Regression Shrinkage and Selection via the Lasso Section 7. Simulations

Robert Tibshirani

Oct. 19, 2006

Objective

- Comparisons of the following approaches
 - least square estimate with all variable
 - lasso (five-fold cross validation)
 - lasso (Stein)
 - lasso (GCV)
 - non-negative garotte
 - best subset selection
 - ridge regression

- Procedure of the simulation
 - set $\beta = (3, 1.5, 0, 0, 2, 0, 0, 0)$
 - generate variables $\mathbf{x} \sim N(\mathbf{0}, \Sigma(\rho))$ such that $corr(x_i, x_j) = \rho^{|i-j|}$ where $\rho = .5$.
 - set $\sigma = 3$ and generate error $\epsilon \sim N(0, 1)$
 - signal-to-noise ratio: $\frac{\beta^T \Sigma(\rho) \beta}{\sigma^2} \approx 5.7$
 - 20 observations from the model

$$y = \boldsymbol{\beta}^T \mathbf{x} + \sigma \epsilon \text{ with } \mathbf{x} = (x_1, \cdots, x_8)'$$

• Repeat the procedure 50 (? 200) times to output 50 (? 200) datasets with 20 observations for each

Table. 3: Results for example 1

Method	Median mean	Average number of	Average \hat{s}
	-squared error	0 coefficients	
Least squares	2.79(0.12)	0.0	_
Lasso (CV)	2.43(0.14)	3.3	0.63(0.01)
Lasso (Stein)	2.07(0.10)	2.6	0.69(0.02)
Lasso (GCV)	1.93(0.09)	2.4	0.73(0.01)
Garotte	2.29(0.16)	3.9	
Best subset	2.44(0.16)	4.8	
Ridge	3.21(0.12)	0.0	_

(Standard errors are given in parentheses)

Lasso (GCV) wins in terms of Median MSE!

Table. 4 and 5: Most frequent models selected by lasso (GCV) and best subset in example 1

Models slected by	Proportion	Models slected by	Proportion
Lasso (GCV)		Best subset	
12045678	0.055	12005000	0.24
12345600	0.050	10005000	0.20
12005008	0.045	10000000	0.095
12045000	0.045	12005070	0.04
12005000	0.025	12005000	0.24

Recall $\beta = (3, 1.5, 0, 0, 2, 0, 0, 0)$, so the true model is of the form $12\emptyset\emptyset5\emptyset\emptyset\emptyset$. Among all the models selected by lasso (GCV), 95.5% of them contains all the (1,2,5) variables. However, for best subset method, the percentage is 53.5%.

- Procedure of the simulation
 - $\sqrt{\text{set }\beta} = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)$
 - generate variables $\mathbf{x} \sim N(\mathbf{0}, \Sigma(\rho))$ such that $corr(x_i, x_j) = \rho^{|i-j|}$ where $\rho = .5$.
 - $\sqrt{\sec \sigma} = 3$ and generate error $\epsilon \sim N(0, 1)$
 - $\sqrt{\text{signal-to-noise ratio:}} \frac{\beta^T \Sigma(\rho) \beta}{\sigma^2} \approx 1.8$
 - 20 observations from the model

$$y = \boldsymbol{\beta}^T \mathbf{x} + \sigma \epsilon \text{ with } \mathbf{x} = (x_1, \cdots, x_8)^T$$

Repeat the procedure 50 times to output 50 datasets with 20 observations for each

Table. 6: Results for example 2

Method	Median mean	Average number of	Average \hat{s}
	-squared error	0 coefficients	
Least squares	6.50(0.64)	0.0	
Lasso (CV)	5.30(0.45)	3.0	0.50(0.03)
Lasso (Stein)	5.85(0.36)	2.7	0.55(0.03)
Lasso (GCV)	4.87(0.35)	2.3	0.69(0.23)
Garotte	7.40(0.48)	4.3	
Best subset	9.05(0.78)	5.2	
Ridge	2.30(0.22)	0.0	

(Standard errors are given in parentheses)

Ridge regression wins in terms of Median MSE and Average number of 0 coeeficients! All three lasso outperform the least squares.

- Procedure of the simulation
 - $\sqrt{\text{set }\beta} = (5,0,0,0,0,0,0,0)$
 - generate variables $\mathbf{x} \sim N(\mathbf{0}, \Sigma(\rho))$ such that $corr(x_i, x_j) = \rho^{|i-j|}$ where $\rho = .5$.
 - $\sqrt{ \sec \sigma} = 2$ and generate error $\epsilon \sim N(0,1)$
 - $\sqrt{\text{ signal-to-noise ratio: }} \frac{\beta^T \Sigma(\rho) \beta}{\sigma^2} \approx 7$
 - 20 observations from the model

$$y = \boldsymbol{\beta}^T \mathbf{x} + \sigma \epsilon \text{ with } \mathbf{x} = (x_1, \cdots, x_8)^T$$

Repeat the procedure 50 times to output 50 datasets with 20 observations for each

Table. 7: Results for example 3

Method	Median mean	Average number of	Average \hat{s}
	-squared error	0 coefficients	
Least squares	2.89(0.04)	0.0	_
Lasso (CV)	0.89(0.01)	3.0	0.50(0.03)
Lasso (Stein)	1.26(0.02)	2.6	0.70(0.01)
Lasso (GCV)	1.02(0.02)	3.9	0.63(0.04)
Garotte	0.52(0.01)	5.5	
Best subset	0.64(0.02)	6.3	
Ridge	3.53(0.05)	0.0	_

(Standard errors are given in parentheses)

Garotte wins in terms of Median MSE, and best subset wins in terms of Average number of 0 coeeficients! All three lasso outperform the least squares.

- Procedure of the simulation
 - $\sqrt{\text{set }40 \times 1 \text{ vector } \boldsymbol{\beta}} = (0, \cdots, 0, 2, \cdots, 2, 0, \cdots, 0, 2, \cdots, 2)$
 - $\sqrt{\text{generate } x_{ij} = z_{ij} + z_i \text{ such that } corr(x_{ij}, x_{il}) = 0.5 \text{ for } j \neq l \text{ where}}$

$$z_{ij}, z_i$$
; for $i = 1, \dots, 200$ and $j, l = 1, \dots, 40 \stackrel{i.i.d.}{\sim} N(0, 1)$.

- $\sqrt{ \, {
 m set} \, \sigma } = 15$ and generate error $\epsilon \sim N(0,1)$
- $\sqrt{\text{signa-to-noise ratio:}} \frac{\underline{\boldsymbol{\beta}}^T \Sigma \underline{\boldsymbol{\beta}}}{\sigma^2} \approx 9 \text{ where}$ $\Sigma = \mathbf{I} + \mathbf{J} = \mathbf{1}\mathbf{1}^T + diag(\mathbf{1})$
- $\sqrt{100}$ observations from the model

$$y = \boldsymbol{\beta}^T \mathbf{x} + \sigma \epsilon \text{ with } \mathbf{x} = (x_1, \cdots, x_{40})^T$$

 Repeat the procedure 50 times to output 50 datasets with 100 observations for each

Table. 8: Results for example 4

Method	Median mean	Average number of	Average \hat{s}
	-squared error	0 coeeficients	
Least squares	137.3(7.3)	0.0	_
Lasso (Stein)	80.2(4.9)	14.4	0.55(0.02)
Lasso (GCV)	64.9(2.3)	13.6	0.60(0.88)
Garotte	94.8(3.2)	22.9	
Ridge	57.4(1.4)	0.0	

(Standard errors are given in parentheses) Lasso (CV) and best subset is **impractical** for large size of observations and variables respectively. Ridge regression wins in terms of Median MSE. Both two lasso methods outperform the least squares.

lasso	CV	Stein	GCV
$\mid oldsymbol{eta} \mid$			
(3, 1.5, 0, 0, 2, 0, 0, 0)	4/7	2/7	1/7
$(0.85, \cdots, 0.85)$	3/7	4/7	2/7
(5,0,0,0,0,0,0,0)	3/7	5/7	4/7
$(0, \cdots, 0, 2, \cdots, 2, 0, \cdots, 0, 2, \cdots, 2)$	_	3/5	2/5

Lasso is a robust method for regression and variable selection!