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C Optimal Decomposition in Special Cases

C.1 Independence structure

Suppose that the distribution of Yi | µ, τi, σ
2
i is normal with diagonal covariance matrix

Σ. Then the optimal D is D = Σ, and all the eigenvalues of D−1/2ΣD−1/2 are 1. Thus,

λ1(D
−1/2ΣD−1/2) = 1 and R = Σ − D = 0. Convergence is immediate, and the Markov

chain yields independent draws from the limiting distribution.

Suppl. Example 1 (One-way ANOVA, independence prior) The case of Σ = (σ2
a + σ2

e)I

with σ2
a and σ2

e known corresponds to a model with an i.i.d. N(0, σ2
a) treatment effect plus an

i.i.d. N(0, σ2
e) error. The optimal D maximizing the convergence rate is Σ.

C.2 Exchangeable correlation structure

Suppose that, among the coordinates of Yi | µ, τi, σ
2
i , a set of variables is exchangeable

in the sense that the correlation matrix C remains unchanged under any permutation of

these variables. In this case, the following proposition shows that an optimal D based on

the correlation matrix C = V−1/2ΣV−1/2 has equal diagonal elements at the exchangeable

coordinates.
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Suppl. Proposition 1 Suppose that Yi | µ, τi, σ
2
i follows a multivariate normal distribu-

tion, and there exist two variables (Yij, Yik) that are exchangeable. Then there exists an

optimal matrix D = diag(d1, · · · , dM) based on the correlation matrix C with dj = dk.

Proof of Suppl. Proposition 1 Assume that D0 = diag(d1
0, · · · , dM0 ) ∈ DS(C) is an

optimal matrix that minimizes the largest eigenvalue value of D
−1/2
0 CD

−1/2
0 and di0 6= dj0.

We can construct a new diagonal matrix D1 = diag(d1
1, · · · , dM1 ) where dk1 = dk0 for k 6= i

or j, di1 = dj0 and dji = di0, i.e., D1 swaps the positions of di0 and dj0. This corresponds to a

relabeling of coordinates i and j. Thus, D1 ∈ DS(C), and the eigenvalues of D
−1/2
1 CD

−1/2
1

are the same as those of D
−1/2
0 CD

−1/2
0 , although the eigenvectors may differ. Now let

D∗ = 1
2
(D0 + D1), then D∗ is still in DS(C), and by a well-known result in linear algebra

(see, e.g., Bhatia, 1996),

λ1((D
∗)−1/2C(D∗)−1/2) ≤ 1

2

[
λ1(D

−1/2
0 CD

−1/2
0 ) + λ1(D

−1/2
1 CD

−1/2
1 )

]
= λ1(D

−1/2
0 CD

−1/2
0 ).

Therefore, λ1((D
∗)−1/2C(D∗)−1/2) is at most as large as λ1(D

−1/2
0 CD

−1/2
0 ), and so D∗ is an

optimal matrix based on the correlation matrix. ‡

The key idea in Suppl. Proposition 1 is that, for a given i, the Yij’s can be reordered

without changing the correlation matrix, then the corresponding diagonal elements of a

matrix D can be reordered in the same way without affecting the convergence rate of the

Markov chain. Convexity suggests that averaging D and its reordered version can only

hasten convergence. This argument can be applied or extended in various cases to obtain

optimal decompositions. We illustrate this procedure for the following well known models.

Case 1: Exchangeable correlation structure Consider the exchangeable correlation

structure, where all coordinates of Yi | µ, τi, σ2
i are exchangeable, i.e., the correlation matrix

C is of the form C = aI + bJ with a = 1 − b. The following corollary shows that in this

situation, an optimal D for Σ is proportional to diag(Σ).

Suppl. Corollary 1 If the correlation matrix C is of the form aI + bJ where a = 1 − b,

then the matrix D = d diag(Σ) is optimal, where d = 1− b if b ≥ 0 and d = 1 + (M − 1)b if

b < 0.
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Proof of Suppl. Corollary 1 By Proposition 2 in Section 4.1 of the main text of the

paper, it suffices to show that an optimal D based on the correlation matrix is dI. Since,

when the correlation matrix is aI+bJ, any pair within Yi1, · · · , YiM | µ, τi, σ2
i is exchangeable,

by Suppl. Proposition 1 an optimal D is proportional to the identity matrix. Moreover, it is

easy to see that for any fixed t, the largest eigenvalue of (tI)−1/2Σ(tI)−1/2 is λ1(C)/t. Thus,

to retain R as a non-negative definite matrix, the largest t that can be used is tmax = λM(C),

which is 1− b if b ≥ 0 and is 1 + (M − 1)b if b < 0. ‡

Suppl. Example 2 (One-way ANOVA, hierarchical prior) With the one-way ANOVA model

now assume that the prior distribution for the treatment is hierarchical. The center of the

distribution of the treatment effects, µ, follows the N(0, σ2
µ) distribution. The M treatment

effects are jointly N(µ1, I), conditional on their center. This implies that the treatment ef-

fects are jointly N(0, I+σ2
µJ), and thus the correlation matrix is C = aI+bJ, where a = 1−b

and b = σ2
µ/(1+σ2

e +σ2
µ). Appealing to Corollary 1, the optimal D is (1+σ2

e)/(1+σ2
e +σ2

µ)I.

Case 2: Circular correlation structure Consider the circular correlation structure,

where Yik, · · · , YiM , Yi1, · · · , Yi,k−1 | µ, τi, σ2
i is the same as the distribution of Yi1, · · · , YiM | µ, τi, σ2

i

for any k = 1, . . . ,M . Thus, the covariance matrix remains the same under a circular trans-

formation of the coordinates. In this case, we can easily extend the symmetric argument in

Suppl. Proposition 1 to show that an optimal D is a multiplier of the identity matrix.

Suppl. Corollary 2 Suppose that Yi1, · · · , YiM | µ, τi, σ2
i follows a multivariate normal dis-

tribution and its covariance matrix is invariant under circular transformations. Then an

optimal D in the decomposition Σ = D + R is D = tI, where t = λM(Σ).

Proof of Suppl. Corollary 2 Following similar steps as in the proof of Proposition 1, we

can see that there exists an optimal D that satisfies (dk, · · · , dM , d1, · · · , dk−1) = (d1, · · · , dM)

for each k = 1, . . . ,M . That is, d1 = · · · = dM = t for some t > 0. To retain R as a

nonnegative definite matrix, the largest t that we can choose is tmax = λM(C). Therefore,

this optimal D is equal to λM(Σ)I. ‡

We demonstrate this theory in the case of the circular AR(1) process. Further details
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of the process, eigenvalue decomposition, and another example (the circular MA(1) process)

are provided in Appendix D below.

Suppl. Example 3 (Circular AR(1) process) For M > 2, the stationary circular autore-

gressive process of order 1 has a covariance matrix Σ that is circular, with Σjk = γi−j mod M

and γh = σ2(φ|h|+φM−|h|)/((1−φ2)(1−φM)), h = 0, . . . ,M − 1, for autocorrelation param-

eter −1 < φ < 1 and innovation variance σ2 > 0. The smallest eigenvalue of Σ when φ ≥ 0

is λM(Σ) = σ2/(1 − 2φ cos(2πbM/2c/M) + φ2) (which simplifies to λM(Σ) = σ2/(1 + φ)2

when M is even). When φ < 0, the smallest eigenvalue is λM(Σ) = σ2/(1− φ)2. Therefore,

by Corollary 2 an optimal D based on Σ is λM(Σ)I.

Case 3: Reversible correlation structure Consider the reversible correlation structure,

where the correlation matrix remains unchanged when the order of the variables is reversed.

In this case, we characterize a property of the optimal D. The proof follows the argument

in Suppl. Proposition 1.

Suppl. Corollary 3 Suppose that the correlation matrix has the form Cij = CM+1−i M+1−j,

for j = 1, . . . ,M . Then the optimal D matrix based on C has, with diag(D) = (d1, . . . , dM),

di = dM+1−i for i = 1, . . . ,M .

Suppl. Example 4 (AR(1) process). An autoregressive process of order 1 has a correlation

matrix which is reversible. Direct application of Suppl. Corollary 3 implies that the optimal

D is symmetric, with dj = dM+1−j for j = 1, . . . ,M .

C.3 Block diagonal structure

Suppose that the observations Yi1, · · · , YiM (i = 1, . . . , N) can be divided into several parts

where variables in different parts are independent conditional on µ, τi, σ
2
i , i.e., the covari-

ance matrix Σ is a block diagonal matrix. Then we can divide the matrix D into several

corresponding blocks. The optimization problems in different blocks are independent, and

the overall convergence rate is determined by the “worst” block. The next result shows that

one can optimize each block separately and then paste the pieces together to get a big D

matrix.
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Suppl. Proposition 2 Suppose the covariance matrix Σ is block diagonal with k blocks,

and D ∈ DS(Σ) is diagonal. Then the matrix D−1/2ΣD−1/2 is also block diagonal with k

blocks, and its eigenvalues are of the form λ1, . . . ,λk, where λi is the vector of eigenvalues

from the ith block. Solving each block and collecting the results together guarantees an optimal

solution.

Suppl. Example 5 (Two-way ANOVA) The prior distribution for the J treatment effects

is N(µ1, σ2
αI), conditional on a known value µ. The nj replicate measurements on treat-

ment j are conditionally independent, with mean equal to the treatment mean and vari-

ance σ2
e . The covariance matrix of Yi is Σ = diag(Σ1, . . . ,ΣJ), with Σi = σ2

eI + σ2
αJ.

By Suppl. Proposition 2 and Suppl. Corollary 1, an optimal D = diag(D1, . . . ,DJ) where

Dj = (1 + σ2
e)/(1 + σ2

e + σ2
α)I.

D Eigenvalues of a circulant matrix

For a positive integer M , a circulant M ×M covariance matrix Σ is defined by the relation

Σjk = γj−k mod M , for M constants γ0, . . . , γM−1, such that Σ is positive definite. In this case

there is a closed from expression for the eigenvalues of Σ. The unordered eigenvalues are

calculated using the discrete Fourier transform (DFT) of {γk : k = 0, . . . ,M − 1} (Gray,

2006), where i =
√
−1:

ψj =
M−1∑
k=0

γke
−i2π(j−1)k/M , j = 1, . . . ,M.

An example of a process with a circular covariance matrix is the circular autoregressive

process of order one. For an integer M ≥ 2, let {Ut : t = 0, . . . ,M − 1} be a set of

uncorrelated mean zero random variables with variance σ2, such that 0 < σ2 < ∞. Then

the circular AR(1) process is defined by the recursion, ηt = φηt−1 mod M +Ut, t = 0, . . . ,M −

1. For |φ| < 1 this process is stationary and for each t we can express ηt as ηt = (1 −

φM)−1
∑M−1

k=0 φkUt−k mod M , which leads to that fact that E(ηt) = 0 for all t and for |h| < M ,

γh = cov(ηt, ηt+h) =
σ2(φ|h| + φM−|h|)

(1− φ2)(1− φM)
.
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The DFT of {γk} is

ψj =
M−1∑
k=0

γke
−i2π(j−1)k/M =

σ2

1− 2φ cos(2π(j − 1)/M) + φ2
, j = 1, . . . ,M.

For φ ≥ 0, the smallest eigenvalue occurs at j = bM/2c+1, with value σ2/(1−2φ cos(2πbM/2c/M)+

φ2), which simplifies to σ2/(1 + φ2) when M is even. For φ < 0, the smallest eigenvalue

occurs at j = 1 with value σ2/(1− φ2).

Another example is the circular moving average (MA) process of order one. For some

integer M ≥ 3 and θ 6= 0, the circular MA(1) process is defined by ηt = Ut+θUt−1 mod M , t =

0, . . . ,M − 1, where {Ut} was defined as for the circular AR(1) process. We restrict to the

case that the process is invertible; i.e., when |θ| < 1 (e.g., Brockwell and Davis, 2002). Then

this process has mean zero with a covariance structure described, for |h| < M by,

γh = cov(ηt, ηt+h) =


σ2(1 + θ2), h = 0

σ2θ, h = ±1,±(M − 1)

0, otherwise.

The M ×M covariance matrix again is circular with Σjk = γj−k mod M , and the unordered

eigenvalues are ψj = σ2 (1 + 2θ cos(2π(j − 1)/M) + θ2) for j = 1, . . . ,M. When θ is positive,

the minimum eigenvalue occurs at j = bM/2c+ 1, with value σ2 (1 + 2θ cos(2πbM/2c/M) + θ2),

which simplifies to a value of σ2 (1− θ)2 when M is even. When θ is negative, the minimum

eigenvalue occurs at j = 1, with value σ2 = σ2(1 + 2θ + θ2) = σ2(1 + θ)2.
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