Supplemental material for “Hierarchical Hidden
Markov Models for Response Time Data”

Deborah Kunkel', Zhifei Yan?,
Peter F. Craigmile?, Mario Peruggia?, Trisha Van Zandt?2.

1 School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634,
USA

2 Department of Statistics, The Ohio State University, Columbus, OH 43210, USA

3 Department of Psychology, The Ohio State University, Columbus, OH 43210, USA

Last updated January 29, 2020

1 The Markov chain Monte Carlo algorithm

Here we present the Markov chain Monte Carlo (MCMC) algorithm that we use to fit the

Bayesian model presented in the main article.

Always assuming conditional independence, the full hierarchical model for participant i,7 =

1,...,nis below.



Yialrie ~ Weibull(B;, Ai(riz)),
log(Ni(ris)) ~ N(,ugr),ay)), r=1,2,3,
log(B3;) ~ N(ps, o),
pi o~ Na(p, V) I < p < ),
p~ Na(k, V)I(n® < < p¥),
aff), JY) ~ halfCauchy(a), r=1,2,3,
P(rige1 = slrig =1, €411 =€) = P,
Peit1 =eleis =d) = EZZ,
g\ ~ Dirichlet(r;), j=1,2,3,

pgi’e) ~ Dirichlet(w.), j=1,2,3,e=1,2,3,

1 2 3 1 2 3 1 2 3
WheI'G/J, = (M(l),ﬂ(2)7ﬂ(3))T7 B = (ME )7/%( )7/“’L§ ))T7 o, = (O-/(i )70-l(i )70-,1(L ))Ta O\ = (UE\ )70-§\ )uUE\ ))T

V,= diag(aff)), and V = diag(v,),r = 1,2, 3, and a; denotes the jth row of matrix A.

I

The following hyperparameters are fixed: us =2, o5 = 0.3, K = (6,7,8)7, v = vg = v3 =
0.2, a=0.5, 71 = (9,0.5,0.5), 7 = (0.5,9,0.5)T, 3 = (0.5,0.5,9)".

We update the parameters according to the following steps.

1. Sample hyperparameters pu, o, 0.

(r)

2. Fori=1,...,n, sample log(3;),log(\;(r)), u; *,r = 1,2,3 from their full conditionals.

3. For i = 1,...,n, sample the latent response modes and environments, (r;¢,€;;),t =

1,...,T, from their full conditionals using a forward-backward algorithm.

4. Fori=1,...,n, sample Q™ and P%® from their full conditionals.



1.1  Sample pu, o,, oy

Sample p. The full conditional for p satisfies

n

Flul=) o< flulw, V) T filps o),

i=1
with

(1) (2)

wilp, oy~ Ny(pu, Vo) I <y @),

<
and

ple, Voo~ Ny(k, V)I(p® < < p®).
Thus, (p|—) is proportional to a constrained trivariate Normal:

Ful=) o< Ny(py, V) I(u) < p@ < pu),

with
M @ T o _ o ()
I"l’n = (/’Ln JIu'n, 7/’l’n ) y Where /,(,n = ®) 7
nvy + (o”)?
and

(o),

V, = diag{v{"}, where v") e
D) + o,

. r=1,23.

Sample o,. Conditional on p;, the a,(f) are independent of each other. For r = 1,2, 3, the

full conditional of o) satisfies

n

FePl=) o foDla) [T (1, eV (e > 0),

i=1

where

mEmas al([) ~ N, (a/(f))Q), foralli=1,...,n,

and
o)~ halfCauchy(a).

We use a Metropolis-Hastings (MH) step with a random walk proposal to sample a,(f).
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Sample o,. Conditional on A;(r), the af\r) are independent of each other. For r = 1,2, 3,

the full conditional of JE\T) satisfies

n

fol=) o foPla) [T Fu)u, o) > 0),

i=1

where
log(\(n) |7, 07~ N, (617)?), foralli=1,....n,
and

ay) ~ halfCauchy(a).

We use a Metropolis-Hastings (MH) step with a random walk proposal to sample a/(\r).

1.2 Sample X\;(r;;) and f;

The variables A;(r;;) and (; are sampled separately for each participant . For the scale

parameter, \;(r;,), the full conditional satisfies

Flognir)|=) o< T fitlrie, Xi(r). 82) fQogN(r)) |, o),

tir; t=r

where
Yielrie = r,log(Ni(r)), Bi ~ Weibull(8, Ai(r)),
and
logi(r)l”, o~ NGy, (037)?),

for r = 1,2,3. To sample from this distribution we use a Metropolis-Hastings step with a

random walk proposal.

For the shape parameter, 3;, the full conditional satisfies

T

FBi1=) oc [T FYarlrie, Mi(rin), i) f (log(5:)),

t=1



where

Yitlrie, Ni(rie), i ~ Weibull(8;, Ai(riz)),

and

log(B;) ~ Nl(ug, o).

To sample from this distribution we use a Metropolis-Hastings step with a random walk

proposal.

Sample p,. The full conditional satisfies

Fl] =) o f[lf(log( NN, o) (il o),
where

log(\ o)~ N, (037)),r = 1,2,3,
and

(1) (2)

3
il oy~ No(p, V) I(u < p® < p¥).

The full conditional is proportional to a constrained trivariate Normal:

pil— ~ Na(ps, Vo) Il < 12 < u8)y,

with

loa AN (N2 1 47 (512
s = (12 1O where g, = BAOTIIEAT g g
(03 ")? + (o )?

and

GRG0k

Vo= diag{vqgﬂ}, where vﬁ;) =



1.3 Sample {r;;} and {e;}

To sample the latent Markov chain {(r;s€;4) : t = 1,...,T}, we derive a forward filtering
backward sampling (FFBS) algorithm. Details of forward filtering backward sampling can be
found in Frithwirth-Schnatter (2006). The latent variables are sampled separately for each
participant 7, and for notational convenience we suppress the subscript 7 in the subsequent

steps. The notation Y denotes the sequence {Y1,...,Y;}.

Let f(Y;|r:) denote the Weibull probability density function evaluated at Y; conditional on

the latent response mode r;.

1.3.1 Forward filtering

We first derive the following filters

f(riY1), t=0;
Fr=q flenrea[Y™), t=1,....,T - 1;
fler|YT), t="T,

that will be used in the backward sampling algorithm defined in Section 1.3.2. For F{, we

have
f(riY1) o< f(Ya|r1) f(r1),

where f(r1) is the stationary distribution of the latent response modes, {r;}. Given the

initial Fj, we are able to derive the expression of Fy,q from F}, forallt =0,...,7 — 1.

From Fj to F;. We have
Flen,ma¥h) =Y flraler, 1) fex) f(r]Y),

where f(ep) is the stationary distribution of the latent environments, {e;}, and we have that

f(r1|Y1) = Fo. The expression of F; can be obtained by noting that

Fy = f(€177’2’Y2) oc f(Ya|ra) fler, ma|Y1).
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From F; to Fy.q, for t=1,...,T —2. We have

flen,realY ™) = Y Freslesi, ren) fecmled f(en, e [V,

€t,Tt+1

where f(es,741|Y'™) = F}. The expression of Fy;; can be obtained by noting that

Fiy = f(€t+17 Tt+2|Yt+2) X f(Yt+2|7’t+2)f(€t+h Tt+2|Yt+1)‘

From Fr_; to Fr. We can obtain Fr from Fp_; by noting that

Fr=flerlY") = > flerler)fler,rr[Y") = Y flerler)Fr.

€T—1,T'T er—1,I'T
1.3.2 Backward sampling

The key to backward sampling lies in the following factorization of f(el,rT|YT):

1
Fe YT = fler|YT) fler—1,rrler,YT) H flew ripalern, rope, Y friler, 7, V2).
=T—

t=T—2
(1)
Each piece in the factorization may be found using the forward filters derived in Section 1.3.1,

noting that

flex|Y") = Fr,
fler_1,rrler,Y') o flerler—1)Fr_u,

fles, revtlesit, rero, YY) o frepalesir, renn) fesled) By, forallt=1,...,T —2,
and
f(riler, o, Y1) o f(re|ry,er)f(er)Fo.

Hence, the factorization (1) together with the filters obtained from the forward pass enable

us to draw samples of the {e;} and {r;} chains backward from er to 7.



1.4 Sample Q, P!, P?, and P3

The matrices Q®, P®Y PE2 and PU¥ 4§ = 1,...,n are sampled separately for each
participant i. For notational convenience we suppress the subscript ¢ in the subsequent

steps.

Let q;,7 = 1,2,3, denote the jth row of Q. Let nj,j,k = 1,2,3, denote the number of
transitions in the Markov chain {e;} from environment j to k. Use f() to denote the prior
distribution of g;, a Dirichlet distribution with parameter sv. The full conditional of g
satisfies
flal=) o< fl@l@Q) T flelen ;) f(ay),
te{l,...,T—1}:e,=j

XX f<€1|Q)DiI‘<TLj1 + 1, njz + T2, njg + 7T3).

To sample from f(q;|—) we use a Metropolis-Hastings (MH) algorithm with proposal distri-
bution Dir(nﬂ -+ 1, N2 —+ UPTRITE -+ 7T3).

Similarly, we sample each row of each of the transition matrices P!, P?, and P?, separately.
Let p$,j = 1,2,3 denote the jth row of P e = 1,2,3. Let n%, j,k,e = 1,2,3, denote
the number of transitions in the sequence {r;} from response mode j to response mode k,
environment e; that is, ng, = >, 5 | I(rep1 =k, 7 = j,er1 = €). Use f() to denote the
prior distribution of pf, a Dirichlet distribution with parameter 7. We have

f(p§|_) X f(T1|P1, P27P3> H f(rt+1|rta et-&-lvp;)f(p;)?
tE{l,.A.,T—1}:et+1:e,rt:j
o f(r| P, P, P3)Dir(n§1 + 71, MGy + T, NGy + T3).
To sample from f(p§|—) we use a Metropolis-Hastings (MH) algorithm with proposal distri-

3 3 e e e
bution Dir(n$, + m1,ng, + ma, 03 + 73).



2 Analysis of Wagenmakers data

The main manuscript presents an analysis of the data of Wagenmakers et al. (2004) under
the short RSI condition. We performed the same analysis on the data from the long RSI
condition. Figure 1 shows the RTs for each participant colored by their estimated response
mode and with background color corresponding to the estimated environment as well as the

posterior means of the TPMs.

There are fewer estimated transitions among environments in this condition than in the
short RSI condition; most participants are estimated to remain in environment 2 for nearly
the entire duration of the experiment, with occasional shifts into environment 3. In fact,
response mode 1 is very seldom used and environment 1 is never used by any participant,
perhaps because the prior on the scale parameters puts high probability on fast responses in

response mode 1 and the RT's in this condition tend to be slower.



Subject 01

Q P1
1500 089 | 0.06  0.05 | 090 0.05 | 0.05
- 0.00 | 1.00  0.00 | 0.89 005 005
& 1000 003 | 016 | 081 089 006 005
500 el R ttV, S lv_r.o <, -___;g;l:_'._m:.‘ Fj ] ) ';;th. ‘r-' .‘“.-.'4. o P3
04 - i — — 0.04 | 0.93 004 | 005 005|090
0.00 | 097 002 | 004 006 090
0 250 500 750 1000 0.01 | 089 0.0 | 004 007 090
trial
Subject 02
) Q P1
1500 0.80 | 0.05  0.05 | 090 0.05 | 0.05
- 0.00 | 1.00 000 | 091 004 005
1000 + 006 008 | 087 090 005 005
500 4 . Y ’ P P3
0411 . . . . 0.03 | 0.86 0.1 || 0.05 | 0.05 | 090
0.00 | 097 003 | 005 006 089
0 250 500 750 1000 0.01 | 095 004 | 005 005 090
trial
Subject 03
) Q P1
1500 089 | 0.06  0.06 | 090 0.05 | 0.05
- - 0.00 | 1.00  0.00 | 090 005 005
& 1000 i . | ki 002 | 009 | 090 089 006 005
o0 o D BBt o L Al § 3
500 1 SRl I it Tt P 2 P P3
04 s - — . 3 0.04 | 0.89 | 0.07 | [ 0.05 | 0.04 [ 0.90
0.00 | 095 005 | 004 005 091
0 250 500 750 1000 0.01 | 080 019 | 002 008 090
trial
Subject 04
) Q P1
1500 0.89 | 0.06  0.05 | 080 0.05 | 0.06
- 0.00 | 0.99 000 | 090 005 006
& 1000 001 012 | 087 090 004 005
500 P3
0 0.05 | 0.90 | 0.04 | [ 0.06 | 0.05 [ 0.89
0.00 | 097 | 003 | 003 007|091
0.01 | 093 006 | 002 014 085
trial
Subject 05
) Q P1
1500 0.89 | 0.06  0.05 | 091 005|004
- 0.00 | 1.00 0.0 | 090 005 005
& 1000 005 | 007 | 087 090 005 005
500 o r"‘::, J csresiiesipd -, " ‘:“.‘",- e i =) P3
04 - L — G 0.02 | 0.88 | 0.10 | [ 0.05 | 0.05 [ 0.91
001 | 089 | 010 | 0.06 0.04 | 0.90
0 250 500 750 1000 0.02 | 091 007 | 005 005 090
trial
Subject 06
) Q P1
1500 i 087 | 0.07 006 | 089 0.06 | 0.05
- 0.00 | 097 003 | 091 005 005
& 1000 001 029 | 070 | | 091 0.4 0.05
500 i p P3
04 o — . . 0.05 | 0.90 0.6 | | 0.05 ] 0.05 | 0.90
002 | 096 | 002 | 002 0.10 | 0.88
0 250 500 750 0.02 | 090 007 | 003 025 073
trial
Figure 1: RTSs and estimated environments and response modes for the long RSI condition
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3 Sensitivity analysis

To assess the sensitivity of our analysis to the prior assumptions on the TPMs we con-
sider three possible alternative priors resulting from using different values for the Dirichlet

parameters 7y, 7o, and 7r3. The prior in the main manuscript used the following values:

m = (9,0.5,0.5);
7y = (0.5,0.5,9),

so that 0.90 is the expected probability of remaining in a given environment and of transi-
tioning to response mode e while in environment e. The three additional priors we considered

are as follows:

Prior 1: Prior 2: Prior 3:
™ = (8,1,1); ™ = (6,2,2); ™ = (4.5,0.25,0.25);
™o = (1,8,1); ™o = (2,6,2); ™o = (0.25,4.5,0.25);
T3 = (1,1,8). T3 = (2,2,6). T3 = (0.25,0.25,4.5).

Priors 1 and 2 modify the expected TPMs so that the expected probability of remaining
in a given environment is 0.80 and 0.60, respectively. Prior 3 leaves the expected TPMs
unchanged, but produces a less-informative prior by reducing the concentration about the

prior means.

Figure 2 summarizes the impact of these changes on the posterior estimated environments
and response modes. For each prior, we calculated the the overall proportion of trials for
which the estimated environment and response mode matched the estimate obtained under
the original prior. These proportions are shown for the environments in the left panel of
Figure 2 and for the response modes in the right panel. The figures indicate that with
high probability the estimated response modes will be similar to those under the original
prior across the three priors, with slightly higher variability under Prior 2. The estimated

environments, on the other hand, differ considerably under Prior 2 from those under the
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Figure 2: Across-participant average proportion of estimated environments (response

modes) that match those estimated by the original prior.

original prior and exhibit slightly higher variability under Prior 3. These results suggest
that the estimated latent states in this analysis are robust to small perturbations of the
expected TPMs and to use of less-informative priors; however, the prior TPMs for ) do
need to give each environment with a clear preference for one response mode in order to

obtain results similar to those in our original analysis.

Figure 3 gives the across-participant average TPMs, Q, P!, P%, and P2 for the original prior
and priors 1-3. In Q, the posterior estimates are fairly similar for all priors, especially among
the original prior and priors 1 and 3. In P', P?, and P?, the estimates for prior 3 are similar

to those of the original prior, but reflect strong influence of priors 1 and 2.
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_— . P1 . .
original prior 1 original prior 1
0.90 0.06  0.05 0.90 0.05  0.05 0.95 0.04 0.01 0.94 0.05 0.02

0.07 0.89 0.04 0.07 0.89 0.04 0.90 0.06 0.04 0.82 0.12 0.06

0.06 0.06 0.88 0.07 0.07r 0.85 0.87 0.06 0.07 0.77 0.10 0.13

prior 2 prior 3 prior 2 prior 3
0.84 0.08 0.08 0.90 0.06 0.04 0.86 0.08 0.06 0.95 0.04 0.01

0.11 0.79 0.10 0.07 0.89 0.04 0.60 0.28 0.11 0.88 0.09 0.04
0.13 0.12 0.74 0.06 0.06 087 053 0.16 0.30 0.84 0.06 0.09

P2 . . P3 _— .
original prior 1 original prior 1

0.06 0.89 0.05 0.12 0.79 0.08 0.06 0.04 0.89 0.13 0.08 0.79
0.02 0.97 0.02 0.03 0.95 0.02 0.04 0.08 0.88 0.08 0.12 0.80

0.04 0.90 0.06 0.07 0.80 0.13 0.02 0.03 0.95 0.04 0.04 0.92

prior 2 prior 3 prior 2 prior 3
0.31 055 0.14 0.07  0.88 0.05 0.33 0.17 0.50 0.08 0.04 0.88

0.09 0.84 0.07 0.02 0.97 0.01 0.16 0.34 0.49 0.04 0.08 0.88

0.15 0.58 0.27 0.04 0.88 0.08 0.10 0.11 0.79 0.02 0.03 0.95

Figure 3: Across-participant posterior mean TPMs under the original prior (top left) and

priors 1-3.
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