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Summary
In high-dimensional regression, grouping pursuit and feature selection have their own merits while com-

plementing each other in battling the curse of dimensionality. To seek a parsimonious model, we perform

simultaneous grouping pursuit and feature selection over an arbitrary undirected graph with each node cor-

responding to one predictor. When the corresponding nodes are reachable from each other over the graph,

regression coefficients can be grouped, whose absolute values are the same or close. This is motivated from

gene network analysis, where genes tend to work in groups according to their biological functionalities.

Through a nonconvex penalty, we develop a computational strategy and analyze the proposed method. The-

oretical analysis indicates that the proposed method reconstructs the oracle estimator, that is, the unbiased

least squares estimator given the true grouping, leading to consistent reconstruction of grouping structures

and informative features, as well as to optimal parameter estimation. Simulation studies suggest that the

method combines the benefit of grouping pursuit with that of feature selection, and compares favorably

against its competitors in selection accuracy and predictive performance. An application to eQTL data is

used to illustrate the methodology, where a network is incorporated into analysis through an undirected

graph.

Key words: Network analysis, nonconvex minimization, prediction, structured data.

1 Introduction and background

For high-dimensional structured data, the dimension of parameters of interest is usually high.

This occurs, for instance, in a study of identifying disease-causing genes for Parkinson’s

disease, where expression profiles of 22283 genes are collected from 105 patients with 55

disease versus 50 control cases; see [12] for more details. In such a situation, the number

of candidate genes p = 22283 is much higher than the sample size n = 105. To battle
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the “curse of dimensionality”, one must exploit additional dependency structures from gene

interactions, grouping and causal relationships. In other words, low-dimensional structures

must be identified and integrated with present biological knowledge for data analysis. The

central issue this article addresses is simultaneous estimation of grouping and sparseness

structures, called simultaneous grouping pursuit and feature selection, for structured data

over a given undirected graph.

In linear regression, we consider structured data, where dependencies among predictors

are loosely modeled by connectivity of an undirected graph. Grouping is only possible

when predictors are connected through paths over the graph, representing prior biological

information. In this setting, we identify homogeneous subgroups of regression coefficients in

absolute values, including the zero-coefficient group (feature selection). This investigation

is motivated from the foregoing study, where simultaneous grouping pursuit and feature

selection becomes essential over a network describing biological functionalities of genes.

Grouping pursuit has not received much attention in the literature. There is a paucity

of literature for guiding practice. Two types of grouping have been investigated so far,

identifying coefficients of the same values and absolute values, called Types I and II, respec-

tively. For Type I grouping, the Fused Lasso of [17] introduces a L1-regularization method

for estimating homogeneous subgroups in a certain serial order; [15] proposes a nonconvex

method for all possible homogeneous subgroups; [11] studies parameter estimation of the

Fused Lasso. For Type II grouping, the OSCAR [2] suggests pairwise L∞-penalties, and [10]

employs a weighted Lγ-regularization over a graph, and [7] uses a Type I grouping method

involving the pairwise sample correlations. It is Type II grouping that we shall study here.

Yet, simultaneous grouping pursuit and feature selection over an arbitrary undirected graph

remains under-studied. In particular, neither the interrelation between grouping pursuit and

feature selection nor the impact of graph on grouping is known.

One major issue in feature selection is that highly correlated predictors impose a chal-
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lenge, that is, if some predictors are included in a model then predictors that are highly

correlated with them tend to be excluded in the model. This results in inaccurate feature

selection. To resolve this issue, several attempts have been made. Adaptive model selection

corrects the selection bias through data-driven penalty [13], and Elastic Net [26] encour-

ages highly correlated predictors to stay together by imposing an additional ridge penalty.

Relevant works can be founded in [8, 19, 21]. Despite progress, this issue remains unsettled.

Embedding feature selection into the framework of grouping pursuit, we study simulta-

neous grouping pursuit and feature selection through a nonconvex method. As to be seen,

the method, combining the benefit of grouping pursuit with that of feature selection, out-

performs either alone in predictive performance as well as accuracy of both grouping pursuit

and feature selection.

This article establishes three main results. First, grouping pursuit and feature selection

are complementary through the proposed method. On one hand, grouping pursuit guides

feature selection to yield more accurate selection than that without it. This resolves the

aforementioned issue of feature selection, because highly correlated predictors can be set to

be informative as an entire group when they are grouped together through grouping pursuit.

On the other hand, accuracy of grouping pursuit is enhanced through feature selection by

removing the group of redundant predictors. Second, simultaneous grouping pursuit and

feature selection is an integrated process, improving a model’s predictive performance by

reducing estimation variance while maintaining roughly the same amount of bias. Third,

a graph plays a critical role in the process of grouping pursuit and feature selection. A

“sufficiently precise” graph, to be defined in Definition 2, enables the proposed method to

handle the least favorable situation in which informative or non-informative predictors are

perfectly correlated, which is impossible for other feature selection methods.

Technically, we derive a finite-sample error bound for accuracy of grouping pursuit and

feature selection of the proposed method, based on which we prove that the method consis-
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tently reconstructs the unbiased least squares estimator given the true grouping, called the

oracle estimator in what follows, as n, p → ∞. This permits roughly exponentially many

predictors in p = exp
(
n Cmin

20σ2p0

)
, for grouping pursuit consistency and feature selection con-

sistency, where σ2 is the noise variance and Cmin a quantity to be introduced later in (6).

In addition, the optimal performance of the oracle estimator is recovered by the proposed

method in parameter estimation. Most strikingly, if the graph provides a sufficient amount

of information regarding grouping, then the proposed method continues to do so even when

informative or non-informative predictors are perfectly correlated, whereas feature selection

alone is inconsistent without grouping pursuit [14].

To demonstrate utility of the proposed method, we analyze a dataset consisting of 210

unrelated individuals in [18], where the DNA single nucleotide polymorphisms (SNPs) data

are obtained from the International HapMap Project, together with the expression data from

lymphoblastoid cell lines with the Illumina Sentrix Human-6 Expression BeadChip. Then

we identify some SNP locations that map cis-acting DNA variants for a representative gene,

GLT1D1.

The article is organized in six sections. Section 2 introduces the proposed method,

followed by computational developments in Section 3. Section 4 is devoted to a theoretical

analysis of the proposed method for oracle properties. Section 5 performs some simulations

and demonstrates, in simulations, that the proposed method compares favorably against

some competitors. An application to analysis of SNPs data is presented as well. Section 6

contains technical proofs.

2 Proposed method

Consider a linear model in which responses Yi depends on a vector of p predictors:

Y = (Y1, · · · , Yn)T = Xβ0 + ε =

p∑
i=1

β0
i xi + ε, ε ∼ N (0, σ2Ip×p), (1)
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where β0 = (β0
1 , · · · , β0

p)
T is a vector of regression coefficients, and X is independent of

random error ε. In (1), our goal is to estimate homogeneous subgroups of components of β

in sizes, including the zero-coefficient group of β, particularly when p greatly exceeds n.

In (1), each predictor corresponds to one node over a given undirected graph G = (N , E),

describing prior knowledge concerning grouping, where N = {1, · · · , p} is a set of nodes,

and E consists of edges connecting nodes. If nodes i and j are reachable from each other,

then predictors xi and xj can be grouped; otherwise, they are impossible.

For simultaneous grouping pursuit and feature selection, we propose a nonconvex regu-

larization cost function to minimize through pairwise comparisons over G:

min
β∈Rp

g(β) ≡ min
β∈Rp

(1

2
‖Y −Xβ‖2 + λ1p1(β) + λ2p2(β)

)
,

where p1(β) =

p∑
j=1

Jτ (|βj|), p2(β) =
∑

(j,j′)∈E

Jτ
(∣∣|βj| − |βj′ |∣∣), (2)

where Jτ (x) = min(x
τ
, 1) is a surrogate of the L0-function [16]; and λ = (λ1, λ2) and τ are

nonnegative tuning parameters. In (2), grouping penalty p2(β) controls only magnitudes

of differences or sums of coefficients ignoring their signs over G. Through pj(β); j = 1, 2,

simultaneous grouping pursuit and feature selection is performed by adaptive shrinkage to-

ward unknown locations and the origin jointly, where only large coefficients and pairwise

differences are shrunken.

In (2), the proposed method is designed to outperform grouping pursuit alone and feature

selection alone, through tuning two regularizers. Moreover, the method is positively impacted

by the prior information specified by the given graph. These aspects will be confirmed by

our theoretical analysis in Section 5.

To understand the role that p2(β) plays, we now examine alternative forms of penalties

for grouping. Five forms of p2(β) have been proposed, including Elastic Net with p2(β) =∑p
j=1 β

2
j = 1

2(p−1)

∑
j<j′

(
(βj − βj′)

2 + (βj + βj′)
2
)
, a graph version of Elastic Net [8] with

p2(β) =
∑

(j,j′)∈E
( βj√

dj
− βj′√

dj′

)2
with di being the number of direct neighbors of node xi
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in G, the OSCAR with p2(β) =
∑

j<j′ max(|βj|, |βj′ |), and a weighted penalty [10] with

p2(β) =
∑

(j,j′)∈E 21/γ
′( |βj |γ

wj
+
|βj′ |γ

wj′

)1/γ
, 1
γ

+ 1
γ′

= 1 and weight factor w, and [7] proposes

p2(β) =
∑

(j,j′)∈E |βj − sign(ρ̂jj′)βj′|), where sign(ρ̂jj′) is the sign of the sample correlation

between predictors xj and xj′ . Although these grouping penalties and their variants can

improve accuracy of feature selection, additional estimation bias may occur due to strict

convexity of p2(β) as in the Lasso case [23] or due to possible graph misspecification. For

instance, additional bias may be introduced by the grouping penalty in [7], when ρ̂jj′ wrongly

estimates the sign of β̂jβ̂j′ . Despite good empirical performance, statistical properties of these

methods have not been studied, regarding grouping pursuit as well as its impact on feature

selection.

The proposed nonconvex grouping penalty resolves aforementioned issues of convex group-

ing penalties through adaptive shrinkage, because it shrinks small differences in absolute

values, as opposed to large ones. As a result, estimation bias is reduced as compared to

a convex penalty. This phenomenon has been noted in feature selection, where there is a

trade-off between estimation bias and feature selection consistency [25]. Most critically, as to

be shown later by both theoretical results and numerical examples, the nonconvex method

continues to perform well even when the graph is wrongly specified, which is unlike a convex

method.

3 Computation

This section develops a computational method for nonconvex minimization in (2) through

difference convex (DC) programming [1]. One key idea to DC programming is decomposing

the objective g(β) into a difference of two convex functions g(β) = g1(β)− g2(β), where
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g1(β) =
1

2
‖Y −Xβ‖2 +

λ1

τ

p∑
j=1

|βj|+
λ2

τ

∑
(j,j′)∈E

(
|βj + βj′ |+ |βj − βj′|

)
,

g2(β) =
λ1

τ

p∑
j=1

max(|βj| − τ, 0) +
λ2

τ

∑
(j,j′)∈E

max(2|βj| − τ, 2|βj′| − τ, |βj|+ |βj′|).

Our unconstrained DC method is then summarized as follows.

Algorithm 1:

Step 1. (Initialization) Supply an initial estimate β̂(0), for instance, β̂(0) = 0. Specify

precision tolerance level ε > 0.

Step 2. (Iteration) At iteration k + 1, compute β̂(k+1) by solving subproblem

min
β∈Rp

(
g1(β)− 〈β,∇g2(β̂(k)), 〉

)
(3)

where ∇g2(β̂(k)) is a gradient vector of g2(β) at β̂(k) and 〈·, ·〉 is the inner product.

(Perturbation) For each j, if |βj| = τ or there exists j′ such that (j, j′) ∈ E and
∣∣|βj|−|βj′ |∣∣ =

τ , we perturb βj by βj ± ε∗ to strictly decrease the cost function.

Step 3. (Stopping rule) Terminate when g(β̂(k+1))− g(β̂(k)) ≤ ε.

Next we present some computational properties of Algorithm 1.

Theorem 1 For any β, if |βj| = τ for some j; 1 ≤ j ≤ p, or
∣∣|βj| − |βj′|∣∣ = τ for some

(j, j′); j′ 6= j, then we can perturb the βj to strictly decrease the value of g(β) in (2).

Moreover, Algorithm 1 converges exactly in finite iteration steps from any initial value.

The finite convergence property of Algorithm 1 is unique, due primarily to piecewise lin-

earity of pj(β); j = 1, 2. However, other smooth non convex (differentiable) penalties may

not possess this computationally attractive feature.

4 Theory

This section considers a constrained L0-version of (2) for theoretical investigation:

7



min
β∈Rp

S(β) =
1

2

∥∥Y −Xβ∥∥2
, subject to

p∑
j=1

I(|βj| 6= 0) ≤ C1,
∑

(j,j′)∈E

I
(∣∣|βj| − |βj′ |∣∣ 6= 0

)
≤ C2. (4)

Moreover, we study a constrained computational surrogate of the L0-version (4):

min
β∈Rp

S(β) =
1

2

∥∥Y −Xβ∥∥2
, subject to

p∑
j=1

Jτ (|βj|) ≤ C1,
∑

(j,j′)∈E

Jτ
(∣∣|βj| − |βj′|∣∣) ≤ C2, (5)

where the three non-negative tuning parameters (C1, C2, τ) control two-level adaptive shrink-

age toward unknown locations and the origin. As discussed in Section 3, the DC method

described in Algorithm 1 targets at a local minimizer of (2), which can be viewed a convex

relaxation of (4) or (5).

With regard to simultaneous grouping pursuit and feature selection, we will prove that

global minimizers of (4) and (5) reconstruct the ideal “oracle estimator” as if the true group-

ing were available in advance. As a result of the reconstruction, key properties of the oracle

estimator are simultaneously achieved by the proposed method.

4.1 The oracle estimator

Throughout this section, we write the n×p design matrix X = (x1, · · · ,xp), where xi is the

ith column of X. Denote by λmin
(
A
)

the smallest eigenvalue of a square matrix A. For any

vector β ∈ Rp, rewrite β as (βI0 ,βI1 , · · · ,βIK ), where βI0 = 0, βIj = (αj1Ij1 ,−αj1Ij2)T ;

j = 1, · · · , K, is a vector of length |Ij|, with Ij = Ij1 ∪ Ij2 and Ij1 ∩ Ij2 = ∅, consisting

of two disjoint subgroups with coefficients being opposite signs, where |Ij1| = 0 or |Ij2| = 0

is permitted. Given β, let G =
(
I0, I1, · · · , IK

)
with Ij = Ij1 ∪ Ij2 , which partitions I =

{1, · · · , p}. Given G, define XG as
(∑

k∈I11 xk−
∑

k∈I12 xk, · · · ,
∑

k∈IK1
xk−

∑
k∈IK2

xk

)
to

be a collapsed matrix by collapsing columns of X according to G. Given B = {i1, · · · , i|B|} ∈

I, where i1 < · · · < i|B|, define XB as (xi1 , · · · ,xi|B|) to be a submatrix of X; and βB to be
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vector (βi1 , · · · , βi|B|) for any β ∈ Rp.

Definition 1 (Oracle estimator) Given the true grouping G0 =
(
I0

0 , I0
1 , · · · , I0

K0

)
with

I0
j = I0

j1∪I0
j2, j = 1, · · · , K0, the oracle estimator β̂ol = (β̂ol1 , · · · , β̂olp )T is β̂olk = α̂j if k ∈ I0

j1,

β̂olk = −α̂j if k ∈ I0
j2; j = 1, · · · , K0, and β̂olk = 0 if k ∈ I0

0 , where α̂ = (α̂1, · · · , α̂K0) =

argminα∈RK0
1
2

∥∥Y −XG0α∥∥2
.

The oracle estimator is the unbiased least squares estimate given the true grouping G0.

It reduces to the oracle estimator for feature selection alone when no homogeneous groups

exist for informative predictors.

4.2 Non-asymptotic probability error bounds

This section derives a non-asymptotic probability error bound for simultaneous grouping

pursuit and feature selection, based on which we prove that (4) and (5) reconstruct the oracle

estimator. This implies grouping pursuit consistency as well as feature selection consistency,

under one simple assumption, what we call the degree-of-separation condition.

Let S =
{
G 6= G0 : C1(G) ≤ p0;C2(G, E) ≤ c0

}
be a constrained set defined in (4),

with C1(G) =
∑p

j=1 I(|βj| 6= 0) = |I \ I0| and C2(G, E) =
∑

(j,j′)∈E I
(∣∣|βj| − |βj′|∣∣ 6= 0

)
=∑

0≤i<i′≤K
∑

j∈Ii,j′∈Ii′
I
(
(j, j′) ∈ E

)
, p0 = C1(G0) and c0 = C2(G0, E).

Let A ⊂ {1, · · · , p}, and A0 = I \ I0 whose size |A0| ≡ p0. Define SA =
{
G ∈

S : I \ I0 = A
}

to be a set of groupings indexed by set A of nonzero coefficients. Let

S∗i ≡ maxA:|A0\A|=i |SA| be the maximal of SA satisfying |A0 \ A| = i and further let S∗ =

exp
(

max1≤i≤p0
logS∗i
i

)
. Finally, let K∗i ≡ maxG∈S:|A0\A|=iK(G), with K∗ = max1≤i≤p0

K∗i
i

.

The degree-of-separation condition is stated as follows.

Cmin ≥ d0
2 log p+K∗ + 2 logS∗

n
σ2, (6)

where d0 > 10 is a constant, Cmin ≡ minG∈S
‖(I−PG)XA0

β0
A0
‖2

|A0\A|n , and PG is a projection onto the

linear space spanned by columns of the collapsed design matrix XG. Here Cmin describes
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the least favorable situation for simultaneous grouping pursuit and feature selection, and

characterizes the level of difficulty of the underlying problem.

In (6), the graph specification may have an impact on Cmin. We introduce the notion

of “consistent” graph in Definition 2. A “consistent” graph is a minimal requirement for

reconstruction of the oracle estimator, where there exists a path in E connecting any two

predictors in the same true group.

Definition 2 (“Consistent” graph) An undirected graph
(
N , E

)
is consistent with re-

spect to the true grouping G0 =
(
I0

0 , · · · , I0
K0

)
, if for any j = 1, · · · , K0, E|I0j , the subgraph

restricted on node set I0
j , is connected.

We now present our non-asymptotic probability error bounds for global minimizers of (4)

and (5) in terms of (Cmin, n, p, p0, σ
2), where p0, p may depend on n.

Theorem 2 (L0 method) If E is consistent with respect to G0, then for a global minimizer

of (4) β̂l0 with estimated grouping Ĝl0 at (C1, C2) = (p0, c0),

P
(
β̂l0 6= β̂ol

)
≤ exp

(
− n

10σ2

(
Cmin − 20σ2 log p

n
− 10σ2K

∗

n
− 10σ2 logS∗

n
)
)
. (7)

Under (6), P
(
Ĝl0 6= G0

)
≤ P

(
β̂l0 6= β̂ol

)
→ 0, and 1

n
E‖β̂l0 − β̂0‖2 =

(
1 + o(1)

)
1
n
E‖β̂ol −

β̂0‖2 =
(
1 + o(1)

)
K0

n
, as n, p→∞.

Theorem 3 (Surrogate method) If E is consistent with respect to G0, then for a global mini-

mizer of (5) β̂g with estimated grouping Ĝg when (C1, C2) = (p0, c0); τ ≤ 2σ
√

log p

2np3λmax

(
XTX

) ,

P
(
β̂g 6= β̂ol

)
≤ exp

(
− n

10σ2

(
Cmin − 20σ2 log p

n
− 10σ2K

∗

n
− 20σ2 logS∗

n
)
)
. (8)

Under (6), P
(
Ĝg 6= G0

)
≤ P

(
β̂g 6= β̂ol

)
→ 0, and 1

n
E‖β̂g−β̂0‖2 =

(
1+o(1)

)
1
n
E‖β̂ol−β̂0‖2 =(

1 + o(1)
)
K0

n
, as n, p→∞.

In Theorems 2 and 3, K∗ and S∗ need to be computed. Next we present some bounds

for (K∗, S∗).
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Corollary 1 If E is a fused graph, that is E = {(i, i+ 1) : i = 1, · · · , p− 1}, then

S∗ ≤
K0∑
i=1

(
p0

i

)
≤ pK0+1

0 , and K∗ ≤ K∗i ≤ K0; i = 1, · · · , K0 − 1. (9)

As a result, (2) and (3) reduce to

P
(
β̂l0 6= β̂ol

)
≤ exp

(
− n

10σ2

(
Cmin − 20σ2 log p

n
− 10K0σ

2 log p0

n
)
)
, (10)

P
(
β̂g 6= β̂ol

)
≤ exp

(
− n

10σ2

(
Cmin − 20σ2 log p

n
− 20K0σ

2 log p0

n
)
)
. (11)

For the purpose of comparing simultaneous grouping pursuit and feature selection with

feature selection alone without grouping pursuit, we present (7) and (8) in a parallel manner

as that in [14] for feature selection alone, where the degree of separation for feature selection

alone is CT
min = infA 6=A0,|A|≤p0

((
|A0 \ A|n

)−1‖(I − PA)XA0β
0
A0
‖2
)

, which is in contrast to

Cmin in (6). Specifically, the feature selection estimators in [14] correspond to that in (4)

and (5) with (C1, C2) = (p0,+∞). By the necessary condition in Theorem 1 of [14], the

necessary condition for feature selection alone requires that

CT
min ≥ d1

log p

n
σ2, as n, p→ +∞ (12)

for some d1 > 0. Note that the lower bound of Cmin in (6) can be larger than that of CT
min

in (12). This generally means that, in terms of complexity, the problem of recovering oracle

estimator in the sense of simultaneous grouping pursuit and feature selection is more difficult

than that of feature selection alone.

To study the impact of a graph on simultaneous grouping pursuit and feature selection,

we introduce another notion “sufficiently preciseness” in Definitions 3. A sufficiently precise

graph is consistent, and the number of correctly connected edges for each true group is two

times higher than that of wrongly connected ones, where within group connections refer to

correct connections whereas between group connections are defined to be wrongly corrected.

Definition 3 (“Sufficiently precise” graph) For any index sets Ij; j = 1, 2, I1 ∩ I2 =

∅, we define dE(I1, I2) =
∑

i∈I1;j∈I2 I
(
(i, j) ∈ E

)
to be the number of connections between
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them over E. A graph is sufficiently precise with respect to G0, if it is a consistent graph and

satisfies: for any j = 0, · · · , K0, the number of within-group connections exceeds two times

that of between-group connections for I0
j , that is, dE(E, I0

j \ E) > 2dE(E,∪i 6=jI0
i ), for any

E ⊂ I0
j .

Lemma 1 below establishes a connection between Cmin and CT
min, and describes their

behaviors in presence of perfectly correlated predictors.

Lemma 1 (Level of difficulty) For any consistent graph,

Cmin ≥ η2cmin, CT
min ≥ γ2cmin, and γ ≥ η, (13)

where cmin = min|B|≤2|I\I00 |,I\I00⊆B λmin

(
n−1XT

BXB

)
, η2 = min

(
min(j,j′):j∼j′,|β0

j |6=|β0
j′ |

1
2
(|β0

j |−

|β0
j′ |)2, γ2

)
, and γ = minj∈A0 |β0

j |. If the graph is sufficiently precise, and I0
i can be further

partitioned into perfectly correlated subgroups I0
i = {Ai1, · · · , Aini}; i = 1, · · · , K0, then

Cmin ≥ cGmin min
α,A
‖γ −Aα‖ > 0, and CT

min = 0, (14)

where A = (ans) is a N0×(K0−1) matrix with ans ∈ Z, N0 =
∑K0

i=1 ni,
∑K0−1

s=1 |ans| ≤ |Aim|,

γ = (γ1, · · · , γN0) with γi = |Aim|β0
i ; n =

∑i−1
j=1 nk +m; m = 1, · · · , ni, i = 1, · · · , K0, and

cGmin = min
B:|B∩(I\I00 )|≤p0,|B∩I00 |≤p0,|B∩Aim|≤1,i=1,··· ,K0,m=1,··· ,ni

λmin

(
n−1XT

BXB

)
.

Here cGmin = cmin in absence of perfectly correlated predictors, and cGmin ≥ cmin otherwise.

Lemma 1 says that simultaneous grouping pursuit and feature selection is generally more

difficult than feature selection alone, as described by the degree-of-separation condition for

Cmin and CT
min in (6) and (12). Importantly, the impact of grouping pursuit on feature

selection is evident in situations where some informative features are perfectly correlated.

When a graph is sufficiently precise, simultaneous grouping and feature selection continues

to work when Cmin > 0 by Lemma 1. However, any feature selection method breaks down

because of non-identifiable models when CT
min = 0, leading to inconsistent selection in view
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of the necessary condition in Theorem 1 of [14]. In other words, simultaneous grouping and

feature selection overcomes the difficulty of highly correlated features in feature selection.

Lemma 2 The results in Theorems 2 and 3 continue to hold for fixed p with n→ +∞ with

(6) replaced by limn→+∞ nCmin = +∞.

5 Numerical examples

5.1 Simulations

This section examines operating characteristics of the proposed method and compares it

against some competitors, through simulations, with regard to accuracy of grouping pursuit

as well as feature selection, in addition to accuracy of parameter estimation. The competitors

are OSCAR [2], GFlasso [7] and aGrace [8].

To measure accuracy of grouping pursuit and feature selection, we introduce four separate

metrics. For the accuracy of feature selection, we use false and negative positives for feature

selection, denoted by VFP =
∑p
j=1 I(β̂j 6=0,β0

j=0)

p−p0 I(p0 6= p) and VFN =
∑p
j=1 I(β̂j=0,β0

j 6=0)

p0
I(p0 6= 0).

For grouping pursuit, we consider false and negative positives for feature selection, that is,

GFP =
∑

(j,j′)∈E0 I(β̂jsign(β0
j )6=β̂j′sign(β0

j′ ))

|E0| I(|E0| > 0) and GFN =
∑

(j,j′)/∈E0 I(|β̂j |=|β̂j′ |)
p(p−1)/2−|E0| I

(
|E0| <

p(p − 1)/2
)
. Clearly, VFP , VFN , GFP and GFN are between [0, 1], with a small value

indicating high accuracy for variable selection and grouping pursuit.

To measure the performance of parameter estimation for β̂, we use predictive mean

squared error PMSE(β̂) = ‖Y test−Xtestβ̂‖2

ntest , where Y test,Xtest are test data and and

ntest is the sample size of the test data. In simulations, the values of PMSE are reported,

as well as values of (VFP ,VFN ,GFP ,GFN ).

Example 1 (Gene network: Large p but small n). Consider a regulatory gene

network example in [8], where an entire network consists of 200 subnetworks, each with

13



one transcription factor (TF) and its 10 regulatory target genes; see [8] for a display of

the network. For this network, each predictor is generated according to N (0, 1). To mimic

a regulatory relationship, the predictor of each target gene and the TF had a bivariate

normal distribution with correlation ρ = .2, .5, .9; conditional on the TF, the target genes are

independent. In addition, εi ∼ N (0, σ2
e) with σ2

e =
∑p
j (β0

j )2

4
. The true regression coefficients

are:

β0 =
(
2, 2/
√

10, . . . , 2/
√

10︸ ︷︷ ︸
10

,−2,−2/
√

10, . . . ,−2/
√

10︸ ︷︷ ︸
10

,

4, 4/
√

10, . . . , 4/
√

10︸ ︷︷ ︸
10

,−4,−4/
√

10, . . . ,−4/
√

10︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
p−44

)T
, p = 2200

Tables 1 and 2 about here

As suggested by Table 1, the proposed method compares favorably against its competitors

across all the situations, in terms of parameter estimation and accuracy of grouping pursuit

and feature selection. Interestingly, GFlasso and aGrace perform similarly. Furthermore,

all the graph-based methods performs reasonably well except Elastic Net where it does not

exploit the informative graph information.

To see the impact of grouping pursuit on feature selection and vice versa, we compare the

proposed method with (λ1, λ2) jointly against feature selection alone with (λ1, λ2 = 0), and

grouping pursuit alone with (λ1 = 0, λ2). As indicated in Table 2, simultaneous grouping

pursuit and feature selection outperforms either, as expected. The improvement in accuracy

of feature selection is large, as measured by V FP, V FN , where nearly perfect reconstruction

is evident. This is in contrast to accuracy of feature selection alone, where the false negative

rate is high for either, in the presence of highly correlated predictors with the TF-gene

correlation .9. This confirms our foregoing discussion about the impact of grouping pursuit

on feature selection. Meanwhile, feature selection also enhances grouping pursuit as evident

from an improvement over grouping pursuit alone.
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Example 2 (Impact of erroneous edges) To understand the impact of specification

of prior knowledge on a method’s performance, we consider the network in Example 1 with

a varying fraction of erroneous edges adding into the network, involving different correlation

structures among predictors. In set-up 1, we set the TF-gene correlation to be .9 with

independent TF’s. For set-up 2, the TF-TF correlation is set to be .5 so that the correlation

between the informative and noisy TF’s is .5. For both the set-ups, we randomly add

k = 0, 10, 100 edges between each active and other inactive nodes. As a result, the network

has p0k more edges than that in the previous example, where p0 is the number of active

nodes. In this case, the true regression coefficients are

β0 =
(

2, . . . , 2︸ ︷︷ ︸
11

,−2, . . . ,−2︸ ︷︷ ︸
11

, 4, . . . , 4︸ ︷︷ ︸
11

,−4, . . . ,−4︸ ︷︷ ︸
11

, 0, . . . , 0︸ ︷︷ ︸
p−44

)T
, p = 2200,

with σ2
e = 1. Moreover, we use the “oracle recovery rate”, defined as the percentage of times

that the oracle estimator is reconstructed over 100 simulation replications. The total number

of erroneous edges is 0, 440 and 4400. Results of Example 1 in presence of erroneous edges

are also reported in Table 4 with correlation .9 and the average number of erroneous edges

0, 2, 10.

Tables 3 and 4 about here

As suggested by Table 3, the proposed method performs best in terms of parameter

estimation and reconstruction of the oracle estimator across all the set-ups. As a result, it

yields accurate identification of grouping structures, as evident by nearly zero false positives

and negatives for grouping and feature selection V FP , V FN , GFP and GFN . Interestingly,

our algorithm gives a high percentage of reconstructing the oracle estimator across all the

situations, indicating that it has a high chance to produce a global minimizer that is the

oracle estimator with a high probability as suggested by Theorem 3. In fact, our method has

a recovery rate between 100% and 85% in set-up 1, whereas it has a rate from 78% to 73%

in set-up 2. Note that the recovery percentage depends on the design matrix. Overall, the
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level of difficulty for set-up 2 is higher, because of stronger correlations between informative

and noisy predictors.

Compared to other methods, GFlasso and aGrace perform slightly worse in parameter

estimation but much worse in terms of oracle reconstruction. These methods seem sensitive

to erroneous edges in the graph, especially in setup 2 where correlation between informative

and noise variables incur bias to GFlasso. Finally, neither OSCAR nor Elastic Net performs

well, because OSCAR is heavily biased and Elastic Net has not utilized the informative

knowledge specified by the graph.

Next we investigate sensitivity of erroneous edges of the specified graphs on performance

of a method. As suggested by Table 4, the oracle recovery rate dips from 67% to 35% as

the average number of erroneous edges increases from 0 to 10 in Example 1. However, in

Example 2, the proposed method does not seem sensitive, giving nearly unchanged PMSEs

and small differences in the oracle recovery rate, where the error variance is much smaller

with σ2
e = 1 compared to σ2

e = 20 in Example 1. The performance of aGrace and GFlasso

deteriorate significantly, as the number of erroneous edges increases from 10 to 100 for each

informative node. For aGrace, it has an elevated PMSE value from 1.11 to 1.45 and 1.55 in

set-ups 1 and 2. This is expected because aGrace incurs additional bias through erroneous

edges. For GFlasso, its PMSE values increase from 1.12 to 1.16 for k = 100 in set-up 1, but

from 1.12 to 1.36 for k = 10 and to 1.54 for k = 100. This is also expected because GFlasso

uses the correlations among variables as weights to alleviate bias, which can be affected by

erroneous edges between correlated predictors.

Finally, based on Theorem 2, Corollary 1 and our numerical experience, in addition to

the graph specification, the oracle recovery probability depends on error variance σ2, the

level of difficulty η2, sample size n and the number of predictors p. Our numerical results

suggest that our “sufficiently precise” condition for oracle recovery may be a bit conservative

but is still qualitatively correct in that given the rest are the same, the less erroneous edges

16



one have in the graph, the better chance one can recover the oracle.

Example 3 (Illustration of Corollary 1) The error bound in Corollary 1 suggests

that the recovery rate depends on the number of groups K0 and the level of difficulty η2.

We now perform a simulation study to confirm. Consider two scenarios

β0 =
(

1, . . . , 1︸ ︷︷ ︸
p0/K0

, 2, . . . , 2︸ ︷︷ ︸
p0/K0

, · · · , K0, . . . , K0︸ ︷︷ ︸
p0/K0

, 0, . . . , 0︸ ︷︷ ︸
p−p0

)T
, η2 = 1/2.

β0 =
(

3, . . . , 3︸ ︷︷ ︸
p0/K0

, 6, . . . , 6︸ ︷︷ ︸
p0/K0

, · · · , 3K0, . . . , 3K0︸ ︷︷ ︸
p0/K0

, 0, . . . , 0︸ ︷︷ ︸
p−p0

)T
, η2 = 9/2

with p0 = 100, p = 1000 and K0 = 2, 5, 10, 20. The correlation structure remains the same

as in Example 1 but has within-group correlation .9 with n = 200.

Tables 5 about here

As suggested by Table 5, the oracle recovery rate deteriorates dramatically in both scenarios

as K0 increases from 2 to 20, as well as PMSE. Moreover, the recovery rate in the second

scenario is higher with a smaller PMSE. This is in agreement with Corollary 1.

In conclusion, the proposed method performs well against its competitors in terms of

parameter estimation and identifying grouping structures. In addition, it is less sensitive to

the imprecise graph knowledge.

5.2 Data analysis: eQTL data

To study genetic variation, one important approach is identifying DNA sequence elements

controlling gene expressions. By treating a gene’s expression as a quantitative trait, one

can identify DNA loci regulating the gene expression, called eQTL, which bridges the gap

between genetic variants and clinical outcomes, providing biological insights into molecular

mechanisms underlying complex disease missed by genome-wide association studies. Fur-

thermore, there is increasing evidence showing that eQTLs are more likely to be disease risk

loci, or can be used to boost statistical power to detect disease loci [9, 24]. Such a genome-
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scale study utilizes DNA single nucleotide polymorphisms (SNPs) and gene expression data.

The current practice of eQTL analysis is limited to simple single gene-single SNP analysis,

which ignores joint effects of multiple SNPs. Here we apply the proposed method for a single

gene-multiple SNP analysis.

Our focus here is mapping cis-acting DNA variants for a representative gene, GLT1D1.

As in [18], we pre-process the data, and select SNPs lying within 500kb upstream of the

transcription start site (TSS) and 500kb downstream of the transcription end site (TES) of

gene GLT1D1. After monomorphic SNPs are removed, 1782 SNPs remain. As discussed

in [18], the standard approach uses a univariate (or marginal) least squares (U-OLS) by

regressing the expression level of GLT1D1 on each of the SNPs, coded as 0, 1 and 2, repre-

senting the count of the minor allele for the SNP. It is known that the standard approach

has some potential drawbacks for data of this type. First, physically nearby SNPs tend to

be correlated due to linkage disequilibrium. As a result, a true causal SNP may introduce

spurious associations of its nearby SNPs with gene expressions, leading to false positives.

Second, most of the genes are regulated by multiple factors or loci. This means that a

univariate analysis considering only one SNP a time can be inefficient. To overcome these

issues, we consider high-dimensional linear regression with the expression of gene GLT1D1

as our response and 1782 SNPs as our predictors, where simultaneous grouping pursuit and

feature selection is performed, and a graph is constructed based on pairwise sample correla-

tions exceeding a cut-off 0.6; see Figure 1 for display a subnetwork. Although this cut-off is

somewhat arbitrary, it has been used to construct co-expression networks [27].

For our SNPs data, the number of SNPs p = 1782 is much larger than n, but biologi-

cally only a few SNPs are expected to be relevant and the correlation structure of physically

nearby SNPs needs to be considered. This makes a compelling case for simultaneous group-

ing pursuit and feature selection to build a simpler model with higher predictive accuracy.

To capture the correlation structure induced by physical locations of SNPs, a graph is con-
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structed based on pairwise sample correlations, with a correlation stronger than 0.6 being

connected; see Figure 1 for a display of the graph. Also considered is a fused type of graph,

defined by a consecutive series order as in the Fused Lasso. For a comparison, we also ex-

amine the Lasso, TLP and OSCAR, where the first two perform feature selection alone and

the last one does grouping pursuit and feature selection. For each method, the tuning pa-

rameter selection is achieved by randomly dividing the samples into two subset, one training

set consisting of 140 samples, one tuning set consisting of 70 samples. Then, by applying

the cross-validated model to the whole data set, the prediction error (PE)’s are computed,

as well as the numbers of nonzero regression coefficients and homogeneous groups, based on

the tuning set for the expressions of GLT1D1.

As suggested in Table 6, the proposed method not only yields a parsimonious model with

the smallest mean PE but also includes one pair of physically nearby SNPs. To confirm our

analysis, note that the proposed method and TLP, the proposed method with λ2 = 0, both

tend to include a subset of those SNPs having significant p-values in the marginal analysis

of [18]. In contrast, the Lasso and TLP identify no grouping structure, and OSCAR is less

parsimonious, including many more SNPs with less significant marginal p-values.

Our final model contains one pair of physically nearby SNPs, locations 787 and 790; see

Table 7. Interestingly, adjacent locations 788 and 789 are not included in the model, because

of their small pairwise sample correlations with the other nearby locations. By comparison,

the fused type of graph does not seem promising, and other methods include more isolated

locations. Our statistical result can be cross-validated biologically through a confirmative

experiment focusing on the SNP regions near locations 787-790.

Figure 1, Tables 6 and 7 about here
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6 Discussion

This article proposes a method for high-dimensional least square regression, performing

simultaneous grouping pursuit and feature selection over an undirected graph describing

grouping information a priori. Our theoretical analysis indicates that the proposed method

as well as its computational surrogate reconstructs the oracle estimator even in difficult

situations involving highly-correlated predictors when the graph is precise enough. Our nu-

merical analysis suggests that the proposed method outperforms its competitors in accuracy

of selection in addition to estimation. In particular, we have illustrated the application of

our method to a single gene-multilocus eQTL analysis; its natural extension is to multiple

gene-multilocus eQTL analysis, as advocated by [22, 3], though our method differs from the

former two in that ours is built in a general framework of penalized regression.

In order for the proposed method to be useful, further investigation is necessary to

understand the interplay between grouping pursuit and feature selection.

7 Appendix

Proof of Lemma 1: Before proceeding, we introduce some notations. Let X̃ be a matrix

with column vectors (x̃1, · · · , x̃p), where x̃k = xk if k ∈
(
∪K0
j=1I0

j1

)
∪I0

0 ; x̃k = −xk otherwise.

In other words, X̃ is generated by flipping signs of columns of X when their indices are in

∪K0
j=1I0

j2. For any partition G = (I0, I1, · · · , IK) with Ii = Ii1 ∪ Ii2, i = 1, · · · , K, let

SG(k) = 1 if k ∈
(
∪Ki=1 Ii1

)
∪ I0 and SG(k) = −1 otherwise. For G ∈ S, let A = I \ I0, and

A0 = I \ I0
0 . Denote by sk = SG0(k)SG(k); k = 1, · · · , p.

To lower bound Cmin, note that c̃min = min|B|≤2|I\I00 |,I\I00⊆B λmin

(
n−1X̃T

BX̃B

)
= cmin,

because X̃T
BX̃B = XT

BXB for any B by definition. For G ∈ S, write XA0β
0
A0
−XGα as

K0∑
i=1

K∑
j=1

∑
k∈I0i ∩Ij

(S0
G(k)β0

k − skαj)x̃k +

K0∑
i=1

∑
k∈I0i \A

S0
G(k)β0

kx̃k +
K∑
j=1

∑
k∈Ij\(I\I00 )

skαjx̃k.
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Then ‖(I − PG)XA0β
0
A0
‖2 = minα∈RK ‖XA0β

0
A0
−XGα‖2 is lower bounded by

min
α∈RK

( K0∑
i=1

K∑
j=1

∑
k∈I0i ∩Ij

(SG0(k)β0
k − skαj)2 +

K0∑
i=1

∑
k∈I0i \A

(β0
k)

2 +
K∑
j=1

|Ij \ A0|α2
j

)
cminn ≡ I.

If I0
i \A 6= ∅ for some i; 1 ≤ i ≤ K0, then I ≥ ncmin

∑
k∈I0i \A

(β0
k)

2 ≥ ncminη
2. Otherwise,

I0
i \ A = ∅; i = 1, · · · , K0, implying that A0 ⊆ A. Note further that |A| ≤ |A0| for G ∈ S

by assumption. Then A0 = A. Hence I = minα∈RK
(∑K0

i=1

∑K
j=1

∑
k∈I0i ∩Ij

(SG0(k)β0
k −

skαj)
2
)
cminn. Next two cases are examined.

For each j; 1 ≤ j ≤ K, (a) if there exist two indices i′, i′′ with 1 ≤ i′ 6= i′′ ≤ K0 such

that I0
i′ ∩ Ij 6= ∅ and I0

i′′ ∩ Ij 6= ∅, then

I ≥ ncmin min
α∈RK

( ∑
k∈I0

i′∩Ij

(SG0(k)β0
k − skαj)2 +

∑
k∈I0

i′′∩Ij

(SG0(k)β0
k − skαj)2

)
≥ ncmin min

(j,j′):|β0
j |6=|β0

j′ |

1

2
(|β0

j | − |β0
j′|)2 ≥ ncminη

2;

otherwise, (b) there exists at most one index i∗ with 1 ≤ i∗ ≤ K0 such that Ij ⊆ I0
i∗ , or

G0 is coarser than G. This implies that C2(G, E) ≥ C2(G0, E) = c0, which in turn yields that

C2(G, E) > c0 when G 6= G0 by graph consistency. This contradicts to the tuning assumption

that C2(G, E) ≤ c0. The bound of I in (a) thus establishes (13).

For (14), two cases are considered for any G ∈ S: (c) if there exists an index subset of

length l∗ {i1, · · · , il∗} ⊆ {1, · · · , K0} and that of length (l∗−1) {j1, · · · , jl∗−1} ⊆ {1, · · · , K}

such that I0
i1
∪ · · · ∪ I0

il∗
⊆ Ij1 ∪ · · · ∪ Ijl∗−1

for some l∗ with 1 ≤ l∗ ≤ K; otherwise, (d) for

any l with 1 ≤ l ≤ K, {i1, · · · , il}, (I0
i1
∪ · · · ∪ I0

il
) * (Ij1 ∪ · · · ∪ Ijk) 6= ∅ for k < l.

For (c), let J = (A ∪ A0) \ (I0
i1
∪ · · · ∪ I0

il∗
), L(XJ ) = XJβ

0
J −

∑
k∈J

(∑K
j=1 αjI(k ∈

Ij)
)
xk, α = (αj1 , · · · , αjl∗−1

) ∈ Rl∗−1 and a
(m)
ts =

∑
k∈Aitm

±I(k ∈ Ijs); t = 1, · · · , l∗,

s = 1, · · · , l∗ − 1, m = 1, · · · , nt. For any G ∈ S, ‖(I − PG)XA0β
0
A0
‖2 is lower bounded by
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min
α

∥∥∥ l∗∑
t=1

β0
it

∑
k∈I0it

x̃k −
∑

k∈I0i1∪···∪I
0
il∗

x̃k

l∗−1∑
s=1

(±αjs)I(k ∈ Ijs) + L(XJ )
∥∥∥2

≥ min
α

∥∥∥ l∗∑
t=1

nt∑
m=1

|Aitm|β0
itzitm −

l∑
t=1

nt∑
m=1

(
zitm

( l∗−1∑
s=1

αjs
∑

k∈Aitm

±I(k ∈ Ijs)
))

+ L(XJ )
∥∥∥2

≥ min
α,a

(m)
ts

∥∥∥ l∗∑
t=1

nt∑
m=1

(|Aitm|β0
it −

l∗−1∑
s=1

αjsa
(m)
ts )zitm + L(XJ )

∥∥∥2

≥ ncGmin min
α,a

(m)
ts

l∗∑
t=1

nt∑
m=1

(|Aitm|β0
it −

l∗−1∑
s=1

αjsa
(m)
ts )2 ≥ ncGmin min

α,A
‖γ −Aα‖2,

implying (14).

For (d), we will show that it does not occur under sufficient preciseness. Suppose that (d)

does. By Hall’s Theorem [4], there exists a matching of {I0
1 ∪ · · · ∪I0

K0
} into {I1∪ · · · ∪IK}.

Without loss of generality, we may assume I1 ∩ I0
1 6= ∅, · · · , IK0 ∩ I0

K0
6= ∅. For D ⊆ I =

{1, · · · , p}, let dE(D) =
∑

i,i′∈D;i<i′ I
(
(i, i′) ∈ E

)
, and Iij = I0

i ∩ Ij. Then

2
(
C2(G, E)− C2(G0, E)

)
= 2
(
dE(I)−

K∑
j=0

dE(Ij)
)
− 2
(
dE(I)−

K0∑
i=0

dE(I0
i )
)

=
( K0∑
i=0

K∑
j=0

dE(Iij, I0
i \ Iij)

)
−
( K∑
j=0

K0∑
i=0

dE(Iij, Ij \ Iij)
)
. (15)

To simplify (15), consider two cases: (e) if I0
i * Ii thus I0

i \Iii 6= ∅ for any i; 0 ≤ i ≤ K0;

otherwise (f) the set I∗ ≡ {i : I0
i ⊆ Ii} is nonempty.

For (e), note that Iii 6= ∅, hence that I0
i \Iij 6= ∅ for any i 6= j; 0 ≤ i ≤ K0, 0 ≤ j ≤ K. By

sufficiently preciseness, dE(Iij, I0
i \Iij) > 2dE(Iij, Ij\Iij) > dE(Iij, Ij\Iij); i = 0, · · · , K0, j =

0, · · · , K, implying that C2(G, E) > C2(G0, E) = c0 in (15), which contradicts to the tuning

assumption that C2(G, E) ≤ c0.

For (f), let I1
∗ = {0, 1, · · · , K0} \ I∗ and I2

∗ = {0, 1, · · · , K} \ I∗. Now, I0
i ⊆ Ii, i ∈ I∗.

Since |∪K0
i=1I0

i | ≥ |∪Kj=1Ij|, 1 ≤ |I∗| < K0. Hence Iij = ∅, i ∈ I∗, j 6= i and I0
i \Iii = ∅, i ∈ I∗.

Now (15) becomes∑
i∈I1∗

K∑
j=0

dE(Iij, I0
i \ Iij)−

∑
j∈I∗

dE(Ij \ I0
j , I0

j )−
∑
i∈I1∗

K∑
j=0

dE(Iij, Ij \ Iij). (16)
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By sufficiently preciseness,
∑

i∈I1∗

∑K
j=0 dE(Iij, I0

i \ Iij) > 2
∑

i∈I1∗

∑K
j=0 dE(Iij, Ij \ Iij).

This together with
∑

j∈I∗ dE(Ij \I
0
j , I0

j ) ≤
∑

j∈I∗
∑

i∈I1∗
dE(Iij, I0

j ) ≤
∑

i∈I1∗

∑K
j=0 dE(Iij, Ij \

Iij) yields that C2(G, E) > C2(G0, E) = c0 in (16), which is impossible as before. Conse-

quently (f) does not occur under sufficiently preciseness. This completes the proof.

Proof of Theorem 1: The proof is similar to the convergence proof in [14]. Hence it will

be omitted.

Proof of Theorem 3: Before proceeding, we introduce some notations. Define Ĝ =(
Î0, Î1, · · · , ÎK

)
with Îi = Îi1 ∪ Îi2; i = 1, · · · , K as follows. First, |β̂gj |’s are ordered

by their values. Second, check any two consecutive ordered values of |β̂gj | , and set j1 and

j2 to be in one group if ||β̂gj1| − |β̂
g
j2
|| ≤ τ . Third, let Î0 be the group whose range contains

zero, and Î0 = ∅ otherwise. Finally, for each 1 ≤ i ≤ K, partition Îi into Îi1 and Îi2 by

grouping components β̂j’s of the same sign together. Consequently, (i) maxj∈Î0 |β̂
g
j | ≤ τ ;

(ii)
∣∣|β̂gj1| − |β̂gj2|∣∣ ≤ τ for any 1 ≤ j1, j2 ≤ K; (iii) β̂gj1 β̂

g
j2
< 0 for any j1 ∈ I1

i1, j2 ∈ Îi2;

i = 1, · · · , K.

Next we show that β̂g = β̂ol when Ĝ = G0. Now p1 = I \ Î0
0 = p0. By (5), 1

τ

∑
j∈Î0 |β̂

g
j |+

p1 ≤ p0, with p0 = p1, yields that β̂gj = 0; j ∈ I1
0 . In addition, the second constraint of (5)

implies
∑K

i=1

∑
j,j′∈Ii,(j,j′)∈E

∣∣|β̂gj |−|β̂gj′ |∣∣
τ

≤ 0, yielding that β̂gj = −β̂gj′ ; j ∈ Îi1, j′ ∈ Îi2, (j, j′) ∈

E and β̂gj1 = β̂gj1 ; j1, j2 ∈ Îi1 or j1, j2 ∈ Îi2, (j1, j2) ∈ E . By graph consistency of E , E|Îi is

connected, implying that β̂gj = −β̂gj′ ; j ∈ Îi1, j′ ∈ Îi2 and β̂gj1 = β̂gj1 ; j1, j2 ∈ Îi1 ∪ Îi2. This

further implies that β̂g = β̂ol, hence that {Ĝ = G0} ⊆ {β̂g = β̂ol}. Thus

P(β̂g 6= β̂ol, Ĝ 6= G0) ≤ P
(
S(β̂g)− S(β̂ol) ≤ 0, Ĝ 6= G0

)
≡ I, (17)

To bound I, we first obtain lower bounds of S(β̂g)− S(β̂ol). Let β̄ = (β̄1, · · · , β̄p), with

β̄j = sign(β̂gj )
∑
j′∈Îi

|β̂g
j′ |

|Îi|
; j ∈ Îi, i = 1, · · · , K and β̄j = 0; j ∈ Î0. Then |β̄j− β̂gj | ≤ (|Îi|−1)τ

for j ∈ Îi; i = 0, · · · , K. Note that
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‖Y −Xβ̄‖2 ≥ ‖(I − PĜ)Y ‖
2 = ‖(I − PĜ)XA0β

0
A0

+ (I − PĜg)ε‖
2,

‖Xβ̄ −Xβ̂g‖2 ≤ λmax
(
XTX

)
‖β̄ − β̂g‖2 ≤ λmax

(
XTX

)
τ 2

K∑
i=0

(|Îi| − 1)2|Îi|

≤ λmax
(
XTX

)
p3τ 2.

Using the inequality ‖U + V ‖2 ≥ a−1
a
‖U‖2 − (a− 1)‖V ‖2 for any real vectors U, V ∈ Rp

and a > 0, we have

S(β̂g) =
1

2

∥∥Y −Xβ̄ +Xβ̄ −Xβ̂g
∥∥2 ≥ a− 1

2a
‖Y −Xβ̄‖2 − a− 1

2
‖Xβ̄ −Xβ̂g‖

≥ a− 1

2a
‖(I − PĜ)XA0β

0
A0

+ (I − PĜ)ε‖
2 −

(a− 1)λmax
(
XTX

)
p3τ 2

2

≥ a− 1

2a

(
‖(I − PĜ)XA0β

0
A0
‖2 + ‖(I − PĜ)ε‖

2 + 2εT (I − PĜ)XA0β
0
A0
− λ

a− 1

)
,

where λ = a(a− 1)λmax
(
XTX

)
p3τ 2. This yields that

2a
(
S(β̂g)− S(β̂ol)

)
= 2a

(
S(β̂g)− 1

2
‖(I − PG0)ε‖2

)
≥ 2(a− 1)εT (I − PĜ)XA0β

0
A0

+ (a− 1)‖(I − PĜ)XA0β
0
A0
‖2 − εT

(
I + (a− 1)PĜ

)
ε

−λ ≡ −L(Ĝ) + b(Ĝ),

where L(G) ≡
(
ε− (a− 1)(I −PG)XA0β

0
A0

)T(
I + (a− 1)PG

)(
ε− (a− 1)(I −PG)XA0β

0
A0

)
,

b(G) = a(a−1)‖(I−PG)XA0β
0
A0
‖2−λ. Note that L(G) = L1(G)+L2(G), where L1(G) =

(
ε−

(a−1)(I−PG)XA0β
0
A0

)T(
I−PG

)(
ε−(a−1)(I−PG)XA0β

0
A0

)
, which follows χ2

k,Λ of freedom

n−K and non-central parameter Λ = (a− 1)2σ−2‖(I − PG)XA0β
0
A0
‖2 ≥ (a− 1)2nCmin/σ

2

and L2(G) = aεTPGε is independent of L1(G).

Recall that S =
{
G 6= G0 : C1(G) ≤ p0;C2(G, E) ≤ c0

}
. Let Â = I \ Î0. By Markov’s

inequality with any t < 1
2a

, it follows from (17) that
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I ≤
∑

A:|A0\A|=i

∑
G∈SA

P
(
L(G) ≥ b(G), Ĝ = G, Â = A

)
≤

∑
A:|A0\A|=i

∑
G∈SA

E exp
( t

σ2
L1(G)

)
E exp

( t

σ2
L2(G)

)
exp

(
− t

σ2
b(G)

)

=

p0∑
i=1

∑
A:|A0\A|=i

S∗i

exp
(
t(a−1)2niCmin

(1−2t)σ2

)
exp

(
− t

σ2 (−λ+ a(a− 1)niCmin)
)

(1− 2at)
K∗
i
2 (1− 2t)

n−K∗
i

2

≤
p0∑
i=1

(
p0

p0 − i

) i∑
j=0

(
p− p0

j

)
S∗i

(1− 2t)n/2
exp

(
− nt(a− 1)iCmin

σ2

1− 2at

1− 2t

)( 1− 2t

1− 2at

)K∗i /2
where S∗i ≡ maxA∈A,|A0\A|=i |SA| and K∗i ≡ maxG∈SA,|A0\A|=iK(G), as defined. This, together

with the fact that
(
p0
p0−i

)
≤ pi0,

∑i
j=1

(
p−p0
j

)
≤ (p− p0)i and (p− p0)p0 ≤ p2

4
, yields

I ≤
p0∑
i=1

p2

4
S∗i exp

(
− nt(a− 1)iCmin

σ2

1− 2at

1− 2t

)( 1− 2t

1− 2at

)K∗i /2 1

(1− 2t)n/2
(18)

provided that t
σ2λ ≤ 1. Let K∗ = max1≤i≤p0 K

∗
i /i, log(S∗) = max1≤i≤p0 log(S∗i )/i. For

simplification, choose t = 1
4(a−1)

, c = 2a−3
a−2

> 2, and a to satisfy 2 n
logS∗

> a > 4 + n
4 logS∗

.

Then (18) becomes:

I ≤
p0∑
i=1

p2

4
S∗i exp

(
− n 1

4cσ2
iCmin

)
cK
∗
i /2

1

(1− 2t)n/2

≤ exp
(
− n

10σ2

(
Cmin − 20σ2 log p

n
− 10σ2K

∗

n
− 20σ2 log |S|

n

))
,

provided that τ ≤ 2σ
p

√
log p

2npλmax

(
XTX

) . This leads to (8).

For the risk property, let D = 25σ2 and G = { 1
n
‖Xβ̂tl −Xβ0‖2 ≥ D}. Then

1

n
E‖Xβ̂g −Xβ0‖2 =

1

n
E‖Xβ̂g −Xβ0‖2(I(G) + I(Gc)) ≡ T1 + T2.

For T1, note that 1
4n
‖Xβ̂g −Xβ0‖2 − 1

2n
‖ε‖2 ≤ 1

2n
‖Y −Xβ̂g‖2 ≤ 1

2n
‖ε‖2. By Markov’s

inequality with t = 1
3
, T1 =

∫∞
D

P
(

1
n
‖Xβ̂tl −Xβ0‖2 ≥ x

)
dx is upper bounded by∫∞

D
P
(

1
n
‖ε‖2 ≥ x

4

)
dx ≤

∫∞
D

E exp
( t‖ε‖2

σ2

)
exp

(
− nt x

4σ2

)
dx

≤
∫∞
D

exp
(
− n

12σ2 (x− 24σ2)
)
dx = 12σ2

n
exp

(
− n

12

)
,

implying that T1 = o(p0
n
σ2). For T2, then,
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T2 ≤ DP(β̂g 6= β̂ol) +
1

n
E‖Xβ̂ol −Xβ0‖2

= 25σ2P(β̂g 6= β̂ol) +
K0

n
σ2 = (o(1) + 1)

K0

n
σ2.

The desired result then follows. This completes the proof.

Proof of Theorem 2: The proof is similar to that of Theorem 3 with some minor modi-

fications. In the present case, let Ĝl0 be a grouping associated with β̂l0 . Then β̂l0 = β̂ol if

Ĝl0 = G0. This means {β̂l0 6= β̂ol} = {Ĝl0 6= G0}. Then

P(β̂l0 6= β̂ol) ≤
p0∑
i=0

P
(
S(β̂l0)− S(β̂ol) ≤ 0, Ĝl0 6= G0

)
≡ I

Note that S(β̂l0) ≡ 1
2

∥∥Y −Xβ̂l0∥∥2 ≥ 1
2

∥∥(I − PĜl0 )(XA0β
0
A0

+ ε)
∥∥2

. Then

2
(
S(β̂l0)− S(β̂ol)

)
≥
∥∥(I − PĜl0 )(XA0β

0
A0

+ ε)
∥∥2 − ‖(I − PG0)ε‖2

= 2εT (I − PĜl0 )XA0β
0
A0

+ ‖(I − PĜl0 )XA0β
0
A0
‖2 + ‖(I − PĜl0 )ε‖2 − ‖(I − PG0)ε‖

≥ 2εT (I − PĜl0 )XA0β
0
A0

+ ‖(I − PĜl0 )XA0β
0
A0
‖2 − εTPĜl0ε ≡ −L(Ĝl0) + b(Ĝl0), (19)

where L(G) ≡ L1(G)+L2(G) = 2εT (I−PG)XA0β
0
A0

+εTPGε, b(G) = ‖(I−PG)XA0β
0
A0
‖2, and

L1(G) ≡ −2εT (I − PG)XA0β
0
A0

and L2(G) ≡ εTPGε, and L1(G) are L2(G) are independent.

Recall that S =
{
G : G 6= G0;C1(G) ≤ p0;C2(G, E) ≤ c0

}
. Let Â = I \ Î0, Then, for any

0 < t < 1/2 by Markov’s inequality,

I ≤
∑
A∈A

∑
G∈SA

P
(
L(G) ≥ b(G), Ĝ = G, Â = A

)
≤

∑
A∈A

∑
G∈SA

E exp
( t

σ2
L1(G)

)
E exp

( t

σ2
L2(G)

)
exp

(
− t

σ2
b(G)

)
=

p0∑
i=1

∑
A∈A,|A0\A|=i

S∗i exp
(
− t− t2

2σ2
niCmin

) 1

(1− 2t)K
∗
i

≤
p0∑
i=1

(
p0

p0 − i

) i∑
j=0

(
p− p0

j

)
S∗i exp

(
− t− t2

2σ2
niCmin

) 1

(1− 2t)K
∗
i

where S∗i ≡ maxA∈A,|A0\A|=i |SA|, K(G), K∗i ≡ maxG∈SA,|A0\A|=iK(G), as defined. This, to-

gether with the fact that
(
p0
p0−i

)
≤ pi0,

∑i
j=1

(
p−p0
j

)
≤ (p − p0)i and (p − p0)p0 ≤ p2

4
, yields
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I ≤
p0∑
i=1

p2

4
S∗i exp

(
− t− t2

2σ2
niCmin

) 1

(1− 2t)K
∗
i

Let K∗ = max1≤i≤p0
K∗i
i

and logS∗ = max1≤i≤p0
logS∗i
i

. To simplify the bound we choose

t = e−1
2e

> 3
10

, where t−t2
2
> 1

10

I ≤ exp
(
− n

10σ2

(
Cmin − 20σ2 log p

n
− 10σ2K

∗

n
− 10σ2 logS∗

n

))
This leads to (7).

The proof for the risk property is the same and is omitted. This completes the proof.

Proof of Corollary 1: Easily, K∗ ≤ K∗i ≤ K0. Note that for any A ⊂ I with |A| 6= p0,

|SA| ≤
∑K0−1

i=0

(|A|
i

)
≤
∑K0−1

i=0

(
p0
i

)
. Thus, S∗i = maxA∈A,|A0\A|=i |SA| ≤

∑K0−1
i=1

(
p0
i

)
≤ pK0

0 and

S∗ = exp
(

max1≤i≤p0
logS∗i
i

)
≤ max1≤i≤p0 S

∗
i ≤ pK0

0 . Using the bounds derived in Theorem 2

and 3, we obtain the desired results.
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Table 1: Sample means (SD in parentheses) of prediction mean squared error (PMSE), accuracy
of feature selection VFP and VFN, accuracy of grouping pursuit GFP and GFN, based on 100
simulation replications in Example 1, for our proposed method (Grouping), adaptive Grace (aGrace)
[8], GFlasso [7], Elastic-Net (Enet) [26] and Oscar [2]

Correlation Method PMSE VFP VFN GFP GFN
Cor = .9 Ours 20.6(2.2) .09%(.21%) .00%(.00%) .16%(.40%) .00%(.00%)

GFlasso 22.6(2.4) 11.3%(4.93%) .15%(.66%) 20.8%(8.50%) .14%(.59%)
Oscar 22.7(2.5) 63.2%(10.6%) .00%(.00%) 83.6%(8.20%) .00%(.00%)
Enet 45.7(4.9) 18.2%(22.6%) 6.29%(5.84%) 22.4%(3.51%) 6.95%(6.30%)
aGrace 22.5(2.4) 39.1%(43.0%) .00%(.00%) 43.1%(37.5%) .00%(.00%)

Cor = .5 Ours 20.5(2.1) .17%(.56%) .25%(.84%) .33%(1.07%) .24%(.84%)
GFlasso 22.6(2.5) 15.10%(6.30%) .00%(.00%) 27.15%(10.4%) .00%(.00%)
Oscar 24.3(2.8) 72.7%(6.23%) .00%(.00%) 89.9%(3.90%) .00%(.00%)
Enet 40.8(4.7) 40.6%(42.8%) 3.43%(3.80%) 2.12%(8.85%) 6.35%(5.15%)
aGrace 22.4(2.5) 36.2%(41.4%) .00%(.00%) 41.2%(36.8%) .00%(.00%)

Cor = .2 Ours 20.8(2.1) .04%(.18%) .84%(3.38%) .09%(.36%) .83%(3.35%)
GFlasso 22.6(2.5) 19.7%(7.73%) .00%(.00%) 34.7%(12.3%) .00%(.00%)
Oscar 26.7(3.3) 68.3%(9.80%) .00%(.00%) 86.7%(8.49%) .00%(.00%)
Enet 47.1(6.7) 10.7%(12.8%) 16.1%(7.45%) 17.5%(4.83%) 14.8%(6.54%)
aGrace 23.9(3.3) 35.7%(34.7%) .13%(.54%) 45.8%(30.3%) .10%(.42%)
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Table 2: Sample means (SD in parentheses) of prediction mean squared error (PMSE), accuracy
of feature selection VFP and VFN, accuracy of grouping pursuit GFP and GFN, based on 100
simulation replications in Example 1, for feature selection alone with λ2 = 0 in (2) (TLP), grouping
pursuit alone with λ1 = 0 in (2) (Grouping), and simultaneous grouping pursuit and feature
selection (Both).

Correlation Method PMSE VFP VFN GFP GFN
Cor = .9 Both 20.55(2.23) .09%(.21%) .00%(.00%) .16%(.40%) .00%(.00%)

TLP 24.54(2.43) .01%(.03%) 45.7%(9.44%) .02%(.06%) 45.5%(9.44%)
Grouping 372(218) 100%(.00%) .00%(.00%) 82.8%(22.8%) 18.9%(24.6%)

Cor = .5 Both 20.54(2.12) .17%(.56%) .25%(.84%) .33%(1.07%) .24%(.84%)
TLP 31.86(3.49) .09%(.13%) 42.8%(9.01%) .19%(.26%) 42.6%(9.02%)
Grouping 462(47.8) 100%(.00%) .00%(.00%) 49.3%(.96%) 59.4%(11.9%)

Cor = .2 Both 20.75(2.12) .04%(.18%) .84%(3.38%) .08%(.36%) .83%(3.35%)
TLP 41.66(5.57) .42%(.59%) 50.1%(13.1%) .84%(1.17%) 49.7%(13.2%)
Grouping 287(29.1) 100%(.00%) .00%(.00%) 50.6%(.71%) 69.2%(12.4%)
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Table 3: Sample means (SD in parentheses) of prediction mean squared error (PMSE), accuracy of
feature selection VFP and VFN, accuracy of grouping pursuit GFP and GFN, as well as %Oracle,
the percentage of time that our method reconstructs the oracle estimator, based on 100 simulation
replications in Example 2, for our proposed method (Our), adaptive Grace (aGrace) [8], GFlasso
[7], Elastic-Net (Enet) [26] and Oscar [2]. Setups have the TF-TF correlation of 0 and .5; k is the
average number of erroneous edges.

Setup 1 Method PMSE VFP VFN GFP GFN %Oracle
k = 0 Ours 1.02(.02) .00%(.00%) .00%(.00%) .00%(.00%) .00%(.00%) 100%

GFlasso 1.12(.05) 8.41%(1.66%) .00%(.00%) 16.0%(3.03%) .00%(.00%) 0%
Oscar 1.20(.07) 85.0%(5.78%) .00%(.00%) 96.4%(2.60%) .00%(.00%) 0%
Enet 1.51(.13) 1.42%(.44%) .00%(.00%) 2.84%(.87%) .00%(.00%) 0%
aGrace 1.11(.05) 9.37%(3.31%) .00%(.00%) 17.7%(5.93) .00%(.00%) 0%

k = 10 Ours 1.02(.02) .00%(.01%) .00%(.00%) .00%(.01%) .00%(.00%) 90%
GFlasso 1.12(.05) 11.3%(3.31%) .00%(.00%) 20.7%(5.73%) .00%(.00%) 0%
Oscar 1.49(.14) 100%(.00%) .00%(.00%) 88.7%(3.29%) .00%(.00%) 0%
Enet 1.53(.13) 1.39%(.45%) .00%(.00%) 2.77%(.90%) .00%(.00%) 0%
aGrace 1.45(.10) 100%(.00%) .00%(.00%) 96.7%(.61%) .00%(.00%) 0%

k = 100 Ours 1.02(.02) .00%(.01%) .00%(.00%) .00%(.01%) .00%(.00%) 85%
GFlasso 1.16(.06) 100%(.00%) .00%(.00%) 89.2%(2.71%) .00%(.00%) 0%
Oscar 1.49(.12) 100%(.00%) .00%(.00%) 90.6%(2.81%) .00%(.00%) 0%
Enet 1.52(.13) 1.38%(.45%) .00%(.00%) 2.75%(.88%) .00%(.00%) 0%
aGrace 1.45(.11) 100%(.00%) .00%(.00%) 96.0%(.81%) .00%(.01%) 0%

Setup 2 Method PMSE VFP VFN GFP GFN %Oracle
k = 0 Ours 1.02(.02) .18%(.54%) .00%(.00%) .36%(1.07%) .00%(.00%) %75

GFlasso 1.12(.05) 12.4%(4.47%) .00%(.00%) 23.1%(7.60%) .00%(.00%) 0%
Oscar 1.25(.08) 38.9%(7.93%) .00%(.00%) 61.3%(9.11%) .00%(.00%) 0%
Enet 1.59(.15) 1.92%(.29%) .00%(.00%) 3.81%(.57%) .00%(.00%) 0%
aGrace 1.11(.05) 11.5%(4.16%) .00%(.00%) 21.6%(7.32%) .00%(.00%) 0%

k = 10 Ours 1.02(.02) .01%(.01%) .00%(.00%) .01%(.02%) .00%(.00%) 78%
GFlasso 1.36(.11) 3.57%(1.74%) .00%(.00%) 6.71%(3.23%) .00%(.00%) 0%
Oscar 1.54(.15) 100%(.00%) .00%(.00%) 83.9(4.96%) .00%(.00%) 0%
Enet 1.61(.16) 1.45%(.46%) .00%(.23%) 2.9%(.91%) .02%(.22%) 0%
aGrace 1.51(.12) 100%(.00%) .00%(.00%) 94.3%(1.3%) .00%(.00%) 0%

k = 100 Ours 1.02(.02) .01%(.02%) .00%(.00%) .01%(.03%) .00%(.00%) 73%
GFlasso 1.54(.14) 100%(.00%) .00%(.00%) 87.6%(3.93%) .00%(.00%) 0%
Oscar 1.54(.14) 100%(.00%) .00%(.00%) 87.8%(3.78%) .00%(.00%) 0%
Enet 1.61(.16) 1.45%(.46%) .00%(.23%) 2.9%(.91%) .02%(.22%) 0%
aGrace 1.51(.13) 100%(.00%) .00%(.00%) 95.1%(.84%) .00%(.02%) 0%

Table 4: Performance of our methods after adding k (k = 0, 2, 10) erroneous edges for each
informative predictors in Example 2.

Eroneous edges PMSE VFP VFN GFP GFN %Oracle
0 20.55(2.23) .09%(.21%) .00%(.00%) .16%(.40%) .00%(.00%) 67%
2 20.63(2.16) .02%(.05%) .93%(2.29%) .03%(.10%) .93%(2.27%) 58%
10 20.64(2.17) .01%(.05%) 3.00%(4.78%) .03%(.11%) 2.98%(4.74%) 35%
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Table 5: Performance of our methods with different numbers of groups and different levels of
difficulty in Example 3.

γmin = 1 γmin = 3
# groups PMSE %Oracle PMSE %Oracle

2 1.01(.02) 97% 1.01(.02) 91%
5 1.04(.03) 30% 1.03(.02) 76%
10 1.10(.05) 4% 1.06(.03) 79%
20 1.28(.09) 0% 1.15(.09) 32%

Table 6: Mean prediction error (PE), number of non-zero regression coefficient estimates, percent-
age of grouping s, for four competing methods, in the eQTL analysis for gene GLT1D1 in Section
5.2.

Tuning Final Model
Method PE # non-zeros % grouping s # non-zeros % grouping s
Lasso 0.93(0.07) 6.67(2.08) 0(0) 3 0
OSCAR 0.90 (0.07) 42.67(17.90) 0.26(0.17) 16 0.01
TLP 0.87(0.01) 1.33(0.58) 0(0) 1 0
Fuse 0.87(0.01) 1.33(0.58) 0(0) 1 0
Ours 0.85(0.04) 1.66(0.58) 0.67(0.58) 2 1

Table 7: Parameter estimation for the final model in Section 5.2, where only nonzero coefficients
are displayed.

Estimates

Method β̂787 β̂790 β̂1667
Lasso 0.064 2.451 -0.101
OSCAR 1.439 1.439 -0.347
TLP 0 5.090 0
Our-Fuse 0 5.090 0
Ours 2.874 2.874 0
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Figure 1: Subnetwork consisting of SNPs around informative locations, defined by correlation
stronger than .6. Here SNP’s locations are numbered with adjacent numbers indicating
nearby locations.
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