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o Comparisons of the following approaches
least square estimate with all variable
lasso (five-fold cross validation)
lasso (Stein)
lasso (GCV)

non-negative garotte
best subset selection
ridge regression
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Example 1
Example 2
Example 3
Example 4

o Procedure of the simulation
o setd = (3,15,0,0,2,0,0,0) o
o generate variables~ N(0, X(p)) such thatorr(x;, %) = pli=Jl
wherep = .5.
o seto = 3 and generate errer~ N(0, 1)
i i 0B =B
o signal-to-noise ratio——~ ~ 5.7
o 20 observations from the model

y = B'x+ cewithx = (xg,--- ,Xg)’

o Repeat the procedure 50 (? 200) times to output 50 (? 200)
datasets with 20 observations for each
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Table. 3: Results for example 1

Example 1
Example 2
Example 3
Example 4

Method Median mean Average number of Aver&ge
-squared error 0 coefficients
Least squares 2.79(0.12) 0.0 —
Lasso (CV) 2.43(0.14) 3.3 0.63(0.01)
Lasso (Stein) 2.07(0.10) 2.6 0.69(0.02)
Lasso (GCV) 1.93(0.09) 2.4 0.73(0.01)
Garotte 2.29(0.16) 3.9 —
Best subset 2.44(0.16) 4.8 —
Ridge 3.21(0.12) 0.0 —

(Standard errors are given in parentheses)
Lasso (GCV) wins in terms of Median MSE!
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Results

Table. 4 and 5: Most frequent models selected by lasso (GCV) and

Objective
Examples
Conclusion

best subset in example 1

Example 1
Example 2
Example 3
Example 4

Models slected by Proportion|| Models slected by Proportion
Lasso (GCV) Best subset

12045678 0.055 12005000 0.24
123456)() 0.050 10005000 0.20
12005008 0.045 || 10000000 0.095
12045)( 0 0.045 12005070 0.04
12005000 0.025 12005000 0.24

Recall3 = (3,1.5,0,0,2,0,0,0), so the true model is of the form

12005000. Among all the models selected by lasso (GCV), 95.5% of

them contains all the (1,2,5) variables. However, for best subset
method, the percentage is 53.5%.

Yao, Y.
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Example 1
Example 2
Example 3
Example 4

o Procedure of the simulation

o |/ setB = (0.85,0.85,0.85,0.85, 0.85, 0.85, 0.85, 0.85)

o generate variables~ N(0, X(p)) such thatorr(x;, %) = pli=Jl
wherep = .5.

o 4/ setoc = 3 and generate errer~ N(0O, 1)
T

o 4/ signal-to-noise ratio.ﬁ—i(z’ﬁ ~ 1.8

o 20 observations from the model

y=B"x+oewithx = (x,--- ,xg)7

o Repeat the procedure 50 times to output 50 datasets with 20
observations for each
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Table. 6: Results for example 2

Method Median mean Average number of Aver&ge
-squared error 0 coefficients
Least squares 6.50(0.64) 0.0 —
Lasso (CV) 5.30(0.45) 3.0 0.50(0.038)
Lasso (Stein) 5.85(0.36) 2.7 0.55(0.03)
Lasso (GCV) 4.87(0.35) 2.3 0.69(0.28)
Garotte 7.40(0.48) 4.3 —
Best subset 9.05(0.78) 5.2 —
Ridge 2.30(0.22) 0.0 —

(Standard errors are given in parentheses)
Ridge regression wins in terms of Median MSE and Average number
of 0 coeeficients! All three lasso outperform the least squares.

Yao, Y.
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Example 1
Example 2
Example 3
Example 4

o Procedure of the simulation
o set8 = (5,0,0,0,0,0,0,0)

o generate variables~ N(0, X(p)) such thatorr(x;, %) = pli=Jl
wherep = .5.

o 4/ seto = 2 and generate errar~ N(0O, 1)
T

o 4/ signal-to-noise ratio.ﬁ—i(z’ﬁ ~7

o 20 observations from the model

y=B"x+oewithx = (x,-- ,xg)7

o Repeat the procedure 50 times to output 50 datasets with 20
observations for each
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Table. 7: Results for example 3

Method Median mean Average number of Aver&ge
-squared error 0 coefficients
Least squares 2.89(0.04) 0.0 —
Lasso (CV) 0.89(0.01) 3.0 0.50(0.08)
Lasso (Stein) 1.26(0.02) 2.6 0.70(0.01)
Lasso (GCV) 1.02(0.02) 3.9 0.63(0.04)
Garotte 0.52(0.01) 5.5 —
Best subset 0.64(0.02) 6.3 —
Ridge 3.53(0.05) 0.0 —

(Standard errors are given in parentheses)

Garotte wins in terms of Median MSE, and best subset wins in terms
of Average number of O coeeficients! All three lasso outperform the
least squares.
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Example 1
Example 2
Example 3

Example 4

o Procedure of the simulation
o 4/ set40x 1 vectors

_(07...70727...72,0 .70727...72)
o / generate; = z; + z such thatorr(x;, xi) = 0.5 forj # |
where
zj,z; fori=1 ,200 and,l =1, -,40i‘1<9'N(0,1).
o 4/ setoc = 15 and generate errer~

N(0,1)
o 4/ signa-to-noise ratlou ~ 9 where
Y=14+J= 11T+d|ag( )
o 4/ 100 observations from the model

y = 08X+ oe with X = (Xg,

s Xao)"
observations for each

[m] = = =

o Repeat the procedure 50 times to output 50 datasets with 100
_ Regression Shrinkage and Selection via the Lasso
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Table. 8: Results for example 4

Method Median mean Average number of Averége
-squared error 0 coeeficients

Least squares 137.3(7.3) 0.0 —

Lasso (Stein) 80.2(4.9) 14.4 0.55(0.02)

Lasso (GCV) 64.9(2.3) 13.6 0.60(0.88)

Garotte 94.8(3.2) 22.9 —

Ridge 57.4(1.4) 0.0 —

(Standard errors are given in parentheses) Lasso (CV) and best subse
is impractical for large size of observations and variables

respectively. Ridge regression wins in terms of Median MSE. Both
two lasso methods outperform the least squares.

Yao, Y. Regression Shrinkage and Selection via the Lasso



lasso | CV | Stein| GCV
B
(3,15,0,0,2,0,0,0) a7 | 217 | 17
(0.85,---,0.85) 37| 47 | 27
(5,0, O, 0,0,0,0,0) 3/7 | 57 | 47
0,---,0,2,---,2,0,---,0,2,---,2) | — | 3/5 | 2/5
Lasso isa robust method for regression and variable selection!
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