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S1 Proofs of the results, and supplemental results

Theorem 1 can be proven with the well-known Stein’s Identity.

Lemma S1 (Stein’s Identity) (Stein, 1981): If X is a normal random variable with mean

µ and variance σ2 and g is a real-valued function with a Lebesgue measurable derivative

function g′, then E[(X − µ)g(X)] = σ2E[g′(X)].

Lemma S2 For a normal random variable X with mean µ and variance σ2, we have

E[XneaX ] = E[(X − µ)Xn−1eaX ] + µE[Xn−1eaX ]

= σ2E[aXn−1eaX + (n− 1)Xn−2eaX ] + µE[Xn−1eaX ]

= (µ+ aσ2)E[Xn−1eaX ] + (n− 1)σ2E[Xn−2eaX ].

In particular, for n = 1, 2, 3 and 4, we have

E[XeaX ] = (µ+ aσ2)E[eaX ]; (S1)

E[X2eaX ] = [(µ+ aσ2)2 + σ2]E[eaX ]; (S2)

E[X3eaX ] = [(µ+ aσ2)3 + 3σ2(µ+ aσ2)]E[eaX ]; (S3)

E[X4eaX ] = [(µ+ aσ2)4 + 6σ2(µ+ aσ2)2 + 3σ4]E[eaX ]. (S4)

Proof of Theorem 1 (a) Using (S1) and (S2) as well as the fact that

ε(s)|α(s) ∼ N(α(s)%/τ, 1− %2),
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and

α(s)|ε(s) ∼ N(τ%ε(s), τ 2(1− %2)),

we can prove the aforementioned properties of the process Z(s) = eα(s)/2ε(s). We have

E[Z(s)] = E[E[eα(s)/2ε(s)|α(s)]] =
%

τ
E[α(s)eα(s)/2] =

1

2
τ%E[eα(s)/2] =

1

2
τ%eτ

2/8,

and

var(Z(s)) = E[Z(s)2]− E[Z(s)]2

= E[E[ε2(s)eα(s)|α(s)]]− 1

2
τ%E[eα(s)/2]

= E[(1− %2 +
%2

τ 2
α2(s))eα(s)]− 1

2
τ%E[eα(s)/2]

= (1 + τ 2%2)E[eα(s)]− 1

2
τ%E[eα(s)/2]

= (1 + τ 2%2)eτ
2/2 − 1

4
τ 2%2eτ

2/4.

(b) We can still use the conditional expectation approach as above to find the third moment

of Z(s), but a much simpler approach is to use the properties of a bivariate normal random

variable and express α(s) as

α(s) = τ%ε(s) + τ
√

1− %2η(s),

where s is a fixed spatial location, and η(s) is a normal random variable with zero mean

and unit variance and is independent from ε(s). Note that the original bivariate process

{[α(s), ε(s)]T : s ∈ D} is not equivalent to the bivariate process

{[τ%ε(s) + τ
√

1− %2η(s), ε(s)]T : s ∈ D}

since the cross covariance functions of these two processes are not necessarily the same.

However, for a single fixed spatial location s, the two bivariate normal random vectors

[α(s), ε(s)]T and [τ%ε(s) + τ
√

1− %2η(s), ε(s)]T are indeed equivalent. Hence the random

variables based on a measurable transformation of these two bivariate random vectors will
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have the same distribution and thus the same moments. Thus, we have

E[Z3(s)] = E[e3τ%ε(s)/2ε3(s)]E
[
e3τ
√

1−%2η(s)/2
]

=

[
27

8
τ 3%3 +

9

2
τ%

]
E
[
e3(τ%ε(s)+τ

√
1−%2η(s))/2

]
=

[
27

8
τ 3%3 +

9

2
τ%

]
E
[
e3α(s)/2

]
=

[
27

8
τ 3%3 +

9

2
τ%

]
e9τ2/8.

and the skewness of Z(s) is given by

E[(Z(s)− E[Z(s)])3]

[var(Z(s))]3/2

=
E[Z(s)3]− 3E[Z(s)]E[Z(s)2] + 2E[Z(s)]3

[var(Z(s))]3/2

=
(27

8
τ 3%3 + 9

2
τ%)E[e3α(s)/2]− 3

2
τ%(1 + τ 2%2)E[eα(s)/2]E[eα(s)] + 1

4
τ 3%3E[eα(s)/2]3

[var(Z(s))]3/2

=τ%
(27

8
τ 2%2 + 9

2
)E[e3α(s)/2]− 3

2
(1 + τ 2%2)E[eα(s)/2]E[eα(s)] + 1

4
τ 2%2E[eα(s)/2]3

[var(Z(s))]3/2

=τ%
A

[var(Z(s))]3/2
,

where A = (27
8
τ 2%2 + 9

2
)E[e3α(s)/2]− 3

2
(1 + τ 2%2)E[eα(s)/2]E[eα(s)] + 1

4
τ 2%2E[eα(s)/2]3. Using

the fact that E[XY ] > E[X]E[Y ] for positively correlated random variables X and Y , we

can see that the numerator A satisfies A > {(27
8
τ 2%2 + 9

2
)− 3

2
(1+τ 2%2)}E[eα(s)/2]E[eα(s)] > 0.

Therefore, the skewness of Z(s) always takes the same sign as % – the correlation coefficient

between α(s) and Z(s).

(c) Consider a fixed spatial location s. As above we assume that

E[Z4(s)] = E
[
e2τ%ε(s)+2τ

√
1−%2η(s)ε(s)4

]
= E

[
e2τ%ε(s)ε(s)4

]
E
[
ε2τ
√

1− %2η(s)
]

= (16τ 4%4 + 24τ 2%2 + 3)E
[
e2τ%ε(s)+2τ

√
1−%2η(s)

]
= (16τ 4%4 + 24τ 2%2 + 3)E

[
e2α(s)

]
= (16τ 4%4 + 24τ 2%2 + 3)e2τ2 .

To prove the excess kurtosis of Z(s), we only need to show that

E[(Z(s)− E[Z(s)])4]− 3var(Z(s))2 > 0.
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The calculation is straightforward. Let mi denote the ith noncentral moment of Z(s). Then

E[(Z(s)− E[Z(s)])4]− 3var(Z(s))2

= m4 − 4m3m1 + 6m2m
2
1 − 3m4

1 − 3m2
2 + 6m2m

2
1 − 3m4

1

= (16τ 4%4 + 24τ 2%2 + 3)e2τ2 − 4

(
27

8
τ 3%3 +

9

2
τ%

)
e9τ2/8

(
1

2
τ%eτ

2/8

)
+ 12(1 + τ 2%2)eτ

2/2

(
1

2
τ%eτ

2/8

)2

− 6

(
1

2
τ%eτ

2/8

)4

− 3
(

(1 + τ 2%2)eτ
2/2
)2

= (16τ 4%4 + 24τ 2%2 + 3)e2τ2 −
(

39

4
τ 4%4 + 15τ 2%2 + 3

)
eτ

2

+ (3τ 4%4 + 3τ 2%2)e3τ2/4 − 3

8
τ 4%4eτ

2/2

> (16τ 4%4 + 24τ 2%2 + 3)eτ
2 −

(
39

4
τ 4%4 + 15τ 2%2 + 3

)
eτ

2

+ (3τ 4%4 + 3τ 2%2)eτ
2/2 − 3

8
τ 4%4eτ

2/2

=

(
25

4
τ 4%4 + 9τ 2%2

)
eτ

2

+

(
21

8
τ 4%4 + 3τ 2%2

)
eτ

2/2 ≥ 0.

The inequality still holds when % = 0 and it is easy to see that the excess kurtosis is even

larger when % 6= 0. �

Graphical illustration of Theorem 1

Figure S1 shows the functional relationships between the mean, variance, skewness and

excess kurtosis of the process Z(s) with the parameters τ and %, as well as the simulated

density of the marginal distribution of Z(s). Theorem 1 can be easily verified from the

graphs. The plots also clearly show that for fixed co-locational correlation coefficient %, the

magnitude of the mean, variance, skewness and kurtosis of the process Z(s) increases rapidly

as τ increases; for fixed τ , the magnitude of the four central moments also increases as the

absolute value of % increases.

We need the following lemma for the proof of Theorem 2.

Lemma S3 For a mean zero and second-order stationary Gaussian spatial process ε(s) with
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Figure S1: The plots (i) – (iv) show the mean, variance, skewness and excess kurtosis,

respectively, of the process Z(s) as a function of τ and %. Plot (v) shows the simulated

density function for the marginal distribution of Z(s) for τ = 0.5. The dotted line in each

plot denotes the case where % = 0, the dot-dash lines % = ±0.3, the dashed lines % = ±0.6

and the dark solid lines % = 0.9. The grey solid line in plot (v) denotes the density function

of a standard normal distribution.
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correlation function ρε(h), we have, for h = s− s′,

E[exp{a(ε(s) + ε(s′))}ε(s)ε(s′)] = [ρε(h) + a2(1 + ρε(h))2] exp{a2(1 + ρε(h))}

Proof of Lemma S3 We prove the lemma using the conditional expectation approach,

but note that the proof can be made simpler by applying the same linearization technique

as in the proof of Theorem 1. We have

E[exp{a(ε(s) + ε(s′))}ε(s)ε(s′)]

=E[E[exp{a(ε(s) + ε(s′))}ε(s)ε(s′)|ε(s)]]

=E[ε(s) exp{aε(s)}E[exp{aε(s′)}ε(s′)|ε(s)]]

=E

[
ε(s) exp{aε(s)}(ρε(h)ε(s) + a(1− ρ2

ε(h)) exp

{
aρε(h)ε(s) +

a2

2
(1− ρ2

ε(h))

}]
= exp

{
a2

2
(1− ρ2

ε(h))

}
E
[
{ρε(h)ε2(s) + a(1− ρ2

ε(h))ε(s)} exp{a(1 + ρε(h))ε(s)}
]
.

Now applying (S1) and (S2), we obtain

E[exp{a(ε(s) + ε(s′))}ε(s)ε(s′)]

= exp

{
a2

2
(1− ρ2

ε(h))

}
[ρε(h) + ρε(h)a2(1 + ρε(h))2 + a2(1 + ρε(h))(1− ρ2

ε(h))]

× E[exp{a(1 + ρε(h))ε(s)}]

= exp

{
a2

2
(1− ρ2

ε(h))

}
[ρε(h) + a2(1 + ρε(h))2]E[exp{a(1 + ρε(h))ε(s)}]

=[ρε(h) + a2(1 + ρε(h))2] exp

{
a2

2
(1− ρ2

ε(h)) +
a2

2
(1 + ρε(h))2

}
=[ρε(h) + a2(1 + ρε(h))2] exp{a2(1 + ρε(h))}.

�
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Proof of Theorem 2 Since the latent bivariate process is assumed to be Gaussian and

second-order stationary, we have
α(s)

α(s′)

ε(s)

ε(s′)

 ∼ N

0,Σ =

τ 2P τ%R

τ%R Q

 , (S5)

where P ,Q andR are three 2-by-2 correlation matrices with correlation function ρα(h), ρε(h)

and ρc(h), respectively. In general, the covariance matrix Σ is not necessarily non-negative

definite. However, since we assumed that the bivariate process (α(s), ε(s))T has a valid

second-order structure, Σ is indeed non-negative definite. Using the properties of multivari-

ate normal distribution, we haveα(s)

α(s′)

∣∣∣∣∣∣
ε(s)

ε(s′)

 ∼ N

τ%RQ−1

ε(s)

ε(s′)

 , τ 2P − τ 2%2RQ−1R

 ,

and hence
α(s) + α(s′)

2

∣∣∣∣ ε(s), ε(s′) ∼ N(µα|ε,Σα|ε),

where

µα|ε =
τ%

2
1TRQ−1(ε(s) + ε(s′)) =

τ%

2

1 + ρc(h)

1 + ρε(h)
(ε(s) + ε(s′))

and

Σα|ε =
τ 2

4
1T (P − %2RQ−1R)1 =

τ 2

4
(1TP1− %21TRQ−1R1)

=
τ 2

2

(
1 + ρα(h)− %2 (1 + ρc(h))2

1 + ρε(h)

)
.
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Use the moment generating function of a normal random variable and Lemma S3, we have

cov(Z(s), Z(s′)) =E

[
E

[
exp

{
α(s) + α(s′)

2

}
ε(s)ε(s′)

∣∣∣∣ ε(s), ε(s′)

]]
− E[Z(s)]2

= exp

{
τ 2

4
(1 + ρα(h))− τ 2%2

4

(1 + ρc(h))2

1 + ρε(h)

}
×

E

[
ε(s)ε(s′) exp

{
τ%

2

1 + ρc(h)

1 + ρε(h)
(ε(s) + ε(s′))

}]
− 1

4
τ 2%2eτ

2/4

= exp

{
τ 2

4
(1 + ρα(h))− τ 2%2

4

(1 + ρc(h))2

1 + ρε(h)

}
×(

ρε(h) +
τ 2%2

4
(1 + ρc(h))2

)
exp

{
τ 2%2

4

(1 + ρc(h))2

1 + ρe(h)

}
− 1

4
τ 2%2eτ

2/4

= exp

{
τ 2

4
(1 + ρα(h))

}(
ρε(h) +

τ 2%2

4
(1 + ρc(h))2

)
− 1

4
τ 2%2eτ

2/4.

�

Proof of Theorem 3 It is easier to prove this result by definition than using Theorem 1.

We need to establish that lim∆s→0E[(Z(s+∆s)−Z(s))2] = 0. Let ‖∆s‖ = h, µ = E[Z(s)]

and C(h) = cov(Z(s + ∆), Z(s)). As has been proven, the process Z(s) has finite mean,

variance and a valid covariance function. Therefore,

E[(Z(s+ ∆s)− Z(s))2]

= E[Z2(s+ ∆s)] + E[Z2(s)]− 2E[Z(s+ ∆s)Z(s)]

= 2E[Z2(s)]− 2(C(h) + µ2)

= 2(1 + τ 2%2)eτ
2/2 − 2

([
ρε(h) +

τ 2%2

4
(1 + ρc(h))2

]
exp

[
τ 2

4
(1 + ρα(h))

])
.

It is easy to see that

lim
∆s→0

E[(Z(s+ ∆s)− Z(s))2]

= lim
h→0

{
2(1 + τ 2%2)eτ

2/2 − 2

([
ρε(h) +

τ 2%2

4
(1 + ρc(h))2

]
exp

[
τ 2

4
(1 + ρα(h))

])}
= 2(1 + τ 2%2)eτ

2/2 − 2(1 + τ 2%2)eτ
2/2

= 0.

8



�

Theorem 4 follows directly from Pólya’s Criterion (Pólya, 1949) as well as the following

criteria of the Pólya type for the positive definiteness of radial functions (Gneiting, 2001).

We present the latter result here first.

Theorem S4 (Gneiting, 2001, Theorem 1.1) Let ϕ : [0,∞)→ R be a continuous function

with ϕ(0) = 1 and limt→∞ ϕ(t) = 0. Suppose that k and l are non-negative integers, at least

one of which is strictly positive. Let

η1(t) =

(
− d

du

)k
ϕ(
√
u)

∣∣∣∣∣
u=t2

.

If there exists an α > 1/2 so that

η2(t) =

(
− d

dt

)k+l−1

[−η′1(tα)]

is convex for t > 0, then the radial function ϕ(‖x‖), x ∈ Rn is positive definite for n =

1, . . . , 2l + 1.

Proof of Theorem 4

(a) Use γ(h) to denote the covariance function in Theorem 2, and then γ(h) is continuous,

γ(0) = 1 and limh→∞ γ(h) = 0. In addition, given the conditions, γ(h) is convex by

the following properties of convex functions:

(a) If f(h) and g(h) are convex, then f(h) + g(h) is also convex.

(b) If g(h) is convex, and f(h) is convex and nondecreasing, then f(g(h)) is convex.

(c) If f(h) and g(h) are convex, non-negative and are either both non-increasing or

both non-decreasing, then f(h)g(h) is convex.

Thus by Pólya’s Criterion, γ(h) is positive definite in R.
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(a) In Theorem S4, let k = 0, l = 1 and α = 1. This special case of Theorem S4 (the result

of Askey, 1973) dictates that γ(h) is positive definite in R3 if −γ′(h) is convex, where

−γ′(h) is given by

−γ′(h) =− eτ2(1+ρα(h))/4

[
ρ′ε(h) + ρ′c(h)

τ 2%2

2
(1 + ρc(h))

]
− τ 2

4
ρ′α(h)eτ

2(1+ρα(h))/4

[
ρε(h) +

τ 2%2

2
(1 + ρc(h))2

]
.

Since ρ′α(h), ρ′ε(h) and ρ′c(h) are non-positive, non-decreasing and concave, then−ρ′α(h),

−ρ′ε(h) and −ρ′c(h) are non-negative, non-increasing and convex. Therefore, by the

same rules in part (a), −γ′(h) is convex.
�

S2 A review of the multivariate Matérn process

Let M(h|ν, a) denote the Matérn correlation function with smoothness parameter ν and

scale parameter a:

M(h|ν, a) =
21−ν

Γ(ν)
(a‖h‖)νKν(a‖h‖), (S6)

where Kν(a‖h‖) is a modified Bessel function of the second kind. If ν = 1/2, M(h|ν, a) =

exp(−a‖h‖), the exponential correlation function and when ν = 3/2, M(h|ν, a) = (1 +

a‖h‖) exp(−a‖h‖). If general, if ν = 1/2 + n, for n = 0, 1, 2, . . ., then the Matérn function

can be expressed as the product of an exponential function and a polynomial:

M

(
h

∣∣∣∣n+
1

2
, a

)
= exp(−a‖h‖)

n∑
n=0

(n+ k)!

(2n)!

(
n

k

)
(2a‖h‖)n−k.

Then a multivariate process {U(s) : s ∈ Rp} is a multivariate Matérn processes when the

(cross)-covariance function at spatial lag h for i, j = 1, . . . , p is given by

Cij(h) =

 σ2
iM(h|νi, ai), i = j;

ρijσiσjM(h|νij, aij), otherwise.
(S7)
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Theorems 1 and 4 of Gneiting et al. (2010) and Theorem 1 of Apanasovich et al. (2012)

provide conditions on the parameters so that U (s) is a valid process. Gneiting et al. (2010)

provides a sufficient (but not necessary) condition for the multivariate process U(s) to have

valid second-order structure.

Theorem S5 (Theorem 1 of Gneiting et al. (2010)) For d ≥ 1, p ≥ 2 and 1 ≤ i 6= j ≤ p,

suppose that

νij =
1

2
(νi + νj),

and that the scale parameters satisfy

a1 = · · · = ap = aij = a,

Then U(s) has a valid covariance structure in Rd defined by (S7) if the matrix (βij)
p
i,i=1, with

diagonal elements βii = 1 for i = 1, · · · , p and off-diagonal elements βij for i ≤ i 6= j ≤ p

given by

βij = ρij

[
Γ(νi + d

2
)1/2

Γ(νi)1/2

Γ(νj + d
2
)1/2

Γ(νj)1/2

Γ(1
2
(νi + νj))

Γ(1
2
(νi + νj) + d

2
)

]−1

for 1 ≤ i 6= j ≤ p,

is symmetric and non-negative definite.

Gneiting et al. (2010) argues that the conditions in Theorem S5 are not necessarily as

restrictive as they seem. If ν = 1/2, i.e., for the exponential covariance function, Ying

(1991) showed that either a or σ2 can be fixed arbitrarily and the composite quantity can

still be estimated consistently and efficiently. More importantly, Zhang (2004) proved that

in dimension d ≤ 3, the parameters σ2 and a of a Matérn covariance function with fixed

smoothness parameter ν cannot be consistently estimated under an infill asymptotic, but

that the composite quantity σ2a2ν can be consistently estimated and that this quantity is

more important for spatial prediction, as explained in the following theorem.

Theorem S6 (Zhang (2004), Theorem 2) Let Pi, i = 1, 2, be two probability measures

such that under Pi, the process X(s), s ∈ Rd is stationary Gaussian with mean 0 and an

11



isotropic Matérn covariance function in Rd with a variance σ2
i , a scale parameter ai and the

same smoothness parameter ν, where d = 1, 2, 3. For any bounded infinite set D, the two

probability measures P1 and P2 are equivalent on the paths of X(s), s ∈ D if and only if

σ2
1a

2ν
1 = σ2

2a
2ν
2 .

When p = 2, the restriction on ρ12 in Theorem S5 expressed in terms of the entries of some

positive definite matrix can be rephrased as the following inequality

ρ12 ≤
Γ(ν1 + d

2
)1/2

Γ(ν1)1/2

Γ(ν2 + d
2
)1/2

Γ(ν2)1/2

Γ(1
2
(ν1 + ν2))

Γ(1
2
(ν1 + ν2) + d

2
)
.

This is trivial since for the matrix  1 β12

β12 1


to be positive definite, we need to have β12 ≤ 1. As it turns out, for p = 2 this condition on

ρ12 is not only sufficient but also necessary, as is stated in the following theorem.

Theorem S7 (Gneiting et al., 2010, Theorem 3) When p = 2, the full bivariate Matérn

model described by (S7) is valid if and only if

ρ12 ≤
Γ(ν1 + d

2
)1/2

Γ(ν1)1/2

Γ(ν2 + d
2
)1/2

Γ(ν2)1/2

Γ(1
2
(ν1 + ν2))

Γ(1
2
(ν1 + ν2) + d

2
)
×

a2ν1
1 a2ν2

2

a4ν12
12

inf
t≥0

(a2
12 + t2)2ν12+d

(a2
1 + t2)ν1+(d/2)(a2

2 + t2)ν2+(d/2)
.

The above inequality implies the following important cases.

1. If ν12 < (ν1 + ν2)/2, the full bivariate Matérn model is valid if and only if ρ12 = 0. In

other words, ν12 ≥ (ν1 + ν2)/2 is a necessary condition for a bivariate Matérn model

to capture any cross-correlation in the multivariate spatial data.

2. If ν12 = (ν1 + ν2)/2 and a1 = a2 = a12 = a, the full bivariate Matérn model is valid if

and only if

ρ12 ≤
Γ(ν1 + d

2
)1/2

Γ(ν1)1/2

Γ(ν2 + d
2
)1/2

Γ(ν2)1/2

Γ(1
2
(ν1 + ν2))

Γ(1
2
(ν1 + ν2) + d

2
)
.
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As a special case, if d = 2 (e.g., if we focus only on the two-dimensional spatial

domain), then the inequality condition on ρ12 can be simplified to

|ρ12| ≤
(ν1ν2)1/2

1
2
(ν1 + ν2)

.

3. (Gneiting et al., 2010, Theorem 4) When ν12 ≥ (ν1 + ν2)/2 and a2
12 ≥ (a2

1 + a2
2)/2, a

sufficient but not necessary condition for the full bivariate Matérn model to be valid is

given by

|ρ12| ≤
aν11 a

ν2

2

a2ν12
12

Γ(ν12)

Γ(ν1)1/2Γ(ν2)1/2

(
e
a12 − (a2

1 + a2
2)/2

ν12 − (ν1 + ν2)/2

)ν12−(ν1+ν2)/end

.

Apanasovich et al. (2012) proved a more general result than Theorem S5, where the smooth-

ness parameter in the cross-covariance function of two processes can be greater than or equal

to the average of the smoothness parameters in the covariance functions of the corresponding

two marginal processes, as opposed to the equality condition in Theorem S5.

Theorem S8 (Apanasovich et al., 2012, Theorem 1) The Matérn model (S7) provides a

valid structure if there exists ∆A such that

i) νij − νi+νj
2

= ∆A(1 − Aij), i, j = 1, . . . , p, where 0 ≤ Aij ≤ 1 form a valid correlation

matrix.

ii) The collection −a2
ij, i, j = 1, . . . , p form a conditional non-negative definite matrix. In

other words, let M be the matrix formed by −a2
ij, i, j = 1, . . . , p. Then xTMx ≥ 0 for

all x ∈ Rp such that
∑p

i=1 xi = 0.

iii) The collection,

ρijσiσja
2∆A+νi+νj
ij

Γ(νij + d
2
)

Γ(
νi+νj

2
+ d

2
)Γ(νij)

, i, j = 1, . . . , p,

form a non-negative definite matrix.

13



Condition (i) in Theorem S8 implies νij ≥ (νi + νj) since we must have ∆A(1 − Aij) ≥ 0.

Examples of a collection of {aij}pi,j=1 that satisfy condition (ii) include a2
ij = (a2

i + a2
j)/2 +

τ(ai − aj)
2, 0 ≤ τ ≤ ∞ and aij = max{ai, aj} (see Apanasovich et al., 2012). In other

words, Theorem S8 relaxes the restrictions on the smoothness parameters and the scale

parameters in Theorem S5. However, as noted in Apanasovich et al. (2012), the constraints

on the co-locational correlation coefficients ρij, i, j = 1, . . . , p, still seem unavoidable. These

constraints, i.e., condition (iii) in Theorem S8, can be reformulated in terms of upper bounds

on ρij, which depend on how much the smoothness and scale parameters deviate from the

corresponding parameters of the two marginal processes:

ρ2
ij ≤

3∏
k=1

τ
(k)
ij ≤ 1, i, j = 1, . . . , p,

τ
(1)
ij =

B
(
νij,

d
2

)2

B
(νi+νj

2
, d

2

)2 , τ
(2)
ij =

(
aiaj
a2
ij

)2∆A

,

and τ
(3)
ij =

Γ
(νi+νj

2

)2

Γ(νi)Γ(νj)

a2νi
i a

2νj
j

a
2(νi+νj)
ij

,

where B(·, ·) is the Beta function. See Apanasovich et al. (2012) for the proof. One implica-

tion of Theorems S5, S7 and S8 is that we need to place more stringent restrictions on the

smoothness and scale parameters in the Matérn correlation functions in order to relax the

constraints on the co-locational correlation parameters ρij, 1 ≤ i 6= j ≤ p. In particular,

in Theorem S7, if all the smoothness parameters are equal and so are the scale parameters,

then the restriction on ρ12 is no longer needed.

S3 A review of the linear model of co-regionalization

The linear model of co-regionalization (LMC) (Goulard and Voltz, 1992; Wackernagel, 2003;

Schmidt and Gelfand, 2003; Zhang, 2007) is commonly used approach for obtaining valid

covariance structure for multivariate spatial processes. The LMC expresses a p-dimensional

multivariate process U(s) as a linear combination of r (1 ≤ r ≤ p) independent spatial

14



processes W (s) = (w1(s), . . . , wr(s))T , i.e.,

U(s) = AW (s),

where A is a p× r full-rank coefficient matrix and wk(s) has zero mean, unit variance and

stationary correlation function ρk(h) for 1 ≤ k ≤ r . The cross-covariance matrix Σ of U(s)

is thus given by

Σ = AΘ(h)AT ,

where Θ(h) = diag{ρ1(h), . . . , ρr(h)}.

S4 A further discussion of parameterization of the cor-

relation and covariance functions

We have discussed several possible choices for the correlation functions ρα(h), ρε(h) and

ρc(h), but the question remains what restrictions we should embrace in practice. In addition

to the modeling flexibility afforded by the assumptions on the correlation functions, we also

need to consider the practicality of the model fitting procedures. As the marginal distribution

is the same regardless of the choice of the correlation functions, we suggest the following two

options that can make the model fitting elegantly tractable while, as the same time, still

provide enough flexibility in the covariance structure.

1. As mentioned previously, in the Matérn model (S7), the constraint on % depends on

how much the smoothness and scale parameters of the cross-correlation function deviate

from the corresponding parameters of the two marginal processes. Since a major feature

of the HASP model is the ability to capture skewness in the process which depends on

the co-locational correlation parameter %, it is undesirable for us to place constraints

on %.

According to Theorem S7, we can remove the restriction on % by requiring both

the α(s) and ε(s) processes have the same degree of smoothness, i.e., ν1 = ν2. In other
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words, there is no restriction on % for the HASP model if we require

ρα(h) = ρc(h) = ρε(h) = %(h). (S8)

In fact, it is easy to see that we can use any correlation function, not just Matérn

functions, for %(h) and the bivariate Gaussian process is always valid. For h = s− s′,

the covariance function is

cov(Z(s), Z(s′)) =

[
%(h) +

τ 2%2

4
(1 + %(h))2

]
exp

{
τ 2

4
(1 + %(h))

}
− 1

4
τ 2%2eτ

2/4.

(S9)

Under the assumption (S8), the three models (3), (8) and (9) are also equivalent to

each other. The condition (S8) appears to be very restrictive, but as we have learned

from our previous discussion, all the parameters in the covariance function, even in the

more restrictive Gaussian process, cannot be consistently estimated at the same time

(Zhang, 2004). In the case of the exponential covariance function, σ2 exp(−ah), either

a or σ2 can be fixed arbitrarily and the composite quantity aσ2 can still be estimated

consistently and efficiently (Ying, 1991). As a result, the assumption (S8) might not

be as restrictive as it seems and its impact on the model performance should be very

limited.

2. A more flexible model is the LMC version (9). (9) is easier to work with than (8)

since conditioning on a(s), Y (s) is a Gaussian process. Regardless of the choice of

correlation functions ρα(h) and ρξ(h), the model is always valid by construction. The

covariance function of (9) is given by:

cov(Z(s), Z(s′)) =

[
%2ρα(h) + (1− %2)ρξ(h) +

τ 2%2

4
(1 + ρα(h))2

]
×

exp

{
τ 2

4
(1 + ρα(h))

}
− 1

4
τ 2%2eτ

2/4. (S10)

Plots of the two covariances are presented below to facilitate the understanding of their be-

haviors and differences. Figure S2 shows the covariance function (S9) for difference choices

16



0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(i)  Exponential − Changing τ

h

τ = 0
τ = 1
τ = 3
τ = 5

ρ = 0.5
λ = 1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(ii) Exponential − Changing λ

h

λ = 1
λ = 2
λ = 5
λ = 10

ρ = 0.5
τ = 1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(iii) Exponential − Changing ρ

h

ρ = 0
ρ = 0.9

λ = 1
τ = 1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(iv)  Gaussian − Changing τ

h

τ = 0
τ = 1
τ = 3
τ = 5

ρ = 0.5
λ = 1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(v) Gaussian − Changing λ

h

λ = 1
λ = 2
λ = 5
λ = 10

ρ = 0.5
τ = 1

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(vi) Gaussian −  Changing ρ

h

ρ = 0
ρ = 0.9

λ = 1
τ = 1

Figure S2: The shape of the correlation function implied by (S9) for different choices of %(h).

Plot (i)–(iii) use the exponential correlation function for %(h), while plots (iv)–(vi) use the

Gaussian correlation function. The values of the other parameters are shown in the plots.
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Figure S3: The shape of the correlation function implied by (S10) where ρα(h) assumes the

form of a Gaussian correlation function and ρξ(h) the form of an exponential correlation

function. The values of the other parameters are shown in the plots.
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of %(h) and different values of other parameters. The exponential correlation function is

used in plots (i)–(iii), i.e, %(h) = exp(−λh). In plots (iv)–(vi) in Figure S2, the Gaussian

correlation function is used, thus %(h) = exp(−λh2). The Gaussian (or double exponential)

correlation function is chosen because it is the limit of the Matérn class (S6) as ν → ∞.

The most important difference between a Gaussian correlation function and an exponential

correlation function is the smoothness of the functions at the origin h = 0, which, in turn,

determines the smoothness of the sample paths of the resulting spatial processes. For spa-

tial prediction problems, the smoothness of a correlation function at the origin is of great

importance. Stein (1999) argued that the smoothness of the sample path is equivalent to

the rate of decay of the spectral density of the correlation function at high frequencies, and

under infill asymptotics, the low frequency behavior of the spectral density has asymptot-

ically negligible impact on spatial interpolation, while the high frequency behavior plays a

pivotal role.

Figure S2 shows that the co-locational correlation parameter % has little impact on the

covariance function, while it has a big impact on the marginal distribution of the spatial

process as can be seen in Figure S1. In addition, both τ and λ impact the covariance

function in a similar fashion.

Due to the additional parameters, the covariance function (S10) is more flexible than (S9),

which can be clearly seen in Figure S3. The plots in Figure S3 are based on the assumptions

that ρα(h) takes the form of an exponential correlation function exp(−λh), and that ρξ(h)

takes the form of a Gaussian correlation function exp(−κh2) so that the process α(s) has

a smoother sample path than ε(s). Same as in Figure S2, the impact of different values of

% on the shape of the covariance function in Figure S3 is not as large as the impacts of τ

and λ. However, the smoothness of the covariance function at h = 0 as well as its effective

correlation length does depend partially on %. These impacts of % are in a large part due to

the relation

ρε(h) = %2ρα(h) + (1− %2)ρξ(h).

The parameters τ and λ also have similar effects on the covariance function, suggesting that
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the consistent estimation of both parameters simultaneously might still be a problem.

It is ultimately up to the researcher to decide which of the above two strategies to choose.

The covariance function (S10) is certainly more flexible than (S9) but in practice, we do not

always have enough data to efficiently estimate it. When the data is not abundant or we

have no need to estimate the smoothness of the underlying process by using a very general

covariance function, the more restricted strategy (S9) might be a better choice. On the other

hand, the model fitting procedures for these two strategies are very similar.

S5 Example HASP sample paths

Here we present several realizations from the heteroscedastic asymmetric spatial process and

compare them with realizations from the SHP and the Gaussian process (GP). Figure S4 and

S5 show the sample paths of the processes defined in R, and the examples for the processes

defined on R2 are presented in Figures S6 and S7. For Figures S4 and S6, an exponential

function is used as the correlation and cross correlation functions of the (potentially latent)

Gaussian processes, whereas a Gaussian correlation function is used for Figures S5 and S7.

As discussed earlier, the sample path of a Gaussian process with a Gaussian correlation func-

tion is smoother than that with an exponential correlation function, which can be clearly

seen from the plots. From the time series literature, we know that a stationary and Markov

Gaussian process defined on R+ with a continuous correlation function is necessarily an

Orstein-Uhlenbeck process, which is the unique stationary solution to the differential equa-

tion

dXt = θ(µ−Xt)dt+ σdWt, t ≥ 0,

where {Wt, t ≥ 0} is a Brownian motion with unit variance (see Uhlenbeck and Ornstein,

1930; Doob, 1942). The Orstein-Uhlenbeck process has a stationary and isotropic exponen-

tial correlation function and its Euler-Maruyama discretization is the discrete-time AR(1)

process. In addition, the sample path of an Orstein-Uhlenbeck process is continuous but
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nowhere differentiable with probability 1.

Apart from the discrepancies in the smoothness of the sample paths caused by different cor-

relation functions, we can also recognize the unique features of the curves or surfaces drawn

from the non-Gaussian processes compared to those drawn from the Gaussian processes

(which is set to have zero mean and unit variance). In Figures S4–S7, the curves or surfaces

drawn from a Gaussian process mostly vary within −2 and 2. When we modulate the said

Gaussian process with an independent exponential-Gaussian process and get the GLG/SHP

model, the resulting sample paths end up with more fluctuations in terms of the ranges of the

functions over the entire domain. Furthermore, when we correlate the Gaussian process and

the modulating exponential-Gaussian process, i.e., for the HASP with positive or negative

skewness, the curves or surfaces draw from the processes can have an even larger swing in

one direction. This suggests that the HASP model (with SHP as a special case) is useful in

modeling spatially indexed data when the underlying curve or surface has marked peaks or

valleys which, if modeled by the Gaussian processes, might be overly shrunken toward the

overall mean.

S6 An MCMC algorithm for fitting the HASP model

Let θ denote all model parameters other than α, i.e., θ = {β, φ, ψ2, τ 2, λ, κ, δ̃}. For a single

iteration in the MCMC algorithm, we simulate from the posterior distribution using the

following steps.

1. Update the latent variables α either one-by-one or through a block update as in Pala-

cios and Steel (2006). One approach is to use a random walk Metropolis-Hastings step.

Alternatively, we can consider a better proposal distribution by using techniques such

as approximating the full conditional distribution as was done in Palacios and Steel

(2006) or using the Metropolis-adjusted Langevin algorithm (Grenander and Miller,
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Figure S4: Five sample paths from each of the four spatial processes in R: GP, GLG/SHP,

HASP with positive skewness and HASP with negative skewness. An exponential correlation

function is used for the GP. For the non-Gaussian processes, the same exponential correlation

function is used for the marginal as well as the cross correlation functions of the latent

multivariate Gaussian process. The sample paths for different processes bear resemblance to

each other because the same seed is used for random number generation for easier comparison

of the different processes. The sample paths are approximated based on a finite number of

observations on a grid with an increment of 0.1.
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Figure S5: Five sample paths from each of the four spatial processes in R: GP, GLG/SHP,

HASP with positive skewness and HASP with negative skewness. A Gaussian (or double

exponential) correlation function is used for the GP. For the non-Gaussian processes, the

same Gaussian correlation function is used for the marginal as well as cross correlation

functions of the latent multivariate Gaussian process. The sample paths are constructed in

the same way as in Figure S4.
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Figure S6: Five sample paths from each of the four spatial processes in R2: GP, GLG/SHP,

HASP with positive skewness and HASP with negative skewness. An exponential correlation

function is used for the GP. For the non-Gaussian processes, the same exponential corre-

lation function is used for the marginal as well as cross correlation functions of the latent

multivariate Gaussian process. Again, the sample paths for different processes bear resem-

blance to each other because the same seed is used for random number generation for easier

comparison of the different processes. The sample paths are approximated based on a finite

number of observations on a rectangular grid with an increment of 0.1 in each direction.
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Figure S7: Five sample paths from each of the four spatial processes in R2: GP, GLG/SHP,

HASP with positive skewness and HASP with negative skewness. A Gaussian correlation

function is used for the GP. For the non-Gaussian processes, the same Gaussian correlation

function is used for the marginal as well as cross correlation functions of the latent multi-

variate Gaussian process. The sample paths are constructed in the same way as in Figure

S6.
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1994; Roberts and Tweedie, 1996). The full conditional distribution of α is given by

p(α|Y ,θ)

∝ |V α|−1 exp

{
− 1

2ψ2
[V −1

α Ṽ
−1

δ (Y −Xβ)− φα]T ×

Ξ−1[V −1
α Ṽ

−1

δ (Y −Xβ)− φα]
}

exp

{
− 1

2τ 2
αT (s)P−1α

}
.

Let Y φ = Ṽ
−1

δ (Y −Xβ) and C be a constant in α, then

log p(α|Y ,θ)

= C − 1

2

n∑
k=1

α(sk)−
1

2ψ2

[
(V −1

α Y φ)TΞ−1(V −1
α Y φ)− 2φαTΞ−1(V −1

α Y φ)
]

− 1

2
αT
[
φ2

ψ2
Ξ−1 +

1

τ 2
P−1

]
α

= C − 1

2

n∑
k=1

α(sk)−
1

2ψ2

[
(V −1

α Y φ − 2φα)TΞ−1(V −1
α Y φ)

]
− 1

2
αT
[
φ2

ψ2
Ξ−1 +

1

τ 2
P−1

]
α. (S11)

We use the Metropolis-adjusted Langevin algorithm (MALA) algorithm to sequentially

update the components of α. For k = 1, · · · , n, let lt(α(sk)) denote the full conditional

log likelihood function of α(sk) (up to a constant in α(sk)) evaluated at the most recent

draws of all other model parameters in iteration t. Then,

(a) Given the samples of α(sk) in the iteration t−1, α[t−1](sk), draw a sample α∗(sk)

from the proposal distribution

N

(
α[t−1](sk) +

ς2
0

2
∇lt(α[t−1](sk)), ς

2
0

)
,

where ς0 is a user-defined tuning parameter.

(b) Calculate the ratio e∆t where

∆t =

{
lt(α

∗(sk))−
1

2ς2
0

[
α[t−1](sk)− α∗(sk)−

ς2
0

2
∇lt(α∗(sk))

]2
}

−

{
lt(α

[t−1](sk))−
1

2ς2
0

[
α∗(sk)− α[t−1](sk)−

ς2
0

2
∇lt(α[t−1](sk))

]2
}
.
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(c) Set α[t](sk) = α∗(sk) with probability min(1, e∆t). Otherwise, set α[t](sk) =

α[t−1](sk) .

A simpler form of the full conditional log likelihood function of α(sk), k = 1, . . . , n,

can be derived from (S11), as is shown below (with subscript t omitted for simplicity).

For convenience, let

Ω = Ξ−1 and Λ =
φ2

ψ2
Ξ−1 +

1

τ 2
P−1.

Now let Ωi and Λi denote the i-th column vector of Ω and Λ, respectively. Since Ω

and Λ are both symmetric, ΩT
i and ΛT

i are thus their respective i-th row vectors. In

addition, let Ωij and Λij denote the (i, j)th elements of the respective matrices. Finally,

let W−1
α = (eα(−s1)/2, · · · , e−α(sn)/2)T and let Ck be a scalar that does not depend on

α(sk). Ignoring the terms in (S11) that do not contain α(sk), we have

l(α(sk)) = Ck −
1

2
α(sk)−

1

2ψ2

{[
e−α(sk)/2Yφk − 2φα(sk)

]
Ωk · (W−1

α ◦ Y φ)

+
[
e−α(sk)/2Yφk

]
Ωk · (W−1

α ◦ Y φ − 2φα)

−
[
e−α(sk)/2Yφk − 2φα(sk)

]
Ωkk

[
e−α(sk)/2Yφk

]}
− 1

2

{
2α(sk)Λk ·α− α(sk)

2Λkk

}
.

To calculate the gradient of l(α(sk)), we can use the following general result.

Lemma S9 Let ω be a p×1 column vector and M be a p×p symmetric matrix whose

k-th column vector is denoted as M k. Let g and h be two differentiable functions,

defined as

f, g : R→ R;

f(ω) = (f(ω1), . . . , f(ωp))
T ;

g(ω) = (g(ω1), . . . , g(ωp))
T .
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Then, for k = 1, . . . , p, we have

∂

∂ωk
fT (ω)Mg(ω) = f ′(ωk)M k · g(ω) + g′(ωk)M k · f(ω).

The proof is trivial, which involves expanding fT (ω)Mg(ω) into a quadratic form and

then applying basic calculus rules. By Lemma S9 and (S11), the gradient of l(α(sk))

is given by

∇l(α(sk)) =
∂

∂α(sk)
l(α(sk))

= −1

2
− 1

2ψ2

{[
−1

2
e−α(sk)/2Yφk − 2φ

]
Ωk · (W−1

α ◦ Y φ)

+

[
−1

2
e−α(sk)/2Yφk

]
Ωk · (W−1

α ◦ Y φ − 2φα)

}
−Λk ·α.

2. Update β and φ from a multivariate normal full conditional distribution. Let X∗ =

[X W̃ ◦ α], D = (X∗TX∗)−1X∗T and SD = ψ2DṼ ΞṼ DT . We assume the prior

distribution for [β φ]T is multivariate normal with mean m0 and covariance matrix

S0, N(m0,S0), then the full conditional for [β φ]T is

[β φ]T |Y (θ),α, δ̃, κ, ψ2 ∼ N(m1,S1),

where

S1 = (S−1
0 + S−1

D )−1 = S0(S0 + SD)−1SD = SD(S0 + SD)−1S0,

and m1 = (S−1
0 + S−1

D )−1(S−1
0 m0 + S−1

D DY )

= SD(S0 + SD)−1m0 + S0(S0 + SD)−1DY .

3. Update the variance parameters τ 2 and ψ2 from their full conditional distribution.

We consider independent conjugate inverse gamma priors for τ 2 and ψ2. Since the

parameters τ 2 and λ have similar effects on the covariance function of the HASP process

as illustrated in Figure S2, it might be desirable that we use a highly informative prior

for at least one of the two parameters.
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Suppose the prior for τ 2 is IG(a0, b0) and the prior for ψ2 is IG(c0, d0), then their

full conditional distributions are given, respectively, by

IG(a0 + 0.5n, b0 + 0.5αT (s)P−1α),

and

IG(c0 + 0.5n, d0 + 0.5Y ∗T (s)(Ṽ ΞṼ )−1Y ∗(s)),

where

Y ∗(s) = Y −Xβ − φṼ α.

4. Update λ and κ from its full conditional distribution using a Metropolis-Hastings step.

The full conditional distribution for λ is

π(λ|Y ,α, φ, ψ2, τ 2,β, δ̃) ∝ |P |−1/2 exp

{
− 1

2τ 2
αT (s)P−1α

}
π(λ),

while the full conditional distribution for κ is given by

π(κ|Y ,α, φ, ψ2, τ 2,β, δ̃) ∝ |Ξ|−1/2 exp

{
− 1

2ψ2
Y ∗T (s)(Ṽ ΞṼ )−1Y ∗(s)

}
π(κ).

In the equations above, π(λ) and π(κ) denotes the probability density functions of the

prior distributions of λ and κ, respectively. In practice, we can choose an exponential

distribution, a gamma distribution or other distributions with positive support as the

prior distributions. In our implementation, a truncated normal distribution is used as

the proposal distribution in the Metropolis-Hastings algorithm.

5. Update δ̃ from its full conditional distribution using a Metropolis-Hastings step. De-

pending on model assumptions, δ̃ could be univariate, multivariate or even not needed

in the model (when the original parameter δ is univariate). We use a (potentially mul-

tivariate) normal distribution with mean m̃0 and covariance matrix S̃0 as the prior for
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δ̃. The full conditional distribution of δ̃ is thus

π(δ̃|Y ,α, φ, ψ2, τ 2,β, κ)

∝|Ṽ |−1 exp

{
− 1

2ψ2
Y ∗T (s)(Ṽ ΞṼ )−1Y ∗(s)

}
exp

{
−1

2
(δ̃ − m̃0)T S̃

−1

0 (δ̃ − m̃0)

}
∝|Ṽ δ|−1 exp

{
− 1

2ψ2
[Ṽ
−1

δ V
−1
α (Y −Xβ)T − φαT (s)] ×Ξ−1 ×

[Ṽ
−1

δ V
−1
α (Y −Xβ)− φα]

}
exp

{
−1

2
(δ̃ − m̃0)T S̃

−1

0 (δ̃ − m̃0)

}
.

S7 Spatial Prediction

The objective of many spatial smoothing problems is to make predictions of the spatial

process at unobserved locations. In other words, we need to calculate E[Y (s0)|Y ] for s0 ∈ D

as well as understand the uncertainty associated with this prediction. The commonly used

kriging estimator is essentially a linear predictor based on a weighted average of the observed

values, where the weights depend on the known or estimated covariance structure of the

spatial process (see, e.g. Cressie, 1993). Under the Bayesian framework where we use a

MCMC to sample from the posterior distribution, the spatial prediction problem becomes

drawing samples from the predictive distribution p(Y (s0)|Y ). Based on these samples, we

can estimate the mean E[Y (s0)|Y ] and evaluate other properties of p(Y (s0)|Y ), such as the

spread, skewness, percentiles, etc.

In the context of making spatial predictions based on the HASP model, we need to simulate

from the predictive distribution

p(Y (s0)|Y ) =

∫
p(Y (s0)|Y ,α,θ)p(α,θ|Y ) dα dθ. (S12)

We present two strategies to sample from this predictive distribution. The first approach

relies on the original parameterization of the HASP model (3) and is applicable for any

choice of the correlation functions. Note that Y (s0) can be computed deterministically

given a sample of α(s0), ε(s0) and θ from the conditional distribution p(α(s0), ε(s0),θ|Y ).
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At the same time, note that sampling from p(α(s0), ε(s0),θ|Y ) is straightforward given the

following result:

p(α(s0), ε(s0),θ|Y ) =

∫
p(α(s0), ε(s0)|Y ,α,θ)p(α,θ|Y )dα

=

∫
p(α(s0), ε(s0)|α, ε,θ)p(α,θ|Y )dα, (S13)

where p(α(s0), ε(s0)|α, ε,θ) is a multivariate normal distribution, which can be easily ob-

tained from the joint multivariate normal distribution p(α(s0), ε(s0),α, ε|θ). The second

equality in (S13) holds because the sigma field generated by (Y ,α,θ) satisfies

σ{Y ,α,θ} = σ{Y ,α, ε,θ} = σ{α, ε,θ}.

Therefore, we propose the following strategy to draw samples from the predictive distribution

of Y (s0)|Y within the MCMC algorithm for model fitting.

1. In each MCMC iteration t, record the posterior samples of α and θ as α[t] and θ[t].

Calculate ε(si)
[t] for i = 1, . . . , n from

ε(si)
[t] = exp

{
−H

T (si)δ
[t] + α(si)

[t]

2

}(
Y (si)−XT (si)β

[t]
)
.

2. Given α[t], ε[t] and θ[t], draw a sample of α(s0)[t], ε(s0)[t] from the conditional distribu-

tion p(α(s0), ε(s0),θ|Y ).

3. Compute Y (s0)[t] according to

Y (s0)[t] = XT (s0)β[t] + exp

{
HT (s0)δ[t] + α(s0)[t]

2

}
ε(s0)[t].

Then Y (s0)[t] is a sample from the predictive distribution p(Y (s0)|Y ).

Our second approach works specifically for the two strategies detailed in Section S4. As

discussed previously, strategy I is essentially a special case of strategy II when Ξ = P .
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Therefore, we will use the equation (9) to demonstrate the process to simulate from the

predictive distribution. Let ξ = (ξ(s1), . . . , ξ(sn))T . Then the equation (S13) becomes

p(α(s0), ξ(s0),θ|) =

∫
p(α(s0), ξ(s0)|Y ,α,θ)p(α,θ|Y )dα

=

∫
p(α(s0), ξ(s0)|α, ξ,θ)p(α,θ|Y )dα,

=

∫
p(α(s0)|α,θ)p(ξ(s0)|ξ,θ)p(α,θ|Y )dα. (S14)

As before, the second equality in (S14) holds because the sigma field generated by (Y ,α,θ)

satisfies

σ{Y ,α,θ} = σ{Y ,α, ξ,θ} = σ{α, ξ,θ},

and the third equality follows from the independence of the processes α(s) and ξ(s), s ∈ D.

The Resulting procedure for sampling from p(Y (s0)|Y ) is as follows.

1. In each MCMC iteration t, record the posterior samples of α and θ as α[t] and θ[t].

Calculate ξ(si)
[t] for i = 1, . . . , n from

ξ(si)
[t] =

(
ψ[t]
)−1×[

exp

{
−H

T (si)δ̃
[t]

+ α(si)
[t]

2

}(
Y (si)−XT (si)β

[t]
)
− φ[t]α(si)

[t]

]
.

2. Given α[t], ξ[t] and θ[t], draw a sample of α(s0)[t], ξ(s0)[t] from the conditional distri-

bution p(α(s0), ξ(s0),θ|Y ). According to (S14), this can be further broken down into

two steps.

(a) Draw α(s0)[t] from the normal distribution p(α(s0)|α[t],θ[t]) which is given by

N
(

(P
[t]
0 )T (P [t])−1α[t], (τ 2)[t]

[
P

[t]
00 − (P

[t]
0 )T (P [t])−1P

[t]
0

])
,

where P
[t]
00 = 1 and P

[t]
0 is a column vector whose i-th element is given by ρα(‖s0−

si‖;λ[t]).
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(b) Draw ξ(s0)[t] from the normal distribution p(ξ(s0)|ξ(s)[t],θ[t]) given by

N
(

(Ξ
[t]
0 )T (Ξ[t])−1α[t],

[
Ξ

[t]
00 − (Ξ

[t]
0 )T (Ξ[t])−1Ξ

[t]
0

])
,

where Ξ
[t]
00 = 1 and Ξ

[t]
0 is a column vector whose i-th element is given by ρα(‖s0−

si‖;κ[t]).

3. Compute Y (s0)[t] according to

Y (s0) = XT (s0)β[t] + φ[t] exp

{
HT (s0)δ̃

[t]
+ α(s0)[t]

2

}
α(s0)[t]

+ ψ[t] exp

{
HT (s0)δ̃

[t]
+ α(s0)[t]

2

}
ξ(s0)[t].

Then Y (s0)[t] is a sample from the predictive distribution p(Y (s0)|Y ).
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