4.4 Vapnik-Chervonenkis Dimension

This section studies some useful properties of the shatter coefficient of \mathcal{A}, a collection of subsets of \mathcal{X}. Recall that

$$
s(\mathcal{A}, n):=\max _{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}} N_{\mathcal{A}}\left(x_{1}, \ldots, x_{n}\right)
$$

From the definition, the results given below follow immediately.

Result 2.

(a) If $|\mathcal{A}|<\infty, s(\mathcal{A}, n) \leq|\mathcal{A}|$ for all $n \geq 1$.
(b) $s(\mathcal{A}, n) \leq 2^{n}$ for all n.
(c) If $s(\mathcal{A}, k)<2^{k}$ for some k then $s(\mathcal{A}, n)<2^{n}$ for all $n>k$.

Definition 2 (Shattering). If $N_{\mathcal{A}}\left(x_{1}, \ldots, x_{n}\right)=2^{n}$ for $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n}$ then we say that the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is shattered by \mathcal{A}.

There is a critical number of points which can be shattered by \mathcal{A}.
Definition 3 (V-C dimension). For \mathcal{A}, we define $V_{\mathcal{A}}$ to be the largest $k \geq 1$ for which $s(\mathcal{A}, k)=2^{k}$, and call $V_{\mathcal{A}}$ the Vapnik-Chervonenkis (V-C) dimension of \mathcal{A}. If $s(\mathcal{A}, n)=2^{n}$ for all n, then we define $V_{\mathcal{A}}=\infty$.

Remark 6. $V_{\mathcal{A}}$ can be viewed as the size (or measure of capacity) of class \mathcal{A}. To prove that $V_{\mathcal{A}}=n$ we have to show $s(\mathcal{A}, k)=2^{k}$ for all $k \leq n$. This means that for every $k \leq n$, there exists at least one set of k points, $\left(x_{1}, \ldots, x_{k}\right) \in \mathcal{X}^{k}$ which can be shattered by \mathcal{A}.

Lemma 3. If $|\mathcal{A}|<\infty$, then $V_{\mathcal{A}} \leq \log _{2}|\mathcal{A}|$.
Proof. For \mathcal{A} to have the V -C dimension of $V_{\mathcal{A}}$, we need $2^{V_{\mathcal{A}}}$ sets, yet $2^{V_{\mathcal{A}}} \leq|\mathcal{A}|$. It implies that $V_{\mathcal{A}} \leq \log _{2}|\mathcal{A}|$.

We look at a few examples of shatter coefficients and V-C dimension for some classes of sets.

Example 1.

(a) $\mathcal{A}=\{(-\infty, x]: x \in \mathbb{R}\}$ and $\mathcal{X}=\mathbb{R}$.

\[

\]

(b) $\mathcal{A}=\{(a, b): a<b \in \mathbb{R}\}$ and $\mathcal{X}=\mathbb{R}$.

$$
s(\mathcal{A}, 1)=2
$$

$$
s(\mathcal{A}, 2)=4=2^{2}
$$

$s(\mathcal{A}, 3)=7<2^{3} \xrightarrow[x_{1}]{\stackrel{1}{x_{2}} \quad \stackrel{\text { x }}{\longrightarrow}} \quad\left\{x_{1}, x_{3}\right\}$ cannot be picked out.
$\Rightarrow V_{\mathcal{A}}=2$.
(c) $\mathcal{A}=\left\{\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} \geq 0\right\}: \beta_{0}, \beta_{1}, \beta_{2} \in \mathbb{R}\right\}$ and $\mathcal{X}=\mathbb{R}^{2}$. See Figure 2)

$$
s(\mathcal{A}, 1)=2
$$

$s(\mathcal{A}, 2)=4$

$$
s(\mathcal{A}, 3)=8
$$

$$
s(\mathcal{A}, 4)<16=2^{4} \quad \begin{array}{llll}
\bullet & \circ & \bullet & \circ \\
\text { ○ } & \circ & \bullet & V_{\mathcal{A}}=3
\end{array}
$$

Figure 2: Shatter coefficients of half-spaces

Theorem 8. For $\mathcal{X}=\mathbb{R}^{d}$, consider the class of sets induced by linear decision rules, that is,

$$
\mathcal{A}=\left\{H_{\beta_{0}, \beta}^{+}: \beta_{0} \in \mathbb{R}, \beta \in \mathbb{R}^{d}\right\} \text { where } H_{\beta_{0}, \beta}^{+}=\left\{x \in \mathbb{R}^{d}: \beta_{0}+\beta^{\prime} x \geq 0\right\}
$$

The V - C dimension of \mathcal{A} is $d+1$.
Proof. For x_{1}, \ldots, x_{n} in \mathbb{R}^{d}, consider

$$
B=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)_{(d+1) \times n} .
$$

Claim: $\left\{x_{1}, \ldots, x_{n}\right\}$ is shattered by $\mathcal{A} \Longleftrightarrow$ the columns of B are linearly independent.
(i) If the columns of B are linearly independent, we show that $\left\{x_{1}, \ldots, x_{n}\right\}$ is shattered by \mathcal{A}.
If $\operatorname{rank}(B)=n$, then $\operatorname{rank}\left(B^{\prime}\right)=n$. Therefore, the row space of B has a dimension n and $B^{\prime}: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{n}$ is an onto map. In other words, for every $v \in \mathbb{R}^{n}$ there exists an $u \in \mathbb{R}^{d+1}$ such that $B^{\prime} u=v$. Consider $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)^{\prime} \in\{-1,1\}^{n}$. So, for this σ, take $\beta^{*}=\left(\beta_{0}, \beta^{\prime}\right)^{\prime} \in \mathbb{R}^{d+1}$ such that $B^{\prime} \beta^{*}=\sigma$. That is, given n data points, x_{1}, \ldots, x_{n},
to pick exactly, $x_{i_{1}}, \ldots, x_{i_{k}}$ out of these, set $\sigma_{i_{j}}=1$ for all $j=1, \ldots, k$ and the rest $\sigma_{i}=-1$. Then for the β^{*} (depending on σ),

$$
\left(1, x_{i}^{\prime}\right) \beta^{*}=\beta_{0}+\beta^{\prime} x_{i}=\sigma_{i}=\left\{\begin{array}{rl}
1 \geq 0 & \text { if } i \in\left\{i_{1}, \ldots, i_{k}\right\} \\
-1<0 & \text { otherwise. }
\end{array} .\right.
$$

The half space $H_{\beta^{*}}^{+}$contains exactly the points $x_{i_{1}}, \ldots, x_{i_{k}}$. And we can do this for all $n \leq d+1$.
(ii) Conversely, for \mathcal{A} to shatter $\left\{x_{1}, \ldots, x_{n}\right\}$, we should be able to find $\beta^{*}=\left(\beta_{0}, \beta^{\prime}\right)^{\prime} \in$ \mathbb{R}^{d+1} such that $B^{\prime} \beta^{*}$ lies in each of the 2^{n} orthants of \mathbb{R}^{n}. So, such 2^{n} points belong to range $\left(B^{\prime}\right)$. This in turn implies that $\operatorname{span}\left(2^{n}\right.$ points $)=\mathbb{R}^{n} \subset$ range $\left(B^{\prime}\right)$. Thus, $\operatorname{rank}\left(B^{\prime}\right)=\operatorname{rank}(B)=n$. Hence the columns of B are linearly independent.

Since $V_{\mathcal{A}}$ is the maximal number of points which can be shattered by \mathcal{A}, and the columns of B can be linearly independent for at most $d+1$ points, $V_{\mathcal{A}}=d+1$.

Remark 7. The above theorem can be extended to a class of generalized linear decision rules of the form

$$
I\left(\beta_{0}+\sum_{j=1}^{d^{*}} \beta_{j} \psi_{j}(x) \geq 0\right) \quad \text { for } \quad\left(\beta_{0}, \ldots, \beta_{d^{*}}\right) \in \mathbb{R}^{d^{*}+1}
$$

where $\psi_{1}, \ldots, \psi_{d^{*}}$ are linearly independent. Then, the V-C dimension of

$$
\mathcal{A}=\left\{\left\{x \in \mathbb{R}^{d}: \beta_{0}+\sum_{j=1}^{d^{*}} \beta_{j} \psi_{j}(x) \geq 0\right\}: \beta_{0} \in \mathbb{R}, \beta \in \mathbb{R}^{d^{*}}\right\}
$$

is $d^{*}+1$.
The following theorem provides some elementary properties of shatter coefficient of classes obtained by set operations.

Theorem 9.

(a) If $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2}$ then, $s(\mathcal{A}, n) \leq s\left(\mathcal{A}_{1}, n\right)+s\left(\mathcal{A}_{2}, n\right)$.
(b) For $\mathcal{A}_{c}=\left\{A^{c}: A \in \mathcal{A}\right\}, s\left(\mathcal{A}_{c}, n\right)=s(\mathcal{A}, n)$.
(c) For $\mathcal{A}=\left\{A_{1} \cap A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\}, s(\mathcal{A}, n) \leq s\left(\mathcal{A}_{1}, n\right) s\left(\mathcal{A}_{2}, n\right)$.
(d) For $\mathcal{A}=\left\{A_{1} \cup A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\}, s(\mathcal{A}, n) \leq s\left(\mathcal{A}_{1}, n\right) s\left(\mathcal{A}_{2}, n\right)$.
(e) For $\mathcal{A}=\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right\}, s(\mathcal{A}, n) \leq s\left(\mathcal{A}_{1}, n\right) s\left(\mathcal{A}_{2}, n\right)$.

