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We provide more detail on how we account for the multivariate spatial dependence in the

pre- and post-policy counts as we investigate different questions about the equality impact.

Suppose that there are m census tracts, and let Y1i denote the number of establishments

in census tract i = 1, . . . ,m before a policy is made – we call Y 1 = (Y11, . . . , Y1m)T the

pre-policy counts. After we enact a policy, let Y2i denote the number of establishments

in census tract i – we call Y 2 = (Y21, . . . , Y2m)T the post-policy counts. For each census

tract let Pi denote the population (in thousands) for tract i. We assume that in each tract

the population is unchanged pre- and post- policy.

Investigating the absence of disparities

To investigate whether the establishment densities are different for low and high values of a

dichotomous covariate pre- and post-policy we consider the following.

Let di denote the value of covariate in census tract i, with di = 0 at the low level and di = 1

at the high level. Taking a log transformations of the pre- and post-policy establishment
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rates, let

Zki = log((Yki + 1)/Pi) , k = 1, 2, i = 1, . . . ,m

(We add 1 to guard against taking the log of zero). With this transformation, a joint normal

distribution is reasonable for {Zki : k = 1, 2, i = 1, . . . ,m}.

In terms of the covariate di, we assume that the mean of the pre-policy log establishment

rates in tract i is

E(Z1i) = γ1 + γ2di, i = 1, . . . ,m. (1)

The mean of the post-policy log establishment rates in tract i can be different with

E(Z2i) = γ3 + γ4di, i = 1, . . . ,m. (2)

In these two models for the mean, γ2 measures the effect of the disparity for the pre-policy

log establishment rates and γ4 measures the effect of the disparity for the post-policy log

establishment rates. Thus to compare the disparities post-policy minus pre-policy we need

to estimate γ4 − γ2. The least squares estimate of γ2 is

γ̂2 = average{Z1i : di = 1} − average{Z1i : di = 0},

and the least squares estimate of γ4 is

γ̂4 = average{Z2i : di = 1} − average{Z2i : di = 0},

which means that our estimate of γ4 − γ2 is γ̂4 − γ̂2. (For completeness the least squares

estimate of γ1 is

γ̂1 = average{Z1i : di = 0}

and the least squares estimate of γ3 is

γ̂3 = average{Z2i : di = 0}.
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This will be used in the next section.)

To calculate the standard error for γ̂4 − γ̂2, we need to assume a joint distribution for our

log transformed data. We assume a separable bivariate conditional autoregressive (CAR)

model (e.g., Banerjee et al., 2014, Section 7.4) for the counts using vector-matrix notation.

Let Z1 = (Z1i)
T denote the vector of pre-policy log establishment rates and Z2 = (Z2i)

T

denote the vector of post-policy log establishment rates. We then specify a m ×m spatial

proximity matrix W as follows: the (i, j) element of W is equal to 1 if census tract j is

a neighbor of tract i, and zero otherwise (we assume each tract cannot be a neighbor of

themselves). Next, let C denote a diagonal m×m matrix, where the ith diagonal element

is equal to the number of neighbors that census tract i has. Then we assume Z1

Z2

 ∼ N2m(Dγ,Σ)

where the covariance matrix is

Σ =

 τ 21 (C − δW )−1 ρτ1τ2(C − δW )−1

ρτ1τ2(C − δW )−1 τ 22 (C − δW )−1

 .
Our parameter vector that appears in the mean is γ = (γ1, γ2, γ3, γ4)

T and the design matrix

is

D =

 1m x 0m 0m

0m 0m 1m x

 ,
where 0m is a vector of m zeros, 1m is a vector of m ones, and x = (x1, . . . , xm)T is the

covariate vector.

In the covariance matrix Σ, the parameter −1 < δ < 1 is known as the spatial dependence

parameter and in this model measures the spatial dependence in neighboring census tracts

both within and between the pre- and post-policy counts. The parameter −1 < ρ < 1 is a

correlation parameter, τ 21 > 0 is a variance parameter for the pre-policy log establishment

rates, and τ 22 > 0 is a variance parameter for the post-policy log establishment rates.
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Then the standard error for γ̂4 − γ̂2 is√
aT (DTD)−1(DTΣD)(DTD)−1a,

where a = (0,−1, 0, 1)T . In practice we use an estimate of Σ calculated with maximum

likelihood estimates of δ, τ 21 , τ 22 and ρ based on the residuals, calculated using the least

squares estimates of γ.

Investigating the percentage reduction

From (1) and (2) the mean log establishment rate at the low level of the covariate pre-policy

(i.e., when di = 0) is γ1 and at the low level of the covariate post-policy is γ3. Thus the

percentage reduction in the log establishment rate at low level of the covariate can be defined

to be (
γ1 − γ3
γ1

)
× 100% =

(
1− γ3

γ1

)
× 100%.

Similarly from (1) and (2), the percentage reduction in the log establishment rate at high

level of the covariate (i.e., when di = 1) can be defined to be(
[γ1 + γ2]− [γ3 + γ4]

[γ1 + γ2]

)
× 100% =

(
1− [γ3 + γ4]

[γ1 + γ2]

)
× 100%.

We convert to the original scale instead, noting first that on the log scale that the mean log

rate is equal to the median log rate. Taking exponentials, we have that exp(median log rate)

is the median rate on the original scale. Thus, to calculate the percentage reduction in the

establishment rate at the low level of the covariate is

PR0 =

(
1− exp(γ3)

exp(γ1)

)
× 100%,

and at the high level of the covariate is

PR1 =

(
1− exp(γ3 + γ4)

exp(γ1 + γ2)

)
× 100%.
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We estimate these quantities from the data using the least squares estimates of γ1, γ2, γ3, and

γ4 defined in the previous section. Then using the delta method (e.g., Casella and Berger,

2002, p.240), the standard error for our estimator of

PR1 − PR0 = 100

(
exp(γ3)

exp(γ1)
− exp(γ3 + γ4)

exp(γ1 + γ2)

)
is √

bT (DTD)−1(DTΣD)(DTD)−1b

where

b = 100

(
−exp(γ3)

exp(γ1)
+

exp(γ3 + γ4)

exp(γ1 + γ2)
,
exp(γ3 + γ4)

exp(γ1 + γ2)
,
exp(γ3)

exp(γ1)
− exp(γ3 + γ4)

exp(γ1 + γ2)
,−exp(γ3 + γ4)

exp(γ1 + γ2)

)T

.

Investigating weakened associations

To investigate the difference between associations pre- and post-policy, we consider two

marginal models for the post and pre-counts.

As with the Adibe et al. (2019) we fit a negative binomial model to the pre-policy counts,

assuming a working covariance of independence between the counts. We also fit a negative

binomial model to the post-policy counts, making the same working independence covariance

assumption. Again we use a sandwich estimator to correct the covariance of the model

coefficient estimator, but now account for cross-dependence between the spatial counts pre-

and post-policy.

In the negative binomial model for the pre-counts we assume E(Y1i) = µ1i, where for a set

of covariates of length p, x1i and coefficients β1,

η1i = log(µ1i) = log(Pi) + xT
1iβ1.

Similarly for the post-counts we assume E(Y2i) = µ2i with

η2i = log(µ2i) = log(Pi) + xT
2iβ2.
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Allowing for potentially different over-dispersion in the pre- and post-policy counts our model

for the variance is

var(Yki) = Vk(µki) = µki +
µ2
ki

θk
,

where θk > 0 are the pre- (k = 1) and post-policy (k = 2) dispersion parameters. To

account for the spatial dependence for the pre- and post-policy counts over the census tracts

we assume for k = 1, 2, k′ = 1, 2, i = 1, . . . ,m, and j = 1, . . . ,m,

cov(Yki, Yk′j) =


√
Vk(µki)Vk′(µkj) ρij, k = k′;√
Vk(µki)Vk′(µk′j) λ ρij, k 6= k′,

where ρij parameterizes the correlation in the counts between tracts i and j. Our model for

ρij is the same as for Adibe et al. (2019). We estimate the parameter spatial dependence

parameter that appears in the model for ρij and the correlation parameter −1 < λ < 1

using maximum likelihood estimation based on the Pearson residuals calculated from both

the pre- and post-policy counts.

For k = 1, 2, let Xk denote an m × p design matrix with ith row xki and let V k denote a

diagonal matrix with (i, i) element Vk(µki). Let Gk be an m× p matrix with (i, j) element

[Gk]ij =
∂µki

∂βj
=

∂µki

∂ηki

∂ηki
∂βj

= µki [xki]j,

since

∂µki

∂ηki
=

[
∂ηki
∂µki

]−1
=

[
∂ log(µki)

∂µki

]−1
= µki.

Then the sandwich estimator of the covariance of β̂k is

cov(β̂k) = (GT
kV

−1
k Gk)−1GT

kV
−1
k cov(Y k)V −1k Gk(GT

kV
−1
k Gk)−1, k = 1, 2,

with cross-covariance

cov(β̂1, β̂2) = (GT
1V

−1
1 G1)

−1GT
1V

−1
1 cov(Y 1,Y 2)V

−1
2 G2(G

T
2V

−1
2 G2)

−1.
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Then our sandwich estimator of the covariance of the estimated model coefficients can be

written as

ĉov(β̂k) = J−1k B
T
k (C − α̂W )BkJ

−1
k , k = 1, 2,

with

ĉov(β̂1, β̂2) = λ J−11 B
T
1 (C − α̂W )B2J

−1
2 ,

where here Jk = GT
kV

−1
k Gk and Bk = diag

(
µ̂ki/

√
Vk(µ̂ki)

)
X.
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