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Proof of 4.1 See Theorem 5.1 of Craigmile and Percival (2003).

Proof of 4.2 For d < (L+1)/2, the wavelet coefficients have mean zero by the differencing properties

of the Daubechies wavelet filter. When {Xt} is stationary (d < 1/2) the theorem follows from Exercise

[348b] of Percival and Walden (2000) (a solution to this exercise can be found in Craigmile (2000)). To

establish the result for d ≥ 1/2 we need only show that equation (6) is finite when τ = 0 for all j since

Sj(·) is then the spectrum for a stationary process. For brevity define CL(l) =
(L/2+l−1

l

)
. Then

σ2 sj,0(d) = 2σ2

∫ 1/2

0
Hj,L(f) (2 sin(πf))

−2d df.

For j = 1, we have (using equation (1))

s1,0(d) =
22−2d

π

L/2−1∑

l=0

CL(l)

∫ π
2

0
cos2l(w) sinL−2d(w) dw,

by the substitution w = πf . From standard results the final integral exists for L − 2d > −1, i.e.,

d < (L+ 1)/2. Since L is even, standard trigonometry yields for j > 1

sj,0(d) =
2j+(j−1)L+1−2d

π

∑

l0

..
∑

lj−1

CL(l0) . . . , CL(lj−1)

∫ π
2

0
sinL−2d(w)

j−2∏

k=0

cos2L(2kw)

× cos2lj−1(2j−1w)

j−2∏

k=0

sin2lk(2kw) dw,

which exists for d < (L+ 1)/2.
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Lemma 1 Under the white noise model, Rj =d sj,0(d0) σ
2
0 χ2

Mj
for each j. It then follows that

[Rj/(Mjsj,0(d0))− 1]→p 0, for each j, as M →∞.

Proof The result follows directly from the white noise model, the weak law of large numbers, and

the fact that Mj →∞ as M →∞.

We now define some extra notation. For any twice differentiable function, g, define the operator

∆2(g(x)) =
d

dx
∆1(g(x)) =

d2

dx2 g(x)

g(x)
−
(

d
dxg(x)

g(x)

)2

.

We also note that the second derivative of sj,τ (d) with respect to d is

s′′j,τ (d) = d2

dd2 sj,τ (d) = 8

∫ 1/2

0
[log sin(πf)]2Hj,L(f) cos(2

j+1πfτ)(2 sin(πf))−2d df.

Lemma 2 For the white noise model, the first two derivatives of the log-likelihood satisfy,

−2 l̇M (θ) = −2




∂
∂d lM (θ)

∂
∂σ2 lM (θ)


 =




−
J∑

j=1

[
Rj

sj,0(d)σ2
−Mj

]
∆1(sj,0(d))

−M(σ̂2
M (d)− 1)

σ2


 ,

and

−2 l̈M (θ) = −2




∂2

∂d2 lM (θ) ∂2

∂d∂σ2 lM (θ)

∂2

∂d∂σ2 lM (θ) ∂2

∂σ4 lM (θ)


 ,

where

−2 [l̈M (θ)]1,1 =

J∑

j=1

Mj ∆2(sj,0(d)) −
J∑

j=1

Rj

sj,0(d)σ2

(
∆2(sj,0(d))−∆2

1(sj,0(d))
)
,

−2 [l̈M (θ)]1,2 =

J∑

j=1

Rj

sj,0(d)σ4
∆1(sj,0(d)), and

−2 [l̈M (θ)]2,2 = −M
σ4

+ 2
J∑

j=1

Rj

sj,0(d)σ6
.
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Proof Using the notation of equation (13) and taking derivatives of equation (9) with respect to d

yields

−2 ∂

∂d
lM (d, σ2|(Wnb)j,k) =

J∑

j=1

Mj ∆1(sj,0(d))−
J∑

j=1

Rj

sj,0(d)σ2
∆1(sj,0(d)).

= −
J∑

j=1

[
Rj

sj,0(d)σ2
−Mj

]
∆1(sj,0(d)),

and with respect to σ2,

−2 ∂

∂σ2
lM (d, σ2|(Wnb)j,k) =

M

σ2
−

J∑

j=1

Rj

sj,0(d)σ4
= −M(σ̂2

M (d)− 1)

σ2
.

The second derivatives follow in a similar way.

Lemma 3 Under the white noise model.

(a) −2M−1/2 l̇M (θ0)→d N2(0, 4Σ| 0(θ0)) as M →∞;

(b) −2M−1 l̈M (θ0)→as 4Σ| 0(θ0) as M →∞.

Proof (a) Result follows by using the Cramér–Wold theorem and examining the characteristic func-

tion of−2M−1/2 l̇M (θ0). In the limit asM →∞ we can use lemma 1 and the uniqueness of characteristic

functions to establish the result.

(b) Follows directly from lemma 2 and lemma 1.

Lemma 4 fL(d) ≡ s2,0(d)/s1,0(d) is a strictly increasing function of d for d < (L+ 1)/2.

Proof For L = 2 it can be shown that (Craigmile 2000, p. 45)

f2(d) =
6

(2− d)(3 − d) ,

which is a strictly increasing function for d < 3
2 . Since f ′L(d) is a continuous function of d for all L,

one can validate graphically that f ′L(d) > 0 for a particular L > 2 and d < (L+1)/2. Craigmile (2000,

Figure 3.9, p. 46) demonstrates this for L = 4, 6, 8, . . . , 20.
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Proof of 7.1 (a) To prove consistency, we follow the proof of Lehmann (1998), Theorem 3.7. For

r > 0, let Br = {θ ∈ ΘL : ||θ − θ0|| = r}. We want to show that

P (lM (θ) < lM (θ0) for all θ ∈ Br)→ 1, (1)

as M →∞, or equivalently

P (2M−1(lM (θ)− lM (θ0)) < 0 for all θ ∈ Br)→ 1, (2)

as M → ∞. This implies that the likelihood equations have a local maximum inside Br. Since the

equations are satisfied at a local maximum, for any r > 0 with probability converging to one, the

likelihood equations have a solution within Br. Utilizing equation (9)

2M−1 [lM (θ)− lM (θ0)] = − log(2πσ2)−
J∑

j=1

(Mj/M) log(sj,0(d)) −
J∑

j=1

Rj

Msj,0(d)σ2

+ log(2πσ2
0) +

J∑

j=1

(Mj/M) log(sj,0(d0)) +

J∑

j=1

Rj

Msj,0(d0)σ2
0

=
J∑

j=1

Mj

M

[
log

(
sj,0(d)σ

2

sj,0(d0)σ2
0

)
+

(
1− sj,0(d)σ

2

sj,0(d0)σ2
0

)]

+

J∑

j=1

Mj

M

(
Rj

Mjsj,0(d0)
− 1

)(
1− sj,0(d)σ

2

sj,0(d0)σ2
0

)
.

Remembering that mj = limM→∞(Mj/M) is a constant and using lemma 1, we see that the second

term goes in probability to zero as M →∞. We will establish the result if we show that

Mj

M

[
log

(
sj,0(d)σ

2

sj,0(d0)σ2
0

)
+

(
1− sj,0(d)σ

2

sj,0(d0)σ2
0

)]

is nonpositive for all M > (some)M0 and for each j, and is negative for at least one j. Now let

f(x) ≡ log(x) + 1 − x. Considering the derivatives of f we see that the function has maximum value

at x = 1 with value f(x) = 0. Thus the quantity above is always nonpositive and negative if at least

one of values, (sj,0(d)σ
2)/(sj,0(d0)σ

2
0), is not equal to one. As we assume that θ ∈ Br, we have that

θ 6= θ0. This leads to three possible cases:
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1. d0 = d and σ2
0 6= σ2. In that case (sj,0(d)σ

2)/(sj,0(d0)σ
2
0) = σ2/σ2

0 6= 1.

2. d0 6= d and σ2
0 = σ2. In that case (sj,0(d)σ

2)/(sj,0(d0)σ
2
0) = sj,0(d)/sj,0(d0) 6= 1 by definition of

sj,0(d) (it is an increasing function of d for fixed j).

3. σ2
0 6= σ2 and d0 6= d. By Lemma 4 it follows that if (s1,0(d)σ

2)/(s1,0(d0)σ
2
0) = 1, then

(s2,0(d)σ
2)/(s2,0(d0)σ

2
0) 6= 1.

Thus with probability one the likelihood evaluated at θ ∈ Br is smaller than that at θ0. If we let r → 0

we obtain the consistency result by always taking the root of the likelihood equations closest to θ0.

(b) A Taylor series expansion for l̇M (θ̂M ) about θ0 is given by

l̇M (θ̂M ) = l̇M (θ0) + l̈M (θ∗)(θ̂M − θ0)

where θ∗ lies between θ0 and θ̂M . Since l̇M (θ̂M ) = 0

l̇M (θ0) = [−l̈M (θ∗)](θ̂M − θ0).

The asymptotic normality of θ̂M follows by dividing this equation by
√
M , and noting that

(1) M−1/2 l̇M (θ0)→d N2(0,Σ| 0(θ0)) (by Lemma 3);

(2) −M−1 l̈M (θ0)→p Σ| 0(θ0)) (by Lemma 3);

(3) M−1
[
l̈M (θ0)− l̈M (θ∗)

]
→p 0 (by part (a), lemma 3 and continuity of the second derivative).

Invertibility of Σ| 0(θ0), consistency of the ML estimate and Slutsky’s theorem yields the required result.

(c) The result follows from the Cramér–Wold theorem using the vector a = (1, 0). In that case

ψ2
0(d0) = (1, 0)TΣ|−1

0 (θ0)(1, 0).

(d) This result follows immediately from lemma 1, noting that different wavelet levels are independent

under the white noise model.

Proof of 7.2 The proof of this result is similar in style to the proof of Theorem 7.1 – see Craigmile

(2000) for further details.
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