at non-differentiable concave points of the penalty by

Lemma 1. Without loss of generality, assume that ‖β̂loA∗ − β̂olA∗‖ ≥ τ/2. Otherwise, for any
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j ∈ A0 |β̂loj | > τ , and for j ∈ Ac0 ∩ A∗ |β̂loj | ≤ τ , implying β̂loA∗ = β̂olA∗ on H, as shown from

(28), which is impossible by assumption that β̂loA∗ 6= β̂olA∗. By the Cauchy-Schwarz inequality∣∣∣(λτ sign(β̂loA∗)I(|β̂loA∗| ≤ τ) − λ
τ
sign(β̂olA∗)I(|β̂olA∗| ≤ τ))T (β̂loA∗ − β̂olA∗)

∣∣∣ ≤ 2λ
τ

√
K∗‖β̂loA∗ − β̂olA∗‖

that is bounded below by min|B|≤2K∗,A0⊆B ncmin(n−1XT
BXB) τ

2
− 2λ

τ

√
K∗ > 0, contradicting

to the fact that 0 ∈
(

∂
∂βA∗

g(β̂loA∗) − ∂
∂βloA∗

g(β̂olA∗)
)T

(β̂loA∗−β̂
ol
A∗)

‖β̂loA∗−β̂
ol
A∗‖

on H if β̂lo 6= β̂ol is a local

minimizer of S(·) thus g(·). Hence g(βloA∗) has a unique local minimizer on H, implying

β̂ol = β̂lo.

Note that (x(j))T (Y −XT β̂ol) ∼ N
(
0, σ2

∥∥(I−PA0

)
x(j)
∥∥2)

,
∥∥(I−PA0

)
x(j)
∥∥2 ≤ ‖x(j)‖2,

β̂olj ∼ N
(
β0
j , V ar

(
β̂olj
))

, and V ar
(
β̂olj
)
≥ c−1

min(n−1XT
A0
XA0)σ

2/n. Then P (β̂lo
Âlo
6= β̂olA0

) ≤

P (Hc) ≤
∑

j∈A0
P
(
|β̂olj | ≤ 3τ/2

)
+
∑

j /∈A0
P (|(x(j))T (Y −XT β̂ol)| > λ

τ
) ≡ I6 + I7, where

I6 ≤ |A0|
(

Φ
(
− n1/2

(
γmin−3τ/2

)
σc
−1/2
min ( 1

n
XT
A0
XA0

)

)
− Φ

(
− n1/2

(
γmin+3τ/2

)
σc
−1/2
min ( 1

n
XT
A0
XA0

)

))
, and I7 ≤ (p − |A0|)Φ

(
−

λ/τ

σmax1≤j≤p ‖x(j)‖

)
. This yields (24).

For the risk property, let Â = {j : |β̂loj | ≥ τ}. By (29), β̂lo
Â

=
(
XT

Â
XÂ

)−1
XT

Â
(Y −

XÂcβ̂Âc). As in the proof of Theorem 5 for the global minimizer, we rewrite the risk as the

sum of T1 and T2. For T1 =
∫∞
C
P
(

1
n
‖Xβ̂lo −Xβ0‖2 ≥ x

)
dx, by the triangular inequality,

‖Xβ̂lo−Xβ0‖2 = ‖(I −PÂ)(XÂcβ̂
lo
Âc

+Xβ0) +PÂε‖2 ≤ 4
(
cmax(XTX)p2τ 2 + ‖Xβ0‖2

)
+

2‖ε‖2. Let C = 7σ2 + 2cmax

(
XTX
n

)
p2τ 2 + 4

n
‖Xβ0‖2 and t = 1/3. By Markov’s inequality,

T1 ≤
∫ ∞
C

P
(
‖ε‖2 ≥ xn

2
− 2cmax

(
XTX

)
p2τ 2 − 2‖Xβ0‖2

)
dx

≤
∫ ∞
C

E(exp(t‖ε‖2/σ2)) exp
(
− nt

x− 2cmax

(
XTX
n

)
p2τ 2 − 4

n
‖Xβ0‖2

2σ2

)
dx

≤
∫ ∞
C

exp
(
− nt

x− 6σ2 − 2cmax

(
XTX
n

)
p2τ 2 − 4

n
‖Xβ0‖2

2σ2

)
dx = o

(p0

n
σ2
)
.

For T2, by the probability error bound, T2 ≤ CP (β̂lo 6= β̂ol) + 1
n
E‖Xβ̂ol − Xβ0‖2 =

(1 + o(1))p0
n
σ2, leading to the desired result.

Finally, it remains to show that β̂lo satisfies (23). Note that the local optimality (21) is

satisfied by β = β̂(m): −(x(j))T
(
Y −Xβ

)
+ λ

τ
sign(βj)I(|β(m−1)| < τ) = 0 j = 1, · · · , p.

By construction, β̂
(m)
j = β̂

(m∗−1)
j 6= ±τ ; for m ≥ m∗ and j = 1, · · · , p, implying (23). This

completes the proof. 2
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