4.4 Vapnik-Chervonenkis Dimension

This section studies some useful properties of the shatter coefficient of \mathcal{A}, a collection of subsets of \mathcal{X}. Recall that

$$s(\mathcal{A}, n) := \max_{(x_1, \ldots, x_n) \in \mathcal{X}^n} \mathcal{N}(x_1, \ldots, x_n).$$

From the definition, the results given below follow immediately.

Result 2.

(a) If $|\mathcal{A}| < \infty$, $s(\mathcal{A}, n) \leq |\mathcal{A}|$ for all $n \geq 1$.

(b) $s(\mathcal{A}, n) \leq 2^n$ for all n.

(c) If $s(\mathcal{A}, k) < 2^k$ for some k then $s(\mathcal{A}, n) < 2^n$ for all $n > k$.

Definition 2 (Shattering). If $\mathcal{N}(x_1, \ldots, x_n) = 2^n$ for $(x_1, \ldots, x_n) \in \mathcal{X}^n$ then we say that the set \(\{x_1, \ldots, x_n\}\) is shattering by \mathcal{A}.

There is a critical number of points which can be shattered by \mathcal{A}.

Definition 3 (V-C dimension). For \mathcal{A}, we define $V_{\mathcal{A}}$ to be the largest $k \geq 1$ for which $s(\mathcal{A}, k) = 2^k$, and call $V_{\mathcal{A}}$ the Vapnik-Chervonenkis (V-C) dimension of \mathcal{A}. If $s(\mathcal{A}, n) = 2^n$ for all n, then we define $V_{\mathcal{A}} = \infty$.

Remark 6. $V_{\mathcal{A}}$ can be viewed as the size (or measure of capacity) of class \mathcal{A}. To prove that $V_{\mathcal{A}} = n$ we have to show $s(\mathcal{A}, k) = 2^k$ for all $k \leq n$. This means that for every $k \leq n$, there exists at least one set of k points, $(x_1, \ldots, x_k) \in \mathcal{X}^k$ which can be shattered by \mathcal{A}.

Lemma 3. If $|\mathcal{A}| < \infty$, then $V_{\mathcal{A}} \leq \log_2 |\mathcal{A}|$.

Proof. For \mathcal{A} to have the V-C dimension of $V_{\mathcal{A}}$, we need $2^{V_{\mathcal{A}}}$ sets, yet $2^{V_{\mathcal{A}}} \leq |\mathcal{A}|$. It implies that $V_{\mathcal{A}} \leq \log_2 |\mathcal{A}|$. \qed

We look at a few examples of shatter coefficients and V-C dimension for some classes of sets.

Example 1.

(a) $\mathcal{A} = \{(-\infty, x] : x \in \mathbb{R}\}$ and $\mathcal{X} = \mathbb{R}$.

<table>
<thead>
<tr>
<th>n</th>
<th>$s(\mathcal{A}, n)$</th>
<th>Shattered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>${\emptyset}$, ${x_1}$</td>
</tr>
<tr>
<td>2</td>
<td>$3 < 2^2$</td>
<td>${\emptyset}$, ${x_1}$, ${x_1, x_2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Rightarrow V_{\mathcal{A}} = 1.$</td>
</tr>
</tbody>
</table>

(b) $\mathcal{A} = \{(a, b) : a < b \in \mathbb{R}\}$ and $\mathcal{X} = \mathbb{R}$.

<table>
<thead>
<tr>
<th>n</th>
<th>$s(\mathcal{A}, n)$</th>
<th>Shattered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>${\emptyset}$, ${x_1}$</td>
</tr>
<tr>
<td>2</td>
<td>$4 = 2^2$</td>
<td>${\emptyset}$, ${x_1}$, ${x_1, x_2}$</td>
</tr>
<tr>
<td>3</td>
<td>$7 < 2^3$</td>
<td>${\emptyset}$, ${x_1}$, ${x_1, x_2}$, ${x_1, x_3}$ cannot be picked out.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\Rightarrow V_{\mathcal{A}} = 2.$</td>
</tr>
</tbody>
</table>
(c) $\mathcal{A} = \{(x_1, x_2) \in \mathbb{R}^2 : \beta_0 + \beta_1 x_1 + \beta_2 x_2 \geq 0 \} : \beta_0, \beta_1, \beta_2 \in \mathbb{R}$ and $\mathcal{X} = \mathbb{R}^2$. See Figure 2)

\[
\begin{align*}
 s(\mathcal{A}, 1) &= 2 \\
 s(\mathcal{A}, 2) &= 4 \\
 s(\mathcal{A}, 3) &= 8 \\
 s(\mathcal{A}, 4) &< 16 = 2^4
\end{align*}
\]

Figure 2: Shatter coefficients of half-spaces

Theorem 8. For $\mathcal{X} = \mathbb{R}^d$, consider the class of sets induced by linear decision rules, that is,

\[\mathcal{A} = \{H^+_{\beta_0, \beta} : \beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^d \} \text{ where } H^+_{\beta_0, \beta} = \{x \in \mathbb{R}^d : \beta_0 + \beta' x \geq 0 \}.\]

The V-C dimension of \mathcal{A} is $d + 1$.

Proof. For x_1, \ldots, x_n in \mathbb{R}^d, consider

\[B = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix}_{(d+1) \times n}.
\]

Claim: $\{x_1, \ldots, x_n\}$ is shattered by \mathcal{A} \iff the columns of B are linearly independent.

(i) If the columns of B are linearly independent, we show that $\{x_1, \ldots, x_n\}$ is shattered by \mathcal{A}.

If $\text{rank}(B) = n$, then $\text{rank}(B') = n$. Therefore, the row space of B has a dimension n and $B' : \mathbb{R}^{d+1} \to \mathbb{R}^n$ is an onto map. In other words, for every $v \in \mathbb{R}^n$ there exists an $u \in \mathbb{R}^{d+1}$ such that $B'u = v$. Consider $\sigma = (\sigma_1, \ldots, \sigma_n)' \in \{-1, 1\}^n$. So, for this σ, take $\beta^* = (\beta_0, \beta')' \in \mathbb{R}^{d+1}$ such that $B'\beta^* = \sigma$. That is, given n data points, x_1, \ldots, x_n,
to pick exactly, \(x_{i_1}, \ldots, x_{i_k} \) out of these, set \(\sigma_{i_j} = 1 \) for all \(j = 1, \ldots, k \) and the rest \(\sigma_i = -1 \). Then for the \(\beta^* \) (depending on \(\sigma \)),

\[
(1, x'_i)\beta^* = \beta_0 + \beta' x_i = \sigma_i = \begin{cases}
1 \geq 0 & \text{if } i \in \{i_1, \ldots, i_k\} \\
-1 < 0 & \text{otherwise.}
\end{cases}
\]

The half space \(H^+_{\beta^*} \) contains exactly the points \(x_{i_1}, \ldots, x_{i_k} \). And we can do this for all \(n \leq d + 1 \).

(ii) Conversely, for \(\mathcal{A} \) to shatter \(\{x_1, \ldots, x_n\} \), we should be able to find \(\beta^* = (\beta_0, \beta')' \in \mathbb{R}^{d+1} \) such that \(B'\beta^* \) lies in each of the \(2^n \) orthogonal \(\mathbb{R}^n \). So, such \(2^n \) points belong to \(\text{range}(B') \). This in turn implies that \(\text{span}(2^n \text{ points}) = \mathbb{R}^n \subset \text{range}(B') \). Thus, \(\text{rank}(B') = \text{rank}(B) = n \). Hence the columns of \(B \) are linearly independent.

Since \(V_{\mathcal{A}} \) is the maximal number of points which can be shattered by \(\mathcal{A} \), and the columns of \(B \) can be linearly independent for at most \(d + 1 \) points, \(V_{\mathcal{A}} = d + 1 \).

Remark 7. The above theorem can be extended to a class of generalized linear decision rules of the form

\[
I\left(\beta_0 + \sum_{j=1}^{d^*} \beta_j \psi_j(x) \geq 0\right) \quad \text{for } (\beta_0, \ldots, \beta_{d^*}) \in \mathbb{R}^{d^*+1}
\]

where \(\psi_1, \ldots, \psi_{d^*} \) are linearly independent. Then, the V-C dimension of

\[
\mathcal{A} = \left\{ \left\{ x \in \mathbb{R}^d : \beta_0 + \sum_{j=1}^{d^*} \beta_j \psi_j(x) \geq 0 \right\} : \beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^{d^*} \right\}
\]

is \(d^* + 1 \).

The following theorem provides some elementary properties of shatter coefficient of classes obtained by set operations.

Theorem 9.

(a) If \(\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \) then, \(s(\mathcal{A}, n) \leq s(\mathcal{A}_1, n) + s(\mathcal{A}_2, n) \).

(b) For \(\mathcal{A}_c = \{ A^c : A \in \mathcal{A} \} \), \(s(\mathcal{A}_c, n) = s(\mathcal{A}, n) \).

(c) For \(\mathcal{A} = \{ A_1 \cap A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \} \), \(s(\mathcal{A}, n) \leq s(\mathcal{A}_1, n)s(\mathcal{A}_2, n) \).

(d) For \(\mathcal{A} = \{ A_1 \cup A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \} \), \(s(\mathcal{A}, n) \leq s(\mathcal{A}_1, n)s(\mathcal{A}_2, n) \).

(e) For \(\mathcal{A} = \{ A_1 \times A_2 : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \} \), \(s(\mathcal{A}, n) \leq s(\mathcal{A}_1, n)s(\mathcal{A}_2, n) \).