Supplement to

"Spectral-based noncentral F mixed effect models, with application to otoacoustic emissions"

Lai Wei ${ }^{1}$, Peter F. Craigmile ${ }^{2, *}$, Wayne M. King ${ }^{3}$
${ }^{1}$ Biostatistics Center, The Ohio State University, Columbus. OH 43210.
${ }^{2}$ Dept. of Statistics, The Ohio State University, Columbus. OH 43210.
${ }^{3}$ Signal Processing and Communications, The Mathworks, Inc., 3 Apple Hill, Natick, MA 01760
*email: pfc@stat.osu.edu

The MCMC algorithm used to fit the Bayesian DPOAE noncentral F mixed model

We use $\boldsymbol{\theta} \backslash\{\kappa\}$ to denote the collection of parameters contained in $\boldsymbol{\theta}$, but excluding the parameter κ. The MCMC algorithm below assumes that $K_{j}=K$ for all subjects j. (More carefully subsetting and indexing is needed in the unbalanced case.)

Update $\left\{\log r_{j, k}\right\}$: Fix a subject $j=1, \ldots, J$, and let $\log \boldsymbol{r}_{j, \bullet}=\left(\log r_{j, 1}, \ldots, \log r_{j, K}\right)^{T}$. Then

$$
\pi\left(\log \boldsymbol{r}_{j, \boldsymbol{\bullet}} \mid \boldsymbol{z}, \boldsymbol{\theta} \backslash\left\{\log \boldsymbol{r}_{j, \boldsymbol{\bullet}}\right\}\right) \propto \prod_{k=1}^{K}\left[\prod_{l=1}^{L} f_{Z_{j, k, l}}\left(z_{j, k, l} \mid e^{N \Delta r_{j, k}}\right)\right] n\left(\log r_{j, k} \mid \alpha_{k}+G_{j} \beta_{k}, \tau_{k}^{2}\right)
$$

We use a Metropolis-Hastings symmetric random walk update. Supposing we are at $\log \boldsymbol{r}_{j, \bullet}$, we propose $\log \boldsymbol{r}_{j, \bullet}^{n e w}$ from a K-variate normal with mean $\log \boldsymbol{r}_{j, \bullet}$ and covariance Σ_{j}, for some $K \times K$ positive definite matrix Σ_{j} (in practice, we base Σ_{j} on the estimated covariance matrix of the maximum likelihood estimate of $\log \boldsymbol{r}_{j, \bullet}$, calculated using only the data for
subject j, scaled to obtain an acceptance probability of around 0.4). Then we accept the new value, $\log \boldsymbol{r}_{j, \bullet}^{n e w}$, with probability $\min \left(e^{q}, 1\right)$, where

$$
\begin{aligned}
q=\left\{\sum_{k=1}^{K}\right. & \left.\sum_{l=1}^{L} \log f_{Z_{j, k, l}}\left(z_{j, k, l} \mid e^{N \Delta r_{j, k}^{n e w}}\right)+\sum_{k=1}^{K} \log n\left(\log r_{j, k}^{n e w} \mid \alpha_{k}+G_{j} \beta_{k}, \tau_{k}^{2}\right)\right\}- \\
& \left\{\sum_{k=1}^{K} \sum_{l=1}^{L} \log f_{Z_{j, k, l}}\left(z_{j, k, l} \mid e^{N \Delta r_{j, k}}\right)+\sum_{k=1}^{K} \log n\left(\log r_{j, k} \mid \alpha_{k}+G_{j} \beta_{k}, \tau_{k}^{2}\right)\right\} ;
\end{aligned}
$$

otherwise we remain at $\log \boldsymbol{r}_{j, \bullet}$.

Update $\left\{\alpha_{k}\right\}$ and $\left\{\beta_{k}\right\}$: Fixing a $k=1, \ldots, K$ we sample α_{k} and β_{k} jointly, conditional on the data and other parameters. First note that

$$
\pi\left(\alpha_{k}, \beta_{k} \mid \boldsymbol{z}, \boldsymbol{\theta} \backslash\left\{\alpha_{k}, \beta_{k}\right\}\right) \propto\left\{\prod_{j=1}^{J} n\left(\log r_{j, k} \mid \alpha_{k}+G_{j} \beta_{k}, \tau_{k}^{2}\right)\right\} n\left(\alpha_{k} \mid \mu_{\alpha}, \sigma_{\alpha}^{2}\right) n\left(\beta_{k} \mid \mu_{\beta}, \sigma_{\beta}^{2}\right) .
$$

Let X be a $J \times 2$ design matrix with first column all ones, and second column $G_{j}(j=$ $1, \ldots, J)$. Then $\boldsymbol{\beta}_{\bullet, k}=\left(\beta_{1, k}, \ldots, \log r_{j, k}\right)^{T}$, conditional on α_{k}, β_{k} and τ_{k}^{2}, is J-variate normal with mean $X\left(\alpha_{k}, \beta_{k}\right)^{T}$ and covariance $\tau_{k}^{2} I_{J}$, where I_{J} is the $J \times J$ identity matrix. This is a Bayesian regression model. Hence, letting

$$
V=\left[\begin{array}{cc}
\sigma_{\alpha}^{2} & 0 \\
0 & \sigma_{\beta}^{2}
\end{array}\right]
$$

our sample from $\left(\alpha_{k}, \beta_{k}\right)^{T}$, conditional on the data and other parameters, is a bivariate normal draw with a mean $\Sigma^{-1} \boldsymbol{c}$ and covariance Σ^{-1} where $\Sigma=X^{T} X / \tau_{k}^{2}+V^{-1}$ and $\boldsymbol{c}=$ $X^{T} \boldsymbol{\beta}_{\bullet, k} / \tau_{k}^{2}+V^{-1}\left(\mu_{\alpha}, \mu_{\beta}\right)^{T}$.

Update $\left\{\tau_{k}^{2}\right\}$: For each $k=1, \ldots, K$ we have that

$$
\pi\left(\tau_{k}^{2} \mid \boldsymbol{z}, \boldsymbol{\theta} \backslash\left\{\tau_{k}^{2}\right\}\right) \propto\left\{\prod_{j=1}^{J} n\left(\log r_{j, k} \mid \alpha_{k}+G_{j} \beta_{k}, \tau_{k}^{2}\right)\right\} i g\left(\tau_{k}^{2} \mid s_{\tau}, r_{\tau}\right)
$$

leading us to sample τ_{k}^{2}, conditional on the data and other parameters, from an inverse gamma distribution with shape s and rate r, where

$$
s=s_{\sigma, \alpha}+J / 2, \quad \text { and } \quad r=r_{\sigma, \alpha}+\frac{1}{2} \sum_{j=1}^{J}\left(\log r_{j, k}-\alpha_{k}-G_{j} \beta_{k}\right)^{2}
$$

Update μ_{α} : (The update for μ_{β} is similar.)

$$
\pi\left(\mu_{\alpha} \mid \boldsymbol{z}, \boldsymbol{\theta} \backslash\left\{\mu_{\alpha}\right\}\right) \propto\left\{\prod_{k=1}^{K} n\left(\alpha_{k} \mid \mu_{\alpha}, \sigma_{\alpha}^{2}\right)\right\} n\left(\mu_{\alpha} \mid m_{\alpha}, v_{\alpha}\right)
$$

and hence we sample μ_{α}, conditional on the data and other parameters, from a normal distribution with mean m / p and variance $1 / p$ where

$$
m=\sum_{k=1}^{K} \alpha_{k} / \sigma_{\alpha}^{2}+m_{\alpha} / v_{\alpha}, \quad \text { and } \quad p=K / \sigma_{\alpha}^{2}+1 / v_{\alpha}
$$

Update σ_{α}^{2} : (The update for σ_{β}^{2} is similar.)

$$
\pi\left(\sigma_{\alpha}^{2} \mid \boldsymbol{z}, \boldsymbol{\theta} \backslash\left\{\sigma_{\alpha}^{2}\right\}\right) \propto\left\{\prod_{k=1}^{K} n\left(\alpha_{k} \mid \mu_{\alpha}, \sigma_{\alpha}^{2}\right)\right\} i g\left(\sigma_{\alpha}^{2} \mid s_{\sigma, \alpha}, r_{\sigma, \alpha}\right)
$$

and hence we sample σ_{α}^{2}, conditional on the data and other parameters, from an inverse gamma distribution with shape s and rate r, where

$$
s=s_{\tau}+K / 2, \quad \text { and } \quad r=r_{\tau}+\frac{1}{2} \sum_{k=1}^{K}\left(\alpha_{k}-\mu_{\alpha}\right)^{2} .
$$

