Supplemental material for

"Space-time modeling of trends in temperature series"

Peter F. Craigmile
Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
pfc@stat.osu.edu
Peter Guttorp
Department of Statistics, University of Washington, Seattle, WA 98105, USA
Norwegian Computing Center, Oslo, Norway
peter@stat.washington.edu

A. The full vectorized wavelet-based model

Let $\boldsymbol{s}_{k}(k=1, \ldots, K)$ denote the locations of the $K=17$ temperature series. At each location k we observe $M\left(\boldsymbol{s}_{k}\right)$ temperature values $\boldsymbol{z}\left(\boldsymbol{s}_{k}\right)=\left(z_{1}\left(\boldsymbol{s}_{k}\right), \ldots, z_{M\left(\boldsymbol{s}_{k}\right)}\left(\boldsymbol{s}_{k}\right)\right)^{T}$ drawn from the $M\left(\boldsymbol{s}_{k}\right)$-variate random vector (RV) $\boldsymbol{Z}(\boldsymbol{s})$. Suppose at location k that these observations correspond to times $T_{t}\left(s_{k}\right)$, for $t=1, \ldots, M\left(s_{k}\right)$.

Since all sampling in the MCMC algorithm is performed on the wavelet domain, for each k let $\boldsymbol{W}_{Z}\left(\boldsymbol{s}_{k}\right)$ denote the vector of wavelet and scaling coefficients of the wavelet transform of $\boldsymbol{Z}\left(s_{k}\right)$ analyzed to level J_{μ}, and partitioned as (5) of the main article. Similarly at each location k let $\boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{k}\right)$ denote the coefficients of the wavelet transform of the trend $\left\{\mu_{t}\left(\boldsymbol{s}_{k}\right)\right\}$, $\boldsymbol{W}_{\psi}\left(\boldsymbol{s}_{k}\right)$ denote the coefficients of the wavelet transform of the seasonality $\left\{\psi_{t}\left(\boldsymbol{s}_{k}\right)\right\}$, and $\boldsymbol{W}_{\zeta}\left(\boldsymbol{s}_{k}\right)$ denote the coefficients of the wavelet transform of the noise $\left\{\zeta_{t}\left(\boldsymbol{s}_{k}\right)\right\}$. In our model the latent temperature process is $\left\{Y_{t}(\boldsymbol{s})\right\}$. Let $\boldsymbol{Y}\left(\boldsymbol{s}_{k}\right)$ denote this process at location \boldsymbol{s}_{k} evaluated at the same $M\left(\boldsymbol{s}_{k}\right)$ times point as $\boldsymbol{Z}\left(\boldsymbol{s}_{k}\right)$, and let $\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right)$ denote the coefficients
of its wavelet transform.
Transformed into the wavelet domain, our model for $\left\{\boldsymbol{W}_{Z}\left(\boldsymbol{s}_{k}\right): k=1, \ldots, K\right\}$ is that

$$
\boldsymbol{W}_{Z}\left(\boldsymbol{s}_{k}\right) \mid \boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right), \sigma_{\epsilon}^{2} \sim N_{M\left(\boldsymbol{s}_{k}\right)}\left(\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right), \sigma_{\epsilon}^{2} \boldsymbol{I}\right)
$$

independently for $k=1, \ldots, K$, where \boldsymbol{I} is the identity matrix. For each k, let $\boldsymbol{D}\left(\boldsymbol{s}_{k}\right)=$ $\boldsymbol{D}\left(\delta\left(\boldsymbol{s}_{k}\right),\left\{\alpha_{l}\left(\boldsymbol{s}_{k}\right)\right\},\left\{\theta_{l}\left(\boldsymbol{s}_{k}\right)\right\}\right)$ be the diagonal matrix of wavelet variances of the wavelet and scaling coefficients, as discussed in Section 5.1 of the main article. Then our model for $\left\{\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right): k=1, \ldots, K\right\}$ is

$$
\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right) \mid \boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{k}\right), \boldsymbol{W}_{\psi}\left(\boldsymbol{s}_{k}\right), \boldsymbol{D}\left(\boldsymbol{s}_{k}\right) \sim N_{M\left(\boldsymbol{s}_{k}\right)}\left(\boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{k}\right)+\boldsymbol{W}_{\psi}\left(\boldsymbol{s}_{k}\right), \boldsymbol{D}\left(\boldsymbol{s}_{k}\right)\right)
$$

independently for $k=1, \ldots, K$.
The model for the trend component assumes a space-time process $\left\{V_{\tau}(\boldsymbol{s})\right\}$ for the scaling coefficients of the trend. Letting $\boldsymbol{V}\left(\boldsymbol{s}_{k}\right)$ denote this process collected in a $M_{J_{\mu}}\left(\boldsymbol{s}_{k}\right)$-variate random vector at location k this implies that

$$
\boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{k}\right)=\left(\mathbf{0}_{M_{1}\left(\boldsymbol{s}_{k}\right)}, \ldots, \mathbf{0}_{M_{J_{\mu}}\left(\boldsymbol{s}_{k}\right)}, \boldsymbol{V}\left(\boldsymbol{s}_{k}\right)\right)^{T}
$$

where $M_{j}\left(\boldsymbol{s}_{k}\right)=M\left(\boldsymbol{s}_{k}\right) / 2^{j}$ denotes the number of wavelet coefficients at level j and location k. Letting 1 denote a vector of ones, we assume that $\boldsymbol{V}=\left(\boldsymbol{V}\left(\boldsymbol{s}_{1}\right), \ldots, \boldsymbol{V}\left(\boldsymbol{s}_{K}\right)\right)$ is jointly Gaussian with mean $\mathbf{1} \lambda$ and space-time covariance matrix $\boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}, \phi_{v}\right)$ with the elements of the matrix defined by equation (9) of the main article.

At each location k we let $\boldsymbol{X}_{\psi}\left(\boldsymbol{s}_{k}\right)$ denote the $M\left(\boldsymbol{s}_{k}\right) \times 2$ design matrix that has a first column that is the wavelet transform of $\left\{\sin \left(2 \pi T_{t}\left(\boldsymbol{s}_{k}\right) / 365.25\right)\right\}$, and a second column that is the wavelet transform of $\left\{\cos \left(2 \pi T_{t}\left(\boldsymbol{s}_{k}\right) / 365.25\right)\right\}$. Then

$$
\boldsymbol{W}_{\psi}\left(\boldsymbol{s}_{k}\right)=\boldsymbol{X}_{\psi}\left(\boldsymbol{s}_{k}\right) \gamma\left(\boldsymbol{s}_{k}\right),
$$

where $\gamma\left(\boldsymbol{s}_{k}\right)=\left(\gamma_{1}\left(\boldsymbol{s}_{k}\right), \gamma_{2}\left(\boldsymbol{s}_{k}\right)\right)^{T}$. Let $\boldsymbol{E}\left(\omega_{\gamma_{1}}, \theta_{\gamma_{1}}\right)$ denote the exponential covariance matrix implied by equation (9) over the K spatial locations. We assume mutual independence between $\gamma_{j}=\left(\gamma_{j}\left(\boldsymbol{s}_{1}\right), \ldots, \gamma_{j}\left(\boldsymbol{s}_{K}\right)\right)^{T} \sim N_{K}\left(\mathbf{1} \mu_{\gamma_{j}}, \boldsymbol{E}\left(\omega_{\gamma_{j}}, \theta_{\gamma_{j}}\right)\right)$, for $j=1$ and $j=2$.

Figure 1: The prior probability density function for the median of $\{\delta(\boldsymbol{s})\}$.

We complete the model by assuming that the following are all mutually independent:

$$
\begin{aligned}
\boldsymbol{\alpha}_{j} & =\left(\alpha_{j}\left(\boldsymbol{s}_{1}\right), \ldots, \alpha_{j}\left(\boldsymbol{s}_{K}\right)\right)^{T} \sim N_{K}\left(\mathbf{1} \mu_{\alpha_{j}}, \boldsymbol{E}\left(\omega_{\alpha_{j}}, \theta_{\alpha_{j}}\right)\right), \quad j=0, \ldots, 4 \\
\boldsymbol{\kappa} & =\left(\kappa\left(\boldsymbol{s}_{1}\right), \ldots, \kappa\left(\boldsymbol{s}_{K}\right)\right)^{T} \sim N_{K}\left(\mathbf{1} \mu_{\kappa}, \boldsymbol{E}\left(\omega_{\kappa}, \theta_{\kappa}\right)\right) ; \\
\boldsymbol{\theta}_{j} & =\left(\theta_{j}\left(\boldsymbol{s}_{1}\right), \ldots, \theta_{j}\left(\boldsymbol{s}_{K}\right)\right)^{T} \sim N_{K}\left(\mathbf{1} \mu_{\theta_{j}}, \boldsymbol{E}\left(\omega_{\theta_{j}}, \theta_{\theta_{j}}\right)\right), \quad j=1, \ldots, p,
\end{aligned}
$$

where $\boldsymbol{E}\left(\omega_{\kappa}, \theta_{\kappa}\right),\left\{\boldsymbol{E}\left(\omega_{\alpha_{j}}, \theta_{\alpha_{j}}\right)\right\}$, and $\left\{\boldsymbol{E}\left(\omega_{\theta_{j}}, \theta_{\theta_{j}}\right)\right\}$ are all exponential covariance matrices parameterized in a similar fashion to (9) of the main article, but evaluated at different hyperparameter values.

All remaining priors are mutually independent and defined in Table 1 of the main article. To illustrate the prior weight that we place on the long memory spatial process, Figure 1 displays the prior probability density function for the median of δ (the transformation of μ_{κ} from the $\{\kappa(\boldsymbol{s})\}$ scale to the $\{\delta(\boldsymbol{s})\}$ scale).

B. The MCMC algorithm

Where appropriate we use sparse matrix calculations in practice.

Sampling the latent temperature process

At each location k, we draw $\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right)$ from $N_{M\left(\boldsymbol{s}_{k}\right)}\left(\boldsymbol{P}^{-1} \boldsymbol{m}, \boldsymbol{P}^{-1}\right)$, with

$$
\boldsymbol{m}=\boldsymbol{w}_{z}\left(\boldsymbol{s}_{k}\right) / \sigma_{\epsilon}^{2}+\boldsymbol{D}\left(\boldsymbol{s}_{k}\right)^{-1}\left(\boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{k}\right)+\boldsymbol{W}_{\psi}\left(\boldsymbol{s}_{k}\right)\right), \quad \text { and } \quad \boldsymbol{P}=\boldsymbol{D}\left(\boldsymbol{s}_{k}\right)^{-1}+\sigma_{\epsilon}^{-2} \boldsymbol{I}
$$

Sampling the parameters characterizing the trend

Let $M_{\mu}=\sum_{k=1}^{K} M_{J_{\mu}}\left(\boldsymbol{s}_{k}\right)$ denote the total number of scaling coefficients observed at all the spatial locations. We sample \boldsymbol{V} from $N_{M_{\mu}}\left(\boldsymbol{P}^{-1} \boldsymbol{m}, \boldsymbol{P}^{-1}\right)$, with

$$
\begin{aligned}
\boldsymbol{m} & =\operatorname{diag}\left\{\boldsymbol{D}_{V}\left(\boldsymbol{s}_{1}\right)^{-1}, \ldots, \boldsymbol{D}_{V}\left(\boldsymbol{s}_{K}\right)^{-1}\right\}\left(\boldsymbol{V}_{D S}\left(\boldsymbol{s}_{1}\right), \ldots, \boldsymbol{V}_{D S}\left(\boldsymbol{s}_{1}\right)\right)+\lambda \boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}, \phi_{v}\right)^{-1} \mathbf{1} \text { and } \\
\boldsymbol{P} & =\operatorname{diag}\left\{\boldsymbol{D}_{V}\left(\boldsymbol{s}_{1}\right)^{-1}, \ldots, \boldsymbol{D}_{V}\left(\boldsymbol{s}_{K}\right)^{-1}\right\}+\boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}, \phi_{v}\right)^{-1}
\end{aligned}
$$

where $\boldsymbol{V}_{D S}\left(\boldsymbol{s}_{k}\right)$ denotes the vector of scaling coefficients of the wavelet transform of deseasonalized data for each k (i.e., the last $M_{J_{\mu}}\left(\boldsymbol{s}_{k}\right)$ values of $\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{k}\right)-\boldsymbol{W}_{\psi}\left(\boldsymbol{s}_{k}\right)$), and $\boldsymbol{D}_{V}\left(\boldsymbol{s}_{k}\right)$ is the diagonal covariance matrix of the scaling coefficients at location s_{k} as defined at the bottom of page 19 of the main article.

With the prior $\lambda \sim N\left(m_{\lambda}, v_{\lambda}\right)$, we sample λ conditional on all other parameters and the data using a $N\left(m_{\lambda}^{P}, v_{\lambda}^{P}\right)$ distribution where

$$
m_{\lambda}^{P}=\mathbf{1}^{T} \boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}, \phi_{v}\right)^{-1} \boldsymbol{V}+v_{\lambda}^{-1} m_{\lambda} \quad \text { and } \quad v_{\lambda}^{P}=\mathbf{1}^{T} \boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}, \phi_{v}\right)^{-1} \mathbf{1}+v_{\lambda}^{-1} .
$$

With the prior $1 / \omega_{V} \sim \operatorname{Gamma}\left(s_{\omega_{V}}, r_{\omega_{V}}\right)$ we draw $1 / \omega_{V}$ from a $\operatorname{Gamma}\left(s_{\omega_{V}}^{P}, r_{\omega_{V}}^{P}\right)$ distribution with

$$
s_{\omega_{V}}^{P}=s_{\omega_{V}}+0.5 M_{\mu} \quad \text { and } \quad r_{\omega_{V}}^{P}=r_{\omega_{V}}+0.5(\boldsymbol{V}-\mathbf{1} \lambda)^{T} \boldsymbol{\Psi}_{R}\left(\theta_{V}, \phi_{v}\right)^{-1}(\boldsymbol{V}-\mathbf{1} \lambda) .
$$

where $\boldsymbol{\Psi}_{R}\left(\theta_{V}, \phi_{v}\right)$ is the correlation matrix for the space-time process (the covariance matrix $\boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}, \phi_{v}\right)$ scaled by $\left.\omega_{V}\right)$.

We use a Metropolis-Hastings algorithm to jointly sample the parameters θ_{V} and ϕ_{V}. We assume a prior for θ_{V} of $\operatorname{Gamma}\left(s_{\theta_{V}}, r_{\theta_{V}}\right)$, and a prior for ϕ_{V} of $N_{[-1,1]}\left(0.4,0.2^{2}\right)$ (a normal distribution truncated to the interval $[-1,1])$. Given that we are currently at $\log \theta_{V}^{\text {curr }}$, we propose $\log \theta_{V}^{\text {new }}$ from a $\mathrm{N}\left(\log \theta_{V}^{\text {curr }}, v_{p r o p}\right)$ distribution where $v_{p r o p}$ is set equal to half the estimated variance of the MLE of $\log \theta_{V}^{n e w}$ based on a preliminary exploratory data analysis. Given a current value of $\phi_{V}^{\text {curr }}$ we propose $\phi_{V}^{\text {new }}$ from a $N_{[-1,1]}\left(\phi_{V}^{c u r r}, 0.05^{2}\right)$. We accept these two proposals jointly with probability

$$
\min \left\{\exp \left(l p\left(\theta_{V}^{\text {new }}, \phi_{V}^{\text {new }} \mid \theta_{V}^{\text {curr }}, \phi_{V}^{\text {curr }}\right)-l p\left(\theta_{V}^{\text {curr }}, \phi_{V}^{\text {curr }} \mid \theta_{V}^{\text {new }}, \phi_{V}^{\text {new }}\right)\right), 1\right\}
$$

or remain at the current values, where for example

$$
\begin{aligned}
\operatorname{lp}\left(\theta_{V}^{\text {new }}, \phi_{V}^{\text {new }} \mid \theta_{V}^{\text {curr }}, \phi_{V}^{\text {curr }}\right)= & \log f\left(\boldsymbol{V} \mid \mathbf{1} \lambda, \boldsymbol{\Psi}\left(\omega_{V}, \theta_{V}^{\text {new }}, \phi_{v}^{\text {new }}\right)\right)+\log f\left(\theta_{V}^{\text {new }} \mid s_{\theta_{V}}, r_{\theta_{V}}\right)+\log \theta_{V}^{\text {new }}+ \\
& \log f_{[-1,1]}\left(\phi_{V}^{\text {new }} \mid 0.4,0.2^{2}\right)-\log f_{[-1,1]}\left(\phi_{V}^{\text {new }} \mid \phi_{V}^{\text {curr }}, 0.05^{2}\right),
\end{aligned}
$$

a \log multivariate normal density, plus a log gamma density, plus a \log Jacobian term, plus a truncated normal log density, minus the truncated normal log density for the proposal for ϕ_{V}.

Sampling the parameters characterizing the seasonality

Let $\boldsymbol{X}_{j, s}\left(\boldsymbol{s}_{k}\right)$ denote the j th column of $\boldsymbol{X}_{\psi}\left(\boldsymbol{s}_{k}\right)$, and let \boldsymbol{X}_{ψ} be the column bind of

$$
\operatorname{diag}\left\{X_{1, s}\left(\boldsymbol{s}_{1}\right), \ldots, X_{1, s}\left(\boldsymbol{s}_{K}\right)\right\} \quad \text { and } \quad \operatorname{diag}\left\{X_{2, s}\left(\boldsymbol{s}_{1}\right), \ldots, X_{2, s}\left(\boldsymbol{s}_{K}\right)\right\} .
$$

Then we sample $\boldsymbol{\gamma}=\left(\gamma_{1}\left(\boldsymbol{s}_{1}\right), \ldots, \gamma_{1}\left(\boldsymbol{s}_{K}\right), \gamma_{2}\left(\boldsymbol{s}_{2}\right), \ldots, \gamma_{1}\left(\boldsymbol{s}_{K}\right)\right)$ from $N_{2 K}\left(\boldsymbol{P}^{-1} \boldsymbol{m}, \boldsymbol{P}^{-1}\right)$, with

$$
\begin{aligned}
\boldsymbol{m}= & \boldsymbol{X}_{\psi}^{T} \operatorname{diag}\left\{\boldsymbol{D}\left(\boldsymbol{s}_{1}\right)^{-1}, \ldots, \boldsymbol{D}\left(\boldsymbol{s}_{K}\right)^{-1}\right\}\left[\left(\boldsymbol{W}_{Y}\left(\boldsymbol{s}_{1}\right), \ldots, \boldsymbol{W}_{Y}\left(\boldsymbol{s}_{K}\right)\right)-\left(\boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{1}\right), \ldots, \boldsymbol{W}_{\mu}\left(\boldsymbol{s}_{K}\right)\right)\right]+ \\
& \operatorname{diag}\left\{\boldsymbol{E}\left(\omega_{\gamma_{1}}, \theta_{\gamma_{1}}\right)^{-1}, \boldsymbol{E}\left(\omega_{\gamma_{2}}, \theta_{\gamma_{2}}\right)\right)^{-1} \kappa, \text { and } \\
\boldsymbol{P}= & \boldsymbol{X}_{\psi}^{T} \operatorname{diag}\left\{\boldsymbol{D}\left(\boldsymbol{s}_{1}\right)^{-1}, \ldots, \boldsymbol{D}\left(\boldsymbol{s}_{K}\right)^{-1}\right\} \boldsymbol{X}_{\psi}+\operatorname{diag}\left\{\boldsymbol{E}\left(\omega_{\gamma_{1}}, \theta_{\gamma_{1}}\right)^{-1}, \boldsymbol{E}\left(\omega_{\gamma_{2}}, \theta_{\gamma_{2}}\right)\right)^{-1},
\end{aligned}
$$

where κ is a vector of K copies of $\mu_{\gamma_{1}}$ followed by K copies of $\mu_{\gamma_{2}}$.
For $j=1,2$, suppose that $\mu_{\gamma_{j}}$ has a prior $\mathrm{N}\left(m_{\gamma_{j}}, v_{\gamma_{j}}\right)$ distribution. For each j we update $\mu_{\gamma_{j}}$ with a draw from a $\mathrm{N}\left(m_{\gamma_{j}}^{P}, v_{\gamma_{j}}^{P}\right)$ distribution, with

$$
m_{\gamma_{j}}^{P}=\mathbf{1}^{T} \boldsymbol{E}\left(\omega_{\gamma_{j}}, \theta_{\gamma_{j}}\right)^{-1} \gamma_{j}+v_{\gamma_{j}}^{-1} m_{\gamma_{j}} \quad \text { and } \quad v_{\gamma_{j}}^{P}=\mathbf{1}^{T} \boldsymbol{E}\left(\omega_{\gamma_{j}}, \theta_{\gamma_{j}}\right)^{-1} \mathbf{1}+v_{\gamma_{j}}^{-1}
$$

For $j=1,2$, assuming the prior $1 / \omega_{\gamma_{j}} \sim \operatorname{Gamma}\left(s_{\omega_{\gamma_{j}}}, r_{\omega_{\gamma_{j}}}\right)$ we sample $1 / \omega_{\gamma_{j}}$ from a $\operatorname{Gamma}\left(s_{\omega_{\gamma_{j}}}^{P}, r_{\omega_{\gamma_{j}}}^{P}\right)$ distribution with

$$
s_{\omega_{\gamma_{j}}}^{P}=s_{\omega_{\gamma_{j}}}+0.5 K, \quad \text { and } \quad r_{\omega_{\gamma_{j}}}^{P}=r_{\omega_{\gamma_{j}}}+0.5\left(\gamma_{j}-\mathbf{1} \mu_{\gamma_{j}}\right)^{T} \boldsymbol{E}_{R}\left(\theta_{\gamma_{j}}\right)^{-1}\left(\boldsymbol{\gamma}_{j}-\mathbf{1} \mu_{\gamma_{j}}\right),
$$

where $\boldsymbol{E}_{R}\left(\theta_{\gamma_{j}}\right)$ is the exponential correlation matrix.
We update $\theta_{\gamma_{j}}(j=1,2)$ using a Metropolis-Hastings step on the log-transformed scale. We assume a prior for $\theta_{\gamma_{j}}$ of $\operatorname{Gamma}\left(s_{\theta_{\gamma_{j}}}, r_{\theta_{\gamma_{j}}}\right)$. Given that we are currently at $\log \theta_{\gamma_{j}}^{\text {curr }}$, we propose $\log \theta_{\gamma_{j}}^{\text {new }}$ from a $\mathrm{N}\left(\log \theta_{\gamma_{j}}^{\text {curr }}, v_{\text {prop }}\right)$ distribution where $v_{\text {prop }}$ is set equal to half the estimated variance of the MLE of $\log \theta_{\gamma_{j}}^{\text {new }}$ based on a preliminary data analysis. We accept $\log \theta_{\gamma_{j}}^{\text {new }}$ with probability $\min \left\{\exp \left(l p\left(\theta_{\gamma_{j}}^{\text {new }}\right)-l p\left(\theta_{\gamma_{j}}^{\text {curr }}\right)\right), 1\right\}$ or stay at $\log \theta_{\gamma_{j}}^{\text {curr }}$, where

$$
l p\left(\theta_{\gamma_{j}}\right)=\log f\left(\boldsymbol{\gamma}_{j} \mid \mathbf{1} \mu_{\gamma_{j}}, \boldsymbol{E}\left(\omega_{\gamma_{j}}, \theta_{\gamma_{j}}\right)\right)+\log f\left(\theta_{\gamma_{j}} \mid s_{\theta_{\gamma_{j}}}, r_{\theta_{\gamma_{j}}}\right)+\log \theta_{\gamma_{j}}
$$

a \log multivariate normal density, plus a \log gamma density, plus a \log Jacobian term.

Sampling the parameters characterizing the noise

We update the parameters $\left(\kappa\left(\boldsymbol{s}_{k}\right),\left\{\alpha_{l}\left(\boldsymbol{s}_{k}\right)\right\},\left\{\theta_{l}\left(\boldsymbol{s}_{k}\right)\right\}\right)$ simultaneously using a single MetropolisHastings step. Given we are at $\left\{\boldsymbol{\alpha}_{j}^{\text {curr }}\right\}$, $\boldsymbol{\kappa}^{\text {curr }}$, and $\left\{\boldsymbol{\theta}_{j}^{\text {curr }}\right\}$ we propose $\left\{\boldsymbol{\alpha}_{j}^{\text {new }}\right\}, \boldsymbol{\kappa}^{\text {new }}$, and $\left\{\boldsymbol{\theta}_{j}^{\text {new }}\right\}$ independently using a random walk multivariate normal proposal. Let

$$
\boldsymbol{D}^{\text {new }}=\operatorname{diag}\left\{\boldsymbol{D}_{V}^{\text {new }}\left(\boldsymbol{s}_{1}\right), \ldots, \boldsymbol{D}_{V}^{\text {new }}\left(\boldsymbol{s}_{K}\right)\right\}
$$

denote the joint covariance matrix of the wavelet transform of the noise term evaluated at the proposed parameter values, and $\boldsymbol{D}^{\text {curr }}$ the current joint covariance matrix. We accept the proposed parameters with probability $\min \{\exp (l p(n e w)-l p(c u r r)), 1\}$ or otherwise we stay at the current values, where for example

$$
\begin{aligned}
l p(n e w)= & \log f\left(\boldsymbol{W}_{Y}-\boldsymbol{W}_{\mu}-\boldsymbol{W}_{\psi} \mid \mathbf{0}, \boldsymbol{D}^{\text {new }}\right)+\log f\left(\boldsymbol{\kappa}^{\text {new }} \mid \mathbf{1} \mu_{\kappa}, \boldsymbol{E}\left(\omega_{\kappa}, \theta_{\kappa}\right)\right)+ \\
& \sum_{j=0}^{4} \log f\left(\boldsymbol{\alpha}_{j}^{\text {new }} \mid \mathbf{1} \mu_{\alpha_{j}}, \boldsymbol{E}\left(\omega_{\alpha_{j}}, \theta_{\alpha_{j}}\right)\right)+\sum_{l=1}^{p} \log f\left(\boldsymbol{\theta}_{l}^{\text {new }} \mid \mathbf{1} \mu_{\theta_{l}}, \boldsymbol{E}\left(\omega_{\theta_{l}}, \theta_{\theta_{l}}\right)\right)- \\
& \sum_{k=1}^{K}\left\{\log \left(0.5+\delta^{\text {new }}\left(\boldsymbol{s}_{k}\right)\right)+\log \left(0.5-\delta^{\text {new }}\left(\boldsymbol{s}_{k}\right)\right)\right\},
\end{aligned}
$$

are sums of \log multivariate normal densities plus the Jacobian for transforming between $\kappa(\boldsymbol{s})$ and $\delta(\boldsymbol{s})$. Here $\left.\delta^{\text {new }}\left(\boldsymbol{s}_{k}\right)\right)$ is the transformation of $\left.\kappa^{\text {new }}\left(\boldsymbol{s}_{n} k\right)\right)$.

We update the hyperparameters of each set of spatially-varying parameters using similar updates as for the hyperparameters of γ_{j}. We update the parameters characterizing each spatial field separately.

