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Introduction

Introduction: A Motivating Example

Data concerning cancer of the esophagus

Demographic, medical covariates

Response is survival status

Goal: predict survival time for future patients and plan interventions

Standard statistical practice

Use data-driven search to find best model M∗

Check model fit
Use M∗ to make estimate effects, make predictions
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Introduction

Introduction: A Motivating Example

Unsatisfactory approach

What do you do about competing model M∗∗?

Too risky to base all of your inferences on M∗ alone

Inferences should reflect ambiguity about the model

Solution: Bayesian model averaging (BMA)
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Introduction

Introduction: Notation

∆ is quantity of interest

Effect size
Future observation
Utility of a course of action

D is data

M = {Mk , k = 1, 2, ...,K}
θk is vector of parameters in model Mk

Pr(θk |Mk) is prior density of θk underMk

Pr(D|θk ,Mk) is likelihood of data

Pr(Mk) is prior probability that Mk is the true model
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Introduction

Introduction: Mathematical development

Posterior distribution given data D is

Pr(∆|D) =
K∑

k=1

Pr(∆|Mk ,D) Pr(Mk |D)

This is average of posterior distributions under each model
considered, weighted by posterior model probability

Posterior probability for model Mk ∈M is

Pr(Mk |D) =
Pr(D|Mk) Pr(Mk)∑K
l=1 Pr(D|Ml) Pr(Ml)

where

Pr(D|Mk) =

∫
Pr(D|θk ,Mk) Pr(θk |Mk)dθk
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Introduction

Introduction: Mathematical development

Let ∆̂k = E [∆|D,Mk ]

Posterior mean and variance of ∆:

E [∆|D] =

∫
∆

(
K∑

k=1

Pr(∆|Mk ,D) Pr(Mk |D)

)
d∆

=
K∑

k=1

(∫
∆ Pr(∆|Mk ,D)d∆

)
Pr(Mk |D)

=
K∑

k=1

∆̂k Pr(Mk |D)

Var [∆|D] =
K∑

k=1

(Var [∆|D,Mk ] + ∆̂2
k) Pr(Mk |D)− E [∆|D]2
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Introduction

Introduction: Complications

Previous research shows that averaging over all models provides
better predictive ability than using single model

Difficulties in implementation
1 M can be enormous; infeasible to sum over all models
2 Integrals can be hard to compute, even using MCMC methods
3 How do you specify prior distribution on Mk?
4 How to determine class M to average over?
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Historical Perpective

Combining Models: Historical Perspective

1963: First mention of model combination

1965: Distribution to combine opinions of two experts

1969: Use of model combination for economic forecasting

1970s: Flurry of work in economics literature combining predictions
from different forecasting models

1978: Basic paradigm for BMA, accounting for model uncertainty

1990s: Computational power and theoretical advances overcome
difficulties of using BMA
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Implementation Managing the Summation

Implementation: Managing the Summation

Need practical way to compute the sum

Pr(∆|D) =
K∑

k=1

Pr(∆|Mk ,D) Pr(Mk |D)

Approaches:
1 Occam’s window
2 Markov chain Monte Carlo model composition (MC3)
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Implementation Managing the Summation

Implementation: Occam’s Window

Average over a subset of models supported by the data

Principle 1: Disregard a model if it predicts the data far less well than
model with best predictions

Formally:

A′ =

{
Mk :

maxl{Pr(Ml |D)}
Pr(Mk |D)

≤ C

}
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Implementation Managing the Summation

Implementation: Occam’s Window

Exclude complex models if data support simpler models (Occam’s
razor)

Formally:

B =

{
Mk : ∃Ml ∈ A′,Ml ⊂ Mk ,

Pr(Ml |D)

Pr(Mk |D)
> 1

}
Our subset of model to average over is A = A′ \ B

Pr(∆|D) =
∑

Mk∈A
Pr(∆|Mk ,D) Pr(Mk |D)

All probabilities conditional on the set A
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Implementation Managing the Summation

Implementation: Occam’s Window

M0 is smaller model

Use OL = 1/20, OR = 1

Need overwhelming evidence to accept larger model over smaller

If OL = 1/20, OR = 20, using only first principle
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Implementation Managing the Summation

Implementation: MC3

Use MCMC to directly approximate

Pr(∆|D) =
K∑

k=1

Pr(∆|Mk ,D) Pr(Mk |D)

Construct a Markov chain {M(t)}, t = 1, 2, ... with state space M
and equilibrium distribution Pr(Mi |D)

Simulate chain to get observations M(1), ...,M(N)

Then for any function g(Mi ) defined on M, compute average

Ĝ =
1

N

N∑
t=1

g(M(t))
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Implementation Managing the Summation

Implementation: MC3

Applying standard MCMC results,

Ĝ
a.s.→ E (g(M)) as N →∞

For this application, set g(M) = Pr(∆|M,D)

Construct chain using Metropolis-Hastings, with transition probability

min

{
1,

Pr(M ′|D)

Pr(M|D)

}
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Implementation Computing the Integrals

Implementation: Computing integrals

Integrals of the form

Pr(D|Mk) =

∫
Pr(D|θk ,Mk) Pr(θk |Mk)dθk

can be hard to compute

Closed form integrals available for multiple regression and graphical
models

Laplace method (see literature) helps approximate Pr(D|Mk) and
sometimes yields BIC approximation

Approximate Pr(∆|Mk ,D) with Pr(∆|Mk , θ̂, D), where θ̂ is MLE

Some of these approximations discussed later
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Implementation Details for specific model classes

Where are we?

4 Implementation Details for specific model classes
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GLM
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Graphical Models
Softwares
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Implementation Details for specific model classes Linear Regression

Linear Regressions: Predictors, Outliers and
Transformations

Suppose dependent variable Y and predictors X1, . . . ,Xk . Then
variable selection methods try to find the ”best” model with the form

Y = β0 +
∑p

j=1 βij Xij + ε

However, BMA tries to average over all possible sets of predictors.
Raftery, Madigan and Hoeting (1997), and Fernandez, Ley and Steel
(1997,1998) did lots of work on this.

Hoeting, Raftery and Madigan (1996 and 1999) made extension to
transformations and outliers.
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Implementation Details for specific model classes Linear Regression

Linear Regressions: Predictors, Outliers and
Transformations (cont’d)

HRM99 used the Box-Cox transformation for the response:

y (ρ) =

{
yρ−1

ρ ρ 6= 0

log (y) ρ = 0

And the model is Y (ρ) = Xβ + ε where ε ∼ N
(
0, σ2 I

)
HRM99 used ”change point transformations” to transform the
predictors:

Use the output from the alternating conditional expectation algorithm
(ACE) to suggest the form of transformation.
Use Bayes factors to choose the precise transformation.
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Implementation Details for specific model classes Linear Regression

Linear Regressions: Predictors, Outliers and
Transformations (cont’d)

HRM96 averaged over sets of predictors and possible outliers. They
used a variance-inflation model for outliers by assuming:

ε =

{
N
(
0, σ2

)
w.p. (1− π)

N
(
0,K 2σ2

)
w.p.π

Simultaneous variable and outlier selection (SVO) method:

Use a highly robust technique to identify potential outliers.
Compute all possible posterior model probabilities or use MC3,
considering all possible subsets of potential outliers.

SVO successfully identifies masked outliers.
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Implementation Details for specific model classes GLM

Generalized Linear Models

The Bayes factor for model M1 against M0:

B10 = pr (D| M1) /pr (D| M0)

Consider (M + 1) models M0,M1, . . . ,Mk . Then the posterior
probability of Mk is:

pr (Mk |D) = αkBk0/
∑K

r=0 αrBr0

where αk = pr (Mk) /pr (M0), k = 0, · · · ,K .

Dependent variable: Yi

Independent variables: Xi = (xi1, . . . , xip), i = 0, . . . , n
where xi1 = 1

The null model M0 is defined by setting βj = 0 (j = 2, . . . , p).
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Implementation Details for specific model classes GLM

Generalized Linear Models(cont’d)

Raftery (1996) used Laplace approximation:

pr (D| Mk) ≈ (2π)pk/2 |Ψ|1/2 pr
(
D| β̂k , Mk

)
pr
(
β̂k | Mk

)
where pk is the dimension of βk , β̃k is the posterior mode of βk and
Ψk is minus the inverse Hessian of
h (βk) = log{pr (D|βk , Mk) pr (βk | Mk)} evaluated at βk = β̃k
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Implementation Details for specific model classes GLM

Generalized Linear Models(cont’d)

Suppose E (βk | Mk) = wk and var (βk | Mk) = Wk .

Use one step of Newton’s method to approximate β̃k starting from β̂.
Then we have the approximation

2 log B10 ≈ χ2 + (E1 − E0)

χ2 = 2{`1

(
β̂1

)
− `0

(
β̂0

)
}

`k (βk) = log{pr (D|βk , Mk)}

Ek = 2λk

(
β̂k

)
+ λ′k

(
β̂k

)T

(Fk + Gk)
−1

·{2− Fk (Fk + Gk)
−1}λ′k

(
β̂k

)
−log |Fk + Gk |+ pk log (2π)

where Fk is the Fisher information matrix, Gk = W−1
k , and

λk (βk) = log pr (βk | Mk)
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Implementation Details for specific model classes Survival Analysis

Survival Analysis

Hazard rate: λ (t) = f (t) / (1− F (t))

Cox proportional hazard model: λ (t|Xi ) = λ0 (t) exp (Xiβ)
where λ0 (t) is the baseline hazard rate at time t.

The estimation of β is based on the partial likelihood:

PL (β) =
n∏

i=1

(
exp (Xiβ)∑

`∈Ri
exp

(
XT

` β
))wi

where Ri is the risk set at time ti and wi is an indicator for whether
or not subject i is censored.
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Implementation Details for specific model classes Survival Analysis

Survival Analysis (cont’d)

Volinsky, Madigan, Raftery and Kronmal (1997) (VMRK) adopted
the MLE approximation:

pr (∆|Mk ,D) ≈ pr
(
∆|Mk , β̂k ,D

)
and the Laplace approximation:

log pr (D|Mk) ≈ log pr
(
D|Mk , β̂k

)
− dk log n

where dk is the dimension of βk .
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Implementation Details for specific model classes Survival Analysis

Survival Analysis (cont’d)

Procedures to choose a subset of models in VMRK (1997):

Apply leaps and bounds algorithm to choose top q models.
Use the approximate likelihood ratio test to reduce the subset of
models.
Calculate BIC values and eliminate the models not in A.

Posterior effect probability of a variable is computed by

P (β 6= 0|D) =
∑

k∈{i : β 6=0 in Mi}

P (Mk |D)

VMRK showed that these posterior effect probabilities can lead to
substantive interpretations that are at odds with the usual P-values.
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Implementation Details for specific model classes Graphical Models

Graphical Models: Missing Data and Auxiliary

A graphical model is a statistical model with a set of conditional
independence relationships being described by means of a graph.

Acyclic directed graph (ADG):

��
��

A -��
��

B -��
��

C

Figure: A simple discrete graphical model.

Xiuyun BMA: A Tutorial Stat 882 AU 06 31 / 70



Implementation Details for specific model classes Graphical Models

Graphical Models: Missing Data and Auxiliary(cont’d)

The above graph tells: C and A are conditionally independent given
B. Thus we have

pr (A, B, C ) = pr (A) pr (B|A) pr (C |B)

Use either analytical or numerical approximations when we apply BMA
and Bayesian graphical models to solve problems with missing data.
Please see Madigan and York (1995) and York et al. (1995) for
details.

pr (D | M0)

pr (D | M1)
= E

(
pr (D, Z | M0)

pr (D, Z | M1)
| D, M1

)
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Implementation Details for specific model classes Softwares

Software for BMA

The programs can be obtained at
http://www.research.att.com/∼volinsky/bma.html

bic.glm

bic.logit

bicreg

bic.surv

BMA

glib
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Specifying Prior Model Probabilities Informative Priors

How important is βj?

Informative priors provide improved predictive performance, than
“neutral” priors.

Consider the following setup:

Mi : Linear model with p covariates.
πj : Prior P(βj 6= 0) (inclusion probability).
δij : Indicator whether Xj is included in Mi or not.

The prior for model Mi :

pr(Mi ) =

p∏
j=1

π
δij

j (1− πj)
1−δij
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Specifying Prior Model Probabilities Informative Priors

In the context of graphical models...

��
��

A -��
��

B -��
��

C

“link priors”: prior probability on existence of each potential link.

“full prior”: product of link priors.

Hierarchical modelling?

Assumption: presence/absence of each component is apriori independent
of the presence/absence of other components.
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Specifying Prior Model Probabilities Informative Priors

Eliciting informative prior...

Start with a uniform prior on the model space.

Update it using “imaginary data” provided by the domain expert.

Use the updated prior (posterior based on imaginary data) as the new
informative prior for the actual analysis.

Imaginary data: pilot survey?
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Predictive Performance
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Predictive Performance

How to assess the success of a model?

An approach: how well a model predicts future observations.

Split data into two halves: training and testing set.

Predictive Log Score (P.L.S):

Single model:
∑

d∈Dtest

− log pr(d |M,Dtrain)

BMA:
∑

d∈Dtest

− log

{∑
M∈A

pr(d |M,Dtrain) · pr(M|Dtrain)

}

Smaller P.L.S indicates better predictive performance.
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Examples
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Examples Primary Biliary Cirrhosis

Data description

Clinical trial of 312 patients from 1974 to 1984.

Drug: DPCA from Mayo Clinic.

14 covariates & one treatment factor (DPCA).

8 patients with various missing observations; removed.

123 uncensored data (subjects died!).

181 censored data (subjects survived!).
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Examples Primary Biliary Cirrhosis

Data summary

Mean SD
Variable Range Mean β|D β|D P(β 6= 0|D)

Bilirubin (log) -1.20 - 3.33 0.60 0.784 0.129 100
Albumen (log) 0.67 - 1.54 1.25 -2.799 0.796 100
Age (years) 26 - 78 49.80 0.032 0.010 100
Edema 0 = no edema n = 263 0.736 0.432 84

0.5 = edema but no diuretics n = 29
1 = edema despite diuretics n = 20

Prothrombin time 2.20 - 2.84 2.37 2.456 1.644 78
Urine copper (log) 1.39 - 6.38 4.27 0.249 0.195 72
Histologic stage 1 - 4 3.05 0.096 0.158 34
SGOT 3.27 - 6.13 4.71 0.103 0.231 22
Platelets 62 - 563 262.30 -0.000 0.000 5
Sex 0 = male 0.88 -0.014 0.088 4
Hepatomegaly 1 = present 0.51 0.006 0.051 3
Alkaline phosphates 5.67 - 9.54 7.27 -0.003 0.028 3
Ascites 1 = present 0.08 0.003 0.047 2
Treatment (DPCA) 1 = DPCA 0.49 0.002 0.028 2
Spiders 1 = present 0.29 0.000 0.027 2

Time observed (days) 41 - 4556 2001
Status 0 = censored 1 = died 0.40

Table: PBC example: summary statistics and BMA estimates

Prasenjit BMA: A Tutorial Stat 882 AU 06 43 / 70



Examples Primary Biliary Cirrhosis

Two typical approaches

Classical Approach:

“FH”: Fleming and Harrington, 1991.
Cox regression model.
Multistage variable selection to choose the “best” variables.
Chosen variables: age, edema, bilirubin, albumin and prothrombin time.

Stepwise backward elimination:

Final model: age, edema, bilirubin, albumin, prothrombin time and
urine copper.
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Examples Primary Biliary Cirrhosis

New approach: BMA using leaps-and-bounds algo.

Model# Age Ede Bil Alb UCop SGOT Pro His PMP logLik
1 * * * * * * 0.17 -174.4
2 * * * * * * * 0.07 -172.6
3 * * * * * * 0.07 -172.5
4 * * * * * 0.06 -172.2
5 * * * * * 0.05 -172.0
6 * * * * * 0.05 -172.0
7 * * * * * * * 0.04 -171.7
8 * * * * * * 0.04 -171.4
9 * * * * * * * 0.04 -171.3
10 * * * * * * * * 0.03 -170.9

P(β 6=0|D) 1.00 0.84 1.00 1.00 0.72 0.22 0.78 0.34

Table: PBC example: results for the full data set

PMP denotes the posterior model probability . Only the 10 models
with highest PMP values are shown.

Model 5 corresponds to the one selected by FH.
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Examples Primary Biliary Cirrhosis

What did we see from the tables?

Stepwise model: highest approximate posterior probability.

But, represents only 17% of total posterior probability.

Fair amount of model uncertainty!

FH model represents only 5% of total posterior probability.

P(β 6=0|D): Averaged posterior distribution associated with the
variable Edema has 16% of its mass at zero.

In this process of accounting for the model uncertainty, the standard
deviation of the estimates increases.
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Examples Primary Biliary Cirrhosis

p-values versus P(β 6= 0|D)...

Var p-value P(β 6= 0|D)

Bilirubin < 0.001∗∗ > 99 %
Albumen < 0.001∗∗ > 99 %
Age < 0.001∗∗ > 99 %
Edema 0.007∗∗ 84 %
Prothrombin 0.006∗∗ 78 %
Urine copper 0.009∗∗ 72 %
Histology 0.09∗ 34 %
SGOT 0.08∗ 22 %

Table: A comparison of some p-values from the stepwise selection model to the
posterior effect probabilities from BMA.

Prasenjit BMA: A Tutorial Stat 882 AU 06 47 / 70



Examples Primary Biliary Cirrhosis

p-values versus P(β 6= 0|D)...

Qualitatively different conclusions!

p-values “overstates” the evidence for an effect.

Distinction between:

p-value: not enough evidence to reject (the null) “no-effect”.
P(β 6=0): evidence in favor of accepting (the null) “no-effect”.

Example:

SGOT: 22%; status: indecisive.
DPCA: 2%; status: evidence for “no-effect”.
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Examples Primary Biliary Cirrhosis

Predictive Performance

Split data randomly in two parts (s.t. 61 deaths in each set).

Use Partial Predictive Scores (PPS, approximation to PLS)

BMA predicts who is at risk 6% more effectively than the stepwise
model.

Method PPS

Top PMP Model 221.6
Stepwise 220.7
FH model 22.8
BMA 217.1

Table: PBC example: partial predictive scores for model selection techniques and
BMA
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Examples Primary Biliary Cirrhosis

BMA by categorizing the patients

Risk
Method Categ. Survived Died % Died

Low 34 3 8%
BMA Med 47 15 24%

High 10 43 81%
Low 41 3 7%

Stepwise Med 36 15 29%
High 14 43 75%
Low 42 4 9%

Top PMP Med 31 11 26%
High 18 46 72%

Table: PBC example: classification for predictive discrimination.

Risk Scores (i) =
∑K

k=1(x
′
i β̂

(k)) · pr(Mk |Dtrain); Mk ∈ A, β̂(k) from
Mk .

“A method is better if it consistently assigns higher risks to the
peoples who actually die.”

People assigned to higher risk group by BMA had higher death rate
than those assigned high risk by the other methods.

Prasenjit BMA: A Tutorial Stat 882 AU 06 50 / 70



Part IV

Juhee Lee

Juhee BMA: A Tutorial Stat 882 AU 06 51 / 70



Examples

Where are we?

8 Examples
Predicting Percent Body Fat

9 Discussion
Choosing the class of models for BMA
Other Approaches to Model Averaging
Perspectives on Modeling
Conclusion

Juhee BMA: A Tutorial Stat 882 AU 06 52 / 70



Examples Predicting Percent Body Fat

Predicting Percent Body Fat

Overview: Predicting Percent Body Fat

The goal is to predict percent body fat using 13 simple body
mearusements in a multiple regression model.

Compare BMA to single models selected using several standard
variable selection techniques.

Determine whether there are advantages to accounting for model
uncertainty for these data.
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat

Anlayze the full data set

Split the data set into two parts, using one portion of the data to do
BMA and select models using standard techniques and the other
portion to assess performance.

Compare the predictive performance of BMA to that of individual
models selected using standard techniques.

For Bayesian approach, compute the posterior model probability for
all possible models using the diffuse (but proper) prior (Raftery,
Madigan and Hoeting, 1997).

Three choosen techniques: Efroymson’s stepwise method, minimum
Mllow’s Cp, and maximum adjusted R2
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat

Results

Posterior effect probabilities (PEP) P(βi 6= 0|D)

Obtained by summing the posterior model probabilities across models
for each predictor

Abdomen and Weight appear in the models that account for a very
high percentage of the total model probability.

Age, Height, Chest, Ankle, and Knee: smaller than 10%.

Top three predictors: Weight, Abdomen, and Wrist

BMA results indcate considerable model uncertainty

The model with the highest posterior model probability (PMP)
accounts for only 14% of the total posterior prob.

The top 10 models account for 57%.
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat

Comparison of BMA with models selected using standard techniques

All three standard model selection methods selected the same eight
predictor model.

Agreement: Abdomen, Weight, Wrist.

Small p values as compared to PEP: Age, Forearm, Neck and Thigh.

Posterior distribution of the coefficient of predictor13 (Wrist) based on the
BMA results

a mixture distribution of non-central Student’s t distributions

spike P(β13 = 0|D) = 0.38
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat
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Examples Predicting Percent Body Fat

Predicting Percent Body Fat

Predictive Performance

Predictive coverage was measured using proportion of observations in
the performance set that fall in the corresponding 90% prediction
interval.

Prediction interval: the posterior predictive distribution for individual
models and a mixture of these posterior predictive distributions for
BMA

Conditioning on a single selected model ingnores model uncertainty.

Underestimation of uncertainty when making inferences about
quantities of interest.

Predictive coverage is less than the stated coverage level.
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Choosing the class of models for BMA

In the examples,

Chose the model structure (e.g., linear regression).

Averaged either over a reduced set of models supported by the data
or over the entire class of models.

Alternative Approaches (Draper, 1995)

Finding a good model and then averaging over an expanded class of
models ‘near’ the good model.

Averaging over models with different error structure.
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Other Approaches to Model Averaging

Frequentist solution to model uncertainty problem: Boostrap the
entire data analysis, including model selection

A minmax multiple shrinkage Stein estimator (George, 1986, a, b, c):
When the prior model is finite normal mixtures, these minimax
multiple shrinkage estimates are emperical Bayes and formal Bayes
estimates.

Several ad hoc non-Bayesian approaches (Buckland, Burnham and
Augustin, 1997): Use AIC, BIC, bootstrapping methods to
approximate the model weights

Computational learning theory (COLT) provides a large body of
theoretical work on predictive performance of non-Bayesian model
mixing.
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Perspectives on Modeling

Two perspecives

M-closed perspective: the entire class of models is known

M-open perspective: the model class is not fully known

In the M-open situation, with its open and less constrained search for
better models, model uncertainty may be even greater than in the
M-closed case, so it may be more important for well-calibrated inference to
take account of it.

The basic principles of BMA apply to the M-open situation.

The Occam’s window approach can be viewed as an implementation
of the M open perspective.
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Conclusion

Taking accout of model uncertainty or uncertainty about statistical
structure can be very important, when making inference.

In theory, BMA provides better average predictive performance than any
single model.

Common Criticism

Too complicate to present easily
focus on the poesterior effect probalbilities
avoid the problem of having to defend the choice of model

Higher estimates of variance
model averaging is more correct
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Thank you for the patience! Have a nice break.
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