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1 Other extreme value analyses

In the article a block maxima modeling approach is employed. There are two other ap-

proaches that were considered:

1. The running-maxima approach. Instead of calculating one maxima for each block,

the running maxima of block length B are calculated over the entire time period. While

this approach generates more maximum values to study, it also introduces dependence

between the maxima, and therefore necessitates a more involved model.

2. The points-over-threshold approach, which is also known as the peaks over thresh-

olds approach, is based on examining all the observations over a given threshold. Under

certain conditions, the distribution of excess values follow the generalized pareto distri-

bution (GPD) [Pickands, 1975]. There are differing methods for the choice of threshold

and the bias-variance trade-off must be considered. The threshold must be high enough

to ensure that exceedances reflect the tail of the distribution, otherwise the resulting

1



inferences will be biased towards non-extreme behavior, yet not so high that sparse ob-

servations cause an inflated variance. Drawbacks to the peaks-over-threshold method

include the dependence of parameter estimates on the value of the chosen threshold,

and the fact that, in practice, there are often very few observations to analyze. The

lack of observations is a problem for a points-over-threshold tree ring density analysis.

It is important to stress that the block maxima, as well as the approaches described above,

are appropriate for marginal extreme value analysis. In the paleoclimate context, these

models are appropriate for describing and characterizing the extreme values at a single

spatial location, which for this analysis is considered conditionally independent of other sites.

Spatial and temporal dependence will enter into the analysis by modeling the parameters of

the GEV distribution as varying in both space and time. As the climate system displays

both temporal and spatial dependencies which carry over to the occurrences and values of

extremes, an analysis strategy that models the distribution of extremes jointly, at all sites,

may be more appropriate. However, the modeling of multivariate extreme values, such as

the joint occurrence of extreme values at a number of sites, is an active field of statistical

research, and is outside the scope of this paper; see Coles [2001, Chapter 8] for a general

review. A limiting factor is that most realistic spatio-temporal multivariate extreme value

distributions cannot be fit exactly in the Bayesian hierarchical modeling context [see, e.g.,

Ribatet et al., 2012, for further details, and an example of an approximation]. Examples

of modeling joint dependence can be found in, for example, Ledford and Tawn [1996] and

Heffernan and Tawn [2004].

2 Supplemental exploratory data analysis

Maps of the ML estimates of the β(si) and the associated standard errors indicate how the

temporal slopes in the model for the GEV location parameters vary as a function of space,
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for both the maxima model (Fig. 1, upper panel) and the minima model (Fig. 1, lower panel).

As a rough guide to statistical significance, a 90% confidence interval is calculated for the

true slope parameter at each location and we indicate if the interval contains only positive

values (Fig. 1, pink shading), only negative values (Fig. 1, blue shading), or if the interval

contains zero (Fig. 1, white).

Figures 2 and 3, respectively, displays spatial maps of the ML estimates of the shape and

scale parameter for the decadal maxima and decadal minima GEV models.

3 A discussion of the choice of spatial model

It is useful to briefly discuss how the spatial domain of the data set motivated the modeling

decisions described in the main text. Since the proxy data are analyzed on a 5◦ by 5◦ grid

there are a number of different ways to define the spatial models (see, e.g., Cressie [1993]

and Banerjee et al. [2004] for reviews) for the intercept and slope:

1. A lattice (or areal) model for the spatially-varying coefficients is defined by modeling

the conditional distribution of each grid cell given a neighborhood of adjacent grid

cells. Lattice models are only appropriate for gridded or area-referenced data, so while

applicable here, are not appropriate more generally for the analysis of heterogeneously

distributed proxy observations. This approach can be computationally efficient due

to sparse covariance matrices, but has the disadvantage that prediction at unobserved

grid cells can be non-trivial, unless carefully planned for (e.g., suppose we wish to

predict the parameters of the extreme value distribution in the center of the map shown

in Fig. 1(a)). Banerjee et al. [2004, p.163] lists other computational and theoretical

problems with using the models in practice.

2. A geostatistical model defines the covariance between the spatially varying coeffi-
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cients in terms of functions of the locations and unknown statistical parameters. In

general, the geostatistical approach allows for more flexibility, is easier to adapt, and

is appropriate for dealing with point-referenced and/or Non-Gaussian data. Compu-

tation for these models can be more involved, but prediction at unobserved locations

is relatively straightforward.

The second approach is used here, making sure to only define the geostatistical model at the

centroids of each grid cell. While geostatistical models are defined over a continuum of spatial

locations, it make no sense for this analysis to make inference at non-centroid locations, given

that the observations are formed as averages over the gridboxes. Geostatistical models have

the advantage that they are a natural model if the observations are not gridded data sources

– as is common for paleoclimate series.

3.1 The chordal distance

The chordal distance, || · ||, used in the paper is defined by

||si − si′ ||
2 = 63712

[
(cos(si,1ζ) cos(si,2ζ)− cos(si′,1ζ) cos(si′,2ζ))

2+

(cos(si,1ζ) sin(si,2ζ)− cos(si′,1ζ) sin(si′,2ζ))
2 + (sin(s1,iζ)− sin(s1′,iζ))

2
]
,

with ζ = π/180.

4 Prior specifications

Independent priors are assumed for the scale and shape parameters, 1/σ ∼

Gamma(rσ, sσ); ξ ∼ N(mξ, v
2
ξ ), where Gamma(r, s) denotes a Gamma distribution with rate

r and shape s, and N(m, v2) denotes a normal distribution with mean m and variance v2.

The six parameters which define the spatially varying coefficient models for the intercepts
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and slopes are given priors that are mutually independent, and independent of σ and ξ, with

the following parametric forms:

λα ∼ N3(mα,λ, v
2
α,λI);

φα ∼ Gamma(rα,φ, sα,φ);

1/τ 2α ∼ Gamma(rα,τ2, sα,τ2);

1/ω2
α ∼ Gamma(rα,ω2 , sα,ω2);

λβ ∼ N3(mβ,λ, v
2
β,λI);

φβ ∼ Gamma(rβ,φ, sβ,φ);

1/τ 2β ∼ Gamma(rβ,τ2, sβ,τ2).

1/ω2
α ∼ Gamma(rα,ω2 , sα,ω2);

These priors distribution in turn depend on hyperparameters, which will be treated as fixed

constants, and are presented in Table 1.

With the exception of the spatial correlation parameters φα and φβ, the hyperparameters

correspond to fairly vague prior distributions. Initial results using vague priors for the spatial

correlation parameters indicated that there is limited information in the data to update the

prior belief about these parameters. To allow for useful inference on other model parame-

ters, scientifically informative priors are used for the spatial correlation parameters. In the

absence of other information, the e-folding length scale (that is, the separation at which the

correlation falls to e−1) of annual mean surface temperature anomalies was used as a rough

guide in specifying these priors. Figure 3 of Hansen and Lebedeff [1987] suggests an e-folding

length scale of about 1750km in the mid- to high- latitudes, while Mann and Park [1993]

and Tingley and Huybers [2010] estimate length scales of 1500km and 1800km, respectively,

using global data. Informed by these studies, identical Gamma priors are chosen for φα

and φβ, with means of 1000km and, to allow for a fair amount of uncertainty, 5th and 95th
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Table 1: A list of the hyperparameters used in the Bayesian hierarchical models for both the

decadal maxima and decadal minima.

Parameter Hyperparameters

σ rσ = 0.01 ; sσ = 0.01

ξ mξ = 0 ; v2ξ = 1

λα mα,λ = (0, 0)T ; v2α,λ = 100

φα rα,φ = 10 ; sα,φ = 0.01

τ 2α rα,τ2 = 0.01 ; sα,τ2 = 0.01

ω2
α rα,ω2 = 0.01 ; sα,ω2 = 0.01

λβ mβ,λ = (0, 0)T ; v2β,λ = 100

φβ rβ,φ = 10 ; sβ,φ = 0.01

τ 2β rβ,τ2 = 0.01 ; sβ,τ2 = 0.01

ω2
β rβ,ω2 = 0.01 ; sβ,ω2 = 0.01

percentiles of 542.5km and 1570.5km. Fig. 4(a) shows the prior density for φβ (equivalently

for φα). A prior mean is chosen smaller than the values suggested in Hansen and Lebedeff

[1987], Mann and Park [1993] and Tingley and Huybers [2010] as our aim is to model spatial

structure in the limited spatial domain considered here. In addition, there is no simple way

to link the characteristic length scale of instrumental temperature anomalies to that for the

distributional parameters governing extremal behavior in climate-sensitive tree ring series, so

the studies of the instrumental record are used as no more than a rough guide. A sensitivity

study indicated the results are robust to moderately different priors for φα and φβ.
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5 The full conditional distributions used in the Markov

chain Monte Carlo algorithm

Here are the steps required to carry out the MCMC algorithm for the results presented in

the main article. Throughout, let V (τ 2α, φα, ω
2
α) = τ 2αR(φα) + ω2

αI.

Update σ and ξ:

π(σ, ξ|y, θ \ {σ, ξ}) ∝




I∏

i=1

N(si)∏

j=1

f(Mj(si)|ηj(si), σ, ξ)


π(σ)π(ξ).

(In the above equation, θ \ {σ, ξ} denotes the parameter vector θ excluding the parameters

σ, and ξ). A Metropolis-Hastings symmetric random walk update is used on the log σ and

ξ parameters. Suppose the walk is at log σ and ξ. For constants κ1 and κ2, log σ
new ∼

N(log σ, κ1) and ξnew ∼ N(ξ, κ2) are propsed. The new values are accepted with probability

min(eα, 1) where

α =

[
∑

i

∑

j

log(Mj(si)|ηj(si), σ
new, ξnew) + log π(σnew) + log σnew + log π(ξnew)

]
−

[
∑

i

∑

j

log f(Mj(si)|ηj(si), σ, ξ) + log π(σ) + log σ + log π(ξ)

]
,

and stay at the current values otherwise.

Update α(si) and β(si) for each location si (i = 1, . . . , I): Let α−i denote the vector

α without the ith element α(si), and let β−i denote the vector β without the ith element

β(si). Then

π(α(si), β(si)|y, θ \ {α(si), β(si)})

∝



N(si)∏

j=1

f(Mj(si)|ηj(si), σ, ξ)


π(α(si)|α

−i,λα, τ
2
α, φα, ω

2
α)π(β(si)|β

−i,λβ, τ
2
β , φβ, ω

2
β).

Note that

α(si)|α
−i,λα, τ

2
α, φα ∼ N(mi, v

2
i ),
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where

mi = (Xλα)i + V (τ 2α, φα, ω
2
α)

i,−iV (τ 2α, φα, ω
2
α)

−i,−i(α−i − (Xλα)
−i),

v2i = (V (τ 2α, φα, ω
2
α)

−i,−i − V (τ 2α, φα, ω
2
α)

i,−iV (τ 2α, φα, ω
2
α)

−i,−iV (τ 2α, φα, ω
2
α)

−i,i).

A similar result holds for β. In the above formulae, M−i,−j means a matrix M without row

i and without column j, and M i,−j means select row i of matrix M but leave out column j.

A Metropolis-Hastings symmetric random walk update is used on these two parameters. Sup-

posing the walk is at α(si) and β(si), α
new(si) ∼ N(α(si), κ1) and βnew(si) ∼ N(β(si), κ2)

are proposed for positive variances κ1 and κ2, and these new values are accepted with prob-

ability min(eα, 1) where

α =

{
N(si)∑

j=1

log f(Mj(si)|α
new(si) + βnew(si)aj(si), σ, ξ) +

log π(αnew(si)|α
−i,λα, τ

2
α, φα, ω

2
α) + log π(βnew(si)|β

−i,λβ, τβ, φβ, ω
2
β)

}
−

{
N(si)∑

j=1

log f(Mj(si)|α(si) + β(si)aj(si), σ, ξ) +

log π(α(si)|α
−i,λα, τ

2
α, φα, ω

2
α) + log π(β(si)|β

−i,λβ, τ
2
β , φβ, ω

2
β)

}
.

Update λα: (The update for λβ is similar.)

π(λα|y, θ \ λα) ∝ π(α|λα, τ
2
α, φα)π(λα),

and hence we sample λα from a NI(P
−1q, P−1) distribution where

P = XTV (τ 2α, φα, ωα)
−1X + Iv−1

α,λ; q = XTV (τ 2α, φα, ωα)
−1α+ Iv−1

α,λmα,λ.

Update τ 2α, φα, and ω2
α: (The update for τ 2β , φβ, and ω2

β is similar.)

π(τ 2α, φα, ω
2
α|y, θ \ {τ 2α, φα, ω

2
α}) ∝ π(α|λα, τ

2
α, φα, ω

2
α)π(τ

2
α)π(φα)π(ω

2
α)
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A Metropolis-Hastings symmetric random walk update is used on the log scales for these

three parameters. Suppose the walk is at log τ 2α, logφα, and log ω2
α. For a constant 3 × 3

positive definite matrix Λ, (log τ 2 new
α , logφnew

α , logω2 new
α )T ∼ N3((log τ

2
α, logφα, logω

2
α)

T ,Λ)

are proposed. The new values are accepted with probability min(eα, 1) where

α =
[
log π(α|λα, τ

2 new
α , φnew

α )+

log π(τ 2 new
α ) + log τ 2 new

α + log π(φnew
α ) + log φnew

α + log π(ω2 new
α ) + logω2 new

α

]
−

[
log π(α|λα, τ

2
α, φα)+

log π(τ 2α) + log τ 2α + log π(φα) + logφα + log π(ω2
α) + log ω2

α

]
,

and stay at the current values otherwise.

6 A graphical illustration of the Bayesian learning

As an illustration of the range of learning in our model, Fig. 4 compares the prior density

(in gray) and posterior density (in black) for the parameters φβ and λβ,3 of the decadal

maxima model. There is a minor positive shift in the posterior values for the spatial range

parameter φβ as compared to the prior, indicating very weak learning about the length

scales in the decadal maxima model. In contrast, the posterior distribution for the spatial

intercept parameter λβ,3 changes dramatically from the vague prior distribution, indicating

strong learning.

7 Diagnostics and model comparisons

The posterior means of the scale and shape parameters (σ and ξ), as well as the location

parameters, ηj(s), for each decade j and centroid s, are calculated for the fits to both the

maxima and the minima. Following [Coles, 2001, Section 6.2.3, p.110], we calculate the
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standardized variable, Zj(si), at each decade j and centroid si via

Zj(si) =
1

ξ̃
log

{
1 + ξ̃

(
Mj(si)− η̃j(si)

σ̃

)}
,

where here a bar over a parameter is taken to denote the posterior mean of that parameter

calculated from the MCMC output. We obtain a quantile-quantile plot for the maxima for

each location by ordering the {Zj(si)} values into order statistics {Z(j)(si)} and plotting the

pairs

{(Z(j)(si),− log(− log(j/(N(si) + 1)))) : j = 1, . . . , N(si)},

on a scatterplot. Fig. 5 (respectively Fig. 6) shows the quantile-quantile plots for the maxima

(respectively minima) models fit in the main article. These quantile plots show that the GEV

models fit better for the decadal maxima than for the decadal minima. The lack of fit for the

minima generally occurs for only a small fraction of points in the lower tail, indicating that,

overall, the GEV models are still a reasonably good choice for the minima. In particular,

the model misspecification is not sufficiently substantial to impact the general conclusions

about spatial and temporal trends discussed above. In spite of evidence for the model

misspecification being weak, we nevertheless fit a number of other models to the decadal

maxima and minima series to ensure that our conclusions are robust to variations of the

modeling assumptions discussed in the text:

1. A simpler model that included no covariate for latitude and no nugget terms (ω2
α and

ω2
β) in the models for the spatially-varying intercept and slope parameters.

2. A model that included the covariate for latitude but removed both nugget effects.

3. A more general model that allowed the scale parameters to vary by spatial location,

with log σ(si) ∼ N(mσ, vσ), conditionally independent over locations. Priors were then

necessary for mσ and vσ in order to learn across locations.
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While there were minor differences in the posterior summaries of certain the parameters un-

der these different GEV models, we did not detect any significant differences in the quantile-

quantile plots, or in the posterior summaries of the slope parameter, β(s). We chose the

model presented in the article, because we believe it accurately allows us to model and inter-

pret the nonstationary spatial effects in the intercept and slope parameters (e.g., the effect

of latitude is important and should be included in the model), without overly complicating

matters by including a spatially varying scale parameter.
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Figure 1: (a) ML estimates of the temporal trend in the location parameter for the site-

by-site maxima GEV models (Eqs. (2) and (3)). In each box, the top number is the ML

estimate of the slope, and the bracketed lower number is the standard error (an asterisk

indicates that there was not enough data to reliably estimate the standard error). Pink

shading indicates that the 90% confidence interval for the slope parameter at that location

contains only positive values (i.e. interval is entirely above 0), while blue shading indicates

that the 90% confidence interval contains only negative values. (b) As in (a), but for the

GEV model for the minima.
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Figure 2: (a) The ML estimates of the scale parameter in the site-by-site maxima GEV

models. In each box, the top number is the ML estimate of the scale parameter, and the

bracketed lower number is the standard error (an asterisk indicates that there was not enough

data to reliably estimate the standard error) (b) As in (a), but for the GEV model for the

minima.
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Figure 3: (a) The ML estimates of the shape parameter in the site-by-site maxima GEV

models. In each box, the top number is the ML estimate of the shape parameter, and the

bracketed lower number is the standard error (an asterisk indicates that there was not enough

data to reliably estimate the standard error) (b) As in (a), but for the GEV model for the

minima.
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Figure 4: (a) A comparison of the prior (in gray) and posterior (in black) densities for

the spatial correlation parameter φβ in the decadal maxima model. (b) The corresponding

comparison for the spatial intercept parameter λβ,3.
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Figure 5: Quantile-quantile plots at all locations evaluatedat the posterior mean values of

the parameters of the maxima model. The x scales shows the ordered standardized value

z(j), and the y scale shows the − log(− log(j/(N(si) + 1))) [Coles, 2001, p.110]
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Figure 6: As Fig. 5, but for the parameters of the minima model.
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