1. [10 points] Please refer to the Problem 1 on the Take-Home Portion.
 a. [5 points] If the column rank of the design matrix X is not full, find the estimable linear function(s) of β_1 and β_2.
 b. [5 points] Let $\hat{\beta}_1$ denote the ordinary least squares (OLS) estimator of β_1. Obtain the efficiency of $\hat{\beta}_1$ relative to $\hat{\beta}_1$, i.e., $\text{var}(\hat{\beta}_1) / \text{var}(\hat{\beta}_1)$.

2. [15 points] Please refer to the Problem 2 on the Take-Home Portion.
 a. [5 points] Show that the Pure Error Sum of Squares, based on $\{(Y_{ijk} - \bar{Y}_j)_i, i, j, k = 1, 2\}$, and the BLUE of $\tau_1 - \tau_2$ are independently distributed.
 b. [5 points] Find the variances of the OLS and BLUE estimators of $\tau_1 - \tau_2$ in part e.
 c. [5 points] Explain the differences, if any, between the F-tests corresponding to the full model and the model without interactions in part f.

3. [5 points] Please refer to the Problem 4 on the Take-Home Portion. Show that each component of $K'b$ in part e of the problem is estimable (so that the hypothesis is testable).

4. [10 points] Explain why each of the following statements is valid or not!
 a. [2 points] Let \hat{Y} denote the projection of Y onto the column space of the matrix X in a general linear model. The correlation between \hat{Y} and $e = Y - \hat{Y}$ is always positive.
 b. [2 points] The F-test of a non-testable hypothesis $H_0 : K'\beta = m$, just ignores the linear functions in H_0 that do not belong to the space $C(X')$.
 c. [2 points] If the F-test rejects the hypotheses $H_0 : \tau_1 = \tau_2 = \cdots = \tau_k$ in an ANOVA model, then at least one pair-wise difference must be declared as non-zero according to the Bonferroni Method.
 d. [2 points] Refer to Problem 5, part b on the Take-Home Portion. Let A denote the matrix in the quadratic form $Q = YAY$. Then the matrix A is non-negative definite.
 e. [2 points] Refer to Problem 3, part b on the Take-Home Portion. For any vector l such that $l \perp C(X)$, the conditional distribution of $l'Y$ given XY is the same as its marginal distribution.