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Response time (RT) – a measure of human performance

• Used as a window on psychological processes for almost two centuries.

• Forms the foundation for most work in cognitive psychology.

– Used to formulate theories of brain function and cognitive processing.

– Employed as a basis to evaluate training regimens, user interface design, vehicle opera-

tion, and task design.

– Can be used to evaluate medical conditions, especially schizophrenia, learning disorders,

and other psychological disorders.
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Response time data

• RT sequence: Times taken by an individual to respond to a sequence of stimuli

• Can be analyzed as time series data

• RT data show interesting features:

1. changes over time at different scale levels

2. marginal distributions with heavy tails
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A dataset from Wagenmakers et al. [2004]

• A “simple RT” study with 6 subjects, to investigate autocorrelation structure across

long sequences of trials

– A randomly generated response-stimulus interval (RSI) is used to prevent an-

ticipatory responses (extremely fast RTs)

– Two different RSIs conditions:

Short RSIs: ∼ U(550ms, 950ms)

Long RSIs: ∼ U(1150ms, 1550ms)
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A dataset from Wagenmakers et al. [2004]

The subject sees the symbol on the screen

and presses the ’/’ key

The time to respond is the first RT
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A dataset from Wagenmakers et al. [2004]

The subject then sees nothing for a randomly

generated response-stimulus interval (RSI)
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A dataset from Wagenmakers et al. [2004]

The subject sees the symbol again

and presses the ’/’ key

The time to respond now is the second RT.
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A dataset from Wagenmakers et al. [2004]

Then again nothing for another randomly

generated response-stimulus interval (RSI)
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A dataset from Wagenmakers et al. [2004]

We continue in the same way until we collect

1024+24 trials per subject and RSI condition.

The first 24 trials are discarded.
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A Recognition Memory Experiment

• Twenty subjects drawn from the research pool of introductory psychology students at The

Ohio State University.

• We presented each subject with 21 study lists of pictures in which four pictures were

presented 1, 2, 3, or 4 times, with two additional initial pictures and two additional final

pictures included as buffer items to control for any potential primacy and recency effects.

• The order of presentation of the four pictures and their repetitions was randomized across

lists but not subjects.

• The eight study pictures were presented along with eight new pictures at test, when the

subject had to identify each picture as old or new.

• Their RTs and the responses were recorded and the last 20 lists were analyzed.

• This was a hard task because the pictures were difficult to discriminate.
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Sample images
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Sample TS plots
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Left or right?

16



Sample TS plots
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Modeling RT series - main features

• Models for RT sequences should capture the following features:

1. Smooth changes (trends) in RT levels due to learning effects, fatigue, etc.

2. Local sequential dependencies.

3. Upper and lower tail behavior (extremes).

• Should account for the possibility that a subject may respond without actually performing

the cognitive task (e.g., guessing).

• Should not discard RTs that are too fast or too slow (as is common practice).

• Should provide a framework for performing RT analysis that does not compromise model

realism and serial dependence structure.

• Should be based on a hierarchical structure that accommodates differences among subjects.
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A framework for analysis
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Possible strategies

• Descriptive approach

1. Peruggia et al. [2002]

2. Rouder et al. [2003]

3. Craigmile et al. [2010]

• Theoretical approach

1. Logan [1988], Logan [1995], Kunkel et al. [2021]

2. Race models [Van Zandt et al., 2000, Kim et al., 2017]

3. Diffusion models [Ratcliff, 1978, Kunkel et al., 2019]
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Craigmile, Peruggia and Van Zandt (2010a)

• Mixture model with several components:

– Long-range trend to describe slow fluctuations in the mean.

– Autoregressive component to capture local dependence

– Components to model the heavy upper and lower tails.

• Model components are motivated by goodness-of-fit and predictive measures, rather than

cognitive theories.

• Should trend be removed or modeled?

– Remove it: Craigmile et al. [2011]

– Model it: Craigmile et al. [2010]

– For non-Gaussian, dependent series, standard methods to estimate trend will leave

behind high-frequency components that will distort estimates of autocorrelation.
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Results via MCMC: fitted trends for subjects 1, 2, and 3
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Results: fitted trends for subjects 4, 5, and 60 200 400 600 800 1000 0 200 400 600 800 1000
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Posterior summaries for the AR(1) process
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Posterior summaries for the tail parameters
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Learning across subjects and conditions
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Theoretical approach: background

• The basic framework is related to Logan’s theory of automaticity [Logan, 1988, 1995].

• The model subsumes some latent process that is a proxy for the brain activity yielding the

RTs.

• Each exposure to a given stimulus results in a memory trace which can be used for later

memory retrieval.

• Subsequent exposures to that stimulus trigger a race among traces and the observed RT

is the shortest time (the winning time) among the times for all the traces that were laid

down.
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Interesting questions

• Logan’s framework makes these fundamental assumptions:

– A new memory trace is laid down each time a given stimulus is presented.

– Traces operate independently.

– A good model for the RTs is the Weibull distribution.

• Interesting questions:

– Could traces be added probabilistically?

– Could there be dependence between the various traces?

– Could distributions other than a Weibull be used to model RTs?

• Our 2017 JASA paper [Kim et al., 2017] partially answers these questions.

– Traces appear to be added probabilistically and not independently.

– Gamma racers provide a better fit than models based on Weibull distributed RTs.
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Thresholds and evidence accumulation in a diffusion model

X(t + s)−X(s) ∼ N(µt, σ2t), t > 0
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Discriminability and the sensitivity index d′

As the number of exposures of a picture increases, its familiarity should increase, resulting in

larger values of d′ [e.g. Hirshman, 1995]
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Designing our own measures of performance

1. Individual-level probability of adding a first trace, p0,k

2. How well subjects extract information from a test picture by computing the ratio of the

new and old accumulation process scale parameters when an old item was presented, λk

3. The proportion of non-subcognitive responses ρk
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Psychometrics: take home messages

• Not everyone does what you tell them to do in the same way.

• When people perform a repetitive task over time, the way they perform that task changes

over time.

• Models that can explain how a task is performed well should also be able to explain how a

task is performed badly.

• Using sufficiently complex models allows us to better understand the cognitive process of

interest, and removes the need for ad hoc methods of data preprocessing.
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Statistical conclusions

• RT data have a rich dependence structure, and collapsing across experimental trials hides

much that is interesting in RT data.

• A Bayesian approach can help isolate the different components of an RT series.

• Model diagnostics and comparison is an important component:

– Examining posterior predictive distributions is key – but not just means!

– Comparing marginal likelihood.

• Once separated, we can ask more intelligent questions about trend and dependence, in-

cluding what kinds of processes may be responsible for each and how those processes are

influenced by experimental effects.

34



Extensions: Hierarchical Hidden Markov Models for RT data

• We postulate the existence of three distinct RT distributions and we introduce latent

response modes that correspond to these distributions:

1. A person in response mode 1 at trial t will generate fast RTs from the fast process.

2. A person in response mode 2 at trial t will generate medium-length RTs.

3. A person in response mode 3 at trial t will generate slow RTs.

• These three distributions may represent three modes of performance in a task, or they may

indicate responses from subcognitive, cognitive, and supracognitive processes.
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Hidden Markov Models for RT data: environments

• We further posit the existence of several latent environments, each of which causes people

to transition differently among the latent response modes.

• In practical applications, these latent environments may relate to external, unmeasured

background conditions and circumstances influencing a person’s performance, such as learn-

ing and fatigue.

36



Predictive densities by response mode

Monte Carlo estimates of the predictive densities for the three response modes. (The x-axis for

Participant D is shown on a different scale.)
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Transitions among response models

The panels show the posterior means of the rows of (from left) P̄ (i,1) P̄ (i,2) and P̄ (i,3). Rows 1,

2, and 3 are plotted in red, blue, and green, respectively.
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Transitions among environments

The posterior means of the rows of Q̄(i) for each person.

Rows 1, 2, and 3 are plotted in red, blue, and green, respectively.
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Participant effects
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Participant effects
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