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The MCMC algorithm used to fit the Bayesian DPOAE noncentral

F mixed model

We use θ \ {κ} to denote the collection of parameters contained in θ, but excluding the

parameter κ. The MCMC algorithm below assumes that Kj = K for all subjects j. (More

carefully subsetting and indexing is needed in the unbalanced case.)

Update {log rj,k}: Fix a subject j = 1, . . . , J , and let log rj,• = (log rj,1, . . . , log rj,K)
T .

Then

π(log rj,•|z,θ \ {log rj,•}) ∝
K
∏

k=1

[

L
∏

l=1

fZj,k,l

(

zj,k,l | e
N∆rj,k

)

]

n
(

log rj,k|αk +Gjβk, τ
2

k

)

.

We use a Metropolis-Hastings symmetric random walk update. Supposing we are at log rj,•,

we propose log rnew
j,• from a K-variate normal with mean log rj,• and covariance Σj, for

some K×K positive definite matrix Σj (in practice, we base Σj on the estimated covariance

matrix of the maximum likelihood estimate of log rj,•, calculated using only the data for
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subject j, scaled to obtain an acceptance probability of around 0.4). Then we accept the

new value, log rnew
j,• , with probability min(eq, 1), where

q =

{

K
∑

k=1

L
∑

l=1

log fZj,k,l

(

zj,k,l | e
N∆rnew

j,k

)

+
K
∑

k=1

log n
(

log rnewj,k |αk +Gjβk, τ
2

k

)

}

−

{

K
∑

k=1

L
∑

l=1

log fZj,k,l

(

zj,k,l | e
N∆rj,k

)

+
K
∑

k=1

log n
(

log rj,k|αk +Gjβk, τ
2

k

)

}

;

otherwise we remain at log rj,•.

Update {αk} and {βk}: Fixing a k = 1, . . . , K we sample αk and βk jointly, conditional

on the data and other parameters. First note that

π(αk, βk|z,θ \ {αk, βk}) ∝

{

J
∏

j=1

n
(

log rj,k|αk +Gjβk, τ
2

k

)

}

n
(

αk|µα, σ
2

α

)

n
(

βk|µβ, σ
2

β

)

.

Let X be a J × 2 design matrix with first column all ones, and second column Gj (j =

1, . . . , J). Then β
•,k = (β1,k, . . . , log rj,k)

T , conditional on αk, βk and τ 2k , is J-variate normal

with mean X(αk, βk)
T and covariance τ 2k IJ , where IJ is the J × J identity matrix. This is a

Bayesian regression model. Hence, letting

V =





σ2
α 0

0 σ2

β



 ,

our sample from (αk, βk)
T , conditional on the data and other parameters, is a bivariate

normal draw with a mean Σ−1c and covariance Σ−1 where Σ = XTX/τ 2k + V −1 and c =

XTβ
•,k/τ

2

k + V −1(µα, µβ)
T .

2



Update {τ 2k }: For each k = 1, . . . , K we have that

π(τ 2k |z,θ \ {τ 2k}) ∝

{

J
∏

j=1

n
(

log rj,k|αk +Gjβk, τ
2

k

)

}

ig
(

τ 2k |sτ , rτ
)

,

leading us to sample τ 2k , conditional on the data and other parameters, from an inverse

gamma distribution with shape s and rate r, where

s = sσ,α + J/2, and r = rσ,α +
1

2

J
∑

j=1

(log rj,k − αk −Gjβk)
2.

Update µα: (The update for µβ is similar.)

π(µα|z,θ \ {µα}) ∝

{

K
∏

k=1

n
(

αk|µα, σ
2

α

)

}

n(µα|mα, vα) ,

and hence we sample µα, conditional on the data and other parameters, from a normal

distribution with mean m/p and variance 1/p where

m =
K
∑

k=1

αk/σ
2

α +mα/vα, and p = K/σ2

α + 1/vα.

Update σ2
α: (The update for σ2

β is similar.)

π(σ2

α|z,θ \ {σ2

α}) ∝

{

K
∏

k=1

n
(

αk|µα, σ
2

α

)

}

ig
(

σ2

α|sσ,α, rσ,α
)

,

and hence we sample σ2
α, conditional on the data and other parameters, from an inverse

gamma distribution with shape s and rate r, where

s = sτ +K/2, and r = rτ +
1

2

K
∑

k=1

(αk − µα)
2.
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