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a b s t r a c t

This paper addresses the problem of estimating the density of a future outcome from a
multivariate normal model. We propose a class of empirical Bayes predictive densities
and evaluate their performances under the Kullback–Leibler (KL) divergence. We show
that these empirical Bayes predictive densities dominate the Bayesian predictive density
under the uniform prior and thus are minimax under some general conditions. We also
establish the asymptotic optimality of these empirical Bayes predictive densities in infinite-
dimensional parameter spaces through an oracle inequality.
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1. Introduction

Constructing accurate predictive strategies is a fundamental problem in both statistics and sciences. Traditional
approaches to prediction provide a point forecast of an unknown future quantity and sometimes attach an error bound
to convey uncertainty. A more comprehensive approach is to provide a predictive density that assigns probabilities to all
possible outcomes. Such complete descriptions of uncertainty lead to sharper risk assessment and better decision making.
In the past decades, predictive densities have been widely used in diverse fields, ranging from climatology [42] to financial
management [43]. Besides predicting future trends and behavior patterns, predictive densities have also been used inmodel
checking and model diagnostics [33,14,36], missing data analysis [34,15,35,16,28], and data compression and information
theory [3,8,27].

In this paper, we consider the problem of estimating the density of a future outcome from a multivariate normal model,
the centerpiece of parametric models. Suppose that we observe a p-dimensional normal vector X | θ ∼ Np(θ, vxIp) and
would like to predict a (conditionally) independent future outcome Y | θ ∼ Np(θ, vyIp), which is centered at the same
unknown mean θ but has a possibly different variance. Assume that vx > 0 and vy > 0 are known or can be independently
estimated from the data. By a sufficiency and transformation reduction, this problem seems to be equivalent to observing
X1, . . . , Xn | θ i.i.d. ∼ Np(θ, Σ) and predicting future outcomes Xn+1, . . . , Xn+m from the same data generating process. The
(conditional) density of Y can be estimated by a predictive estimate p̂(y | x). We measure the closeness of p̂(y | x) to the
true density p(y | θ) by the Kullback–Leibler (KL) divergence

L(p, p̂) =

∫
p(y | θ) log

p(y | θ)

p̂(y | x)
dy, (1)
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and evaluate the performance of p̂(y | x) by its risk function

RKL(p, p̂) =

∫
p(x | θ)L(p, p̂)dx. (2)

For the comparison of two procedures, we say that p̂1 dominates p̂2 if RKL(p, p̂1) ≤ RKL(p, p̂2) for all θ and with strict
inequality for some θ .

There are two widely used approaches to predictive density estimation—the ‘‘plug-in’’ approach and the Bayesian
approach. The plug-in approach simply replaces θ by an estimate θ̂ (x) and then use

p̂θ̂ (y | x) = p(y | θ = θ̂ (x)).

Although appealing in its simplicity, this approach ignores the uncertainty in parameter estimation and thus often lead to
inferior predictive density estimators (see, for example, [2,26,13,24,41,40]). In contrast, the Bayesian approach integrates θ
out with respect to a pre-specified prior distribution π to get

p̂π (y | x) =


p(x | θ)p(y | θ)π(θ)dθ

p(x | θ)π(θ)dθ
=

∫
p(y | θ)π(θ | x)dθ.

Thus it directly incorporates the parameter uncertainty into the density estimate. However, as the dimension of the
parameter grows, prior specification becomes challenging. A standard choice is to use a uniform prior πU ≡ 1, under which
the Bayesian predictive density is

p̂U(y | x) =
1

{2π(vx + vy)}
p
2

exp

−

‖y − x‖2

2(vx + vy)


. (3)

It dominates the plug-in predictive density p̂ (y | θ̂MLE), which substitutes themaximum likelihood estimate (MLE) θ̂MLE = x
for θ [1]. Moreover, it is best invariant and minimax with constant risk [31,32,27], and is admissible when the parameter
dimension p = 1 or 2 [27,7]. However, when p ≥ 3, p̂U(y | x) is inadmissible and can be further dominated by
the Bayesian predictive densities under the harmonic prior and under the Strawderman prior [25,27,20]. These Bayesian
predictive densities are shown to be admissible in high-dimensional spaces [7], however, they are not of the form of normal
distributions. In fact, their density representations are very complicated or even do not have closed-forms, which makes it
difficult to implement them in practice. A principal purpose of our paper is to construct a class of predictive densities that
have simple forms and at the same time retain nice risk properties.

It is interesting to note that the above results closely parallel some key developments concerning multivariate normal
mean estimation under quadratic loss. Based on observing X | θ ∼ N(θ, vxI), that problem is to estimate θ under

RQ (θ, θ̂) = E‖θ − θ̂‖
2.

The maximum likelihood estimator θ̂MLE = X is best invariant, minimax and admissible when p = 1 or 2, but can be further
dominated by the Bayesian estimators under the harmonic prior [37] and under the Strawderman prior [39]. Thus θ̂MLE plays
the same role as p̂U in the predictive density estimation problem. A further connection between θ̂MLE and p̂U is revealed by
the fact that θ̂MLE can also be motivated as the Bayesian estimator under the uniform prior πU ≡ 1. George et al. [20]
and Brown et al. [7] drew out these parallels by showing that there is a fascinating connection between the predictive
density estimation problem and the classic point estimation problem, so that we can borrow strength from some important,
beautiful and fundamental results in the latter area.

One of the most famous estimators in the normal mean estimation problem is the James–Stein estimator

θ̂JS(x) =


1 −

(p − 2)vx

‖x‖2


x. (4)

It was introduced by James and Stein [23] in 1961 and shocked the statistics community. Its representation is very simple—
as shown in (4), θ̂JS just shrinks the MLE θ̂MLE = x toward 0 by a multiplicative factor 1 − (p − 2)vx/‖x‖2, but it has many
excellent risk properties. When p ≥ 3, it outperforms the best invariant estimator θ̂MLE for all values of the parameter θ and
hence is minimax. Although it is not smooth enough to be admissible, it or its positive part θ̂JS+ = max(0, θ̂JS) is ‘‘close’’ to a
Bayes estimator [10] and is difficult to improve upon [6,30]. The simple form and superior risk properties of the James–Stein
estimator have led to its wide applications in many scientific problems, such as estimating baseball batting averages
[11,19], assessing seasonal factors [29], and inferring gene networks [22]. It also plays an important role in modern wavelet
analysis and nonparametric regression estimation. A key result in these fields is the so-called ‘‘oracle inequality’’, which
shows that the quadratic risk of the James–Stein estimator may exceed the ‘‘oracle risk’’ only by a constant. Therefore, the
James–Stein estimator is asymptoticallyminimax as the parameter dimension p → ∞ and can be used to construct adaptive
minimax estimators in Sobolev spaces [12]. These results had enormous influence andmany papers tried to provide heuristic
arguments for the superiority of the James–Stein estimator. A leading argument is the empirical Bayes argument provided
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by Efron and Morris [9], which shows that the James–Stein estimator can be motivated as an empirical Bayes estimator
under a normal prior.

Inspired by these works in the point estimation problem, we propose a class of predictive densities in the predictive
density estimation problem using an analogous empirical Bayes approach. In Section 2, we detail the derivation of our
empirical Bayes predictive densities and show that they have very simple normal forms, centered at shrinkage estimators
of θ and having data-dependent variances to incorporate the estimation uncertainty. In Section 3, we prove that analogous
to the James–Stein estimator, our empirical Bayes predictive densities dominate the best invariant predictive density p̂U
under some general conditions and thus are minimax. We conduct a numerical analysis to compare the KL risks of two
empirical Bayes predictive densities with the risks of p̂U and the Bayesian predictive density under the harmonic prior.
Then in Section 4, we establish an analogous oracle inequality for an empirical Bayes predictive density and show that
it is asymptotically minimax in infinite-dimensional parameter spaces. Finally, in Section 5, we summarize the major
contributions of this paper and discuss possible extensions.

2. The empirical Bayes predictive densities

In the classic problem of estimating the normal mean under quadratic loss, suppose that the normal mean θ follows a
normal prior N(0, vIp), the resulting Bayesian estimator can be expressed as θ̂ = v · x/(vx + v). It is a linear estimator of
x with the linear coefficient v/(vx + v). Efron and Morris [9] showed that the James–Stein estimator can be viewed as an
empirical Bayes estimator that uses the data to select the prior and thus to determine the linear coefficient. In the predictive
density estimation problem, we extend their approach to construct a class of empirical Bayes predictive densities that share
many similar properties with the James–Stein estimator.

We analogously first consider the Bayesian predictive densities under normal priors. Under a prior πv(θ) ∼ N(0, vIp),
where v > 0 is an unknown constant, the Bayesian predictive density p̂πv can be represented by

p̂v(y | x) ∼


v

vx + v
x;

1 −

v

vx + v


vy +

v

vx + v
(vx + vy)


. (5)

We call this Bayesian predictive density a ‘‘linear predictive density’’ due to the above connection, although linearity does
not have any literal meaning here, and we call λ = v/(vx + v) the ‘‘linear coefficient’’. To determine the optimal value of λ,
we note that the KL risk of p̂v can be expressed as

RKL(θ, p̂v) = E log
p(y | θ)

p̂v(y | x)
=

p
2
log

vx + vy

vy
+

1
2

[
p log

vw + v

vx + v
+

pvw + ‖θ‖
2

vw + v
−

pvx + ‖θ‖
2

vx + v

]
, (6)

where vw = vx vy/(vx + vy). Ideally this risk could be minimized by taking

λ∗
=

v∗

v∗ + v
=

‖θ‖
2

pvx + ‖θ‖2
= 1 −

pvx

pvx + ‖θ‖2
. (7)

The predictive density p̂λ∗ is called the ideal predictive density and its KL risk is called the oracle risk. However, p̂λ∗ is not
computable in practice because it requires the knowledge of the unknown parameter θ . Therefore, we follow the approach
of [9] to estimate λ∗ by its unbiased estimator λ̂∗

U = λp−2 = 1 − (p − 2)vx/‖x‖2. Moreover, to ensure that the variance
of the predictive density is positive, we truncate λp−2 at 0. Substituting λp−2,+ = max(0, λ̂∗

p−2) into the predictive density
yields a James–Stein type empirical Bayes predictive density

p̂p−2(y | x) ∼ N


1 −
(p − 2)vx

‖x‖2


+

x; vy +


1 −

(p − 2)vx

‖x‖2


+

vx


.

Note that its mean is exactly the positive part James–Stein estimator for θ .
In the above derivation, if we had estimated λ∗ by itsmarginalMLE λ̂∗

MLE = λp,+ = (1−pvx/‖x‖2)+ instead, the resulting
empirical Bayes predictive density would be

p̂p(y | x) ∼ N


1 −
pvx

‖x‖2


+

x; vy +


1 −

pvx

‖x‖2


+

vx


.

Estimators such as λp−2,+ and λp,+ are usually called shrinkage estimators, because they shrink the estimator X toward 0.
There exist, in fact, many other shrinkage estimators of X . A general class studied in the point estimation problem is

λk(x) = 1 − kvx/‖x‖2, (8)

where k ≥ 0 is a non-negative constant. Similarly truncating λk at 0 and substituting λk,+ = max(0, λk) into the density
function leads to the following class of empirical Bayes predictive densities

p̂k(y | x) ∼ N


1 −
kvx

‖x‖2


+

x; vy +


1 −

kvx

‖x‖2


+

vx


, where k ≥ 0. (9)
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It is worth noting that the variance of p̂k is always greater than or equal to the plug-in variance vy, hence p̂k automatically
incorporates the estimation uncertainty by inflating the variance. Moreover, for a fixed k ≥ 0, as ‖x‖2

→ 0, the predictive
density p̂k converges to the naive plug-in procedureN(0; vy), which simply replaces the parameter θ by 0; and as ‖x‖2

→ ∞,
p̂k converges to the best invariant predictive density p̂U ∼ N(x; vx+vy). Therefore, p̂k can be viewed as a shrinkage predictive
estimator that ‘‘pulls’’ p̂U toward 0. As we shall show in the next section, it could provide substantial risk improvement over
p̂U when θ is close to the shrinkage target 0.

Remark 1. Another well-known method for constructing the James–Stein estimator uses the (pseudo-) marginal
distribution of X . As shown in [5], any Bayesian estimator θ̂π = Eπ (θ | x) in the point estimation problem can be represented
by

θ̂π = x + ∇ logmπ (x), (10)

where ∇ = (∂/∂x1, . . . , ∂/∂xp) and mπ (x) is the marginal likelihood of X under π . Although the positive part James–Stein
estimator is not a real Bayesian estimator under any prior, it could be obtained by substituting mπ in (10) with a pseudo-
marginal distribution

mJS(x) = kp ‖x‖−(p−2), if ‖x‖2
≥ (p − 2);

= exp{−‖x‖2/2}, if ‖x‖2 < (p − 2),

where kp = (e/(p − 2))−(p−2)/2 [4]. In the predictive density estimation problem, George et al. [20] showed that a Bayesian
predictive density estimator p̂π can be represented in an analogous marginal form, namely,

p̂π (y | x) =
mπ (w; vw)

mπ (x; vx)
p̂U(y | x),

where w = (vyx + vxy)/(vx + vy) and vw = vxvy/(vx + vy). Therefore, it might seem natural to construct a James–Stein
type predictive density p̂JS using a modified pseudo-marginal distribution

m̃JS(x; v) = kp ‖x‖−(p−2), if ‖x‖2/v ≥ (p − 2);

= v−(p−2)/2 exp{−‖x‖2/2v}, if ‖x‖2/v < (p − 2).

Unfortunately, we found that such a pseudo-Bayes procedure is not a bona fide predictive distribution, because its integral
p̂JS(y | x)dy varies with x so that it cannot be normalized. Hence this pseudo-marginal approach is not directly applicable

to the predictive density estimation problem.

3. Minimaxity of the empirical Bayes predictive densities

Our construction of the empirical Bayes predictive densities suggests that they may serve similar roles in the predictive
estimation problem as the James–Stein estimator in the point estimation problem. In this section, we show that under some
general conditions, an empirical Bayes predictive density p̂k dominates the best invariant predictive density p̂U and thus
is minimax. We demonstrate the risk performances of two empirical Bayes predictive densities p̂p−2 and p̂p−3 through a
numerical analysis.

3.1. Sufficient conditions for minimaxity

We first show that the KL risk of a general ‘‘linear’’ predictive density

p̂λ(y | x) ∼ N

λx; (1 − λ)vy + λ(vx + vy)


depends on the variances vx and vy only through their ratio vr = vy/vx. Note that we put double quotes around ‘‘linear’’ to
indicate that λ could be either a constant or a function of x.

Lemma 1. The KL risk of a ‘‘linear’’ predictive density p̂λ can be represented by

R(θ, p̂λ) = E
[
p
2
log

λ + vr

vr
+

‖λZ − µ‖
2
− pλ

2(λ + vr)

]
, (11)

where vr = vy/vx, z = X/
√

vx and µ = θ/
√

vx.

Proof. See Appendix. �
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Lemma 1 facilitates the risk comparison between the best invariant predictive density p̂U and an empirical Bayes
predictive density p̂k, because they are both ‘‘linear’’ predictive densities with λ = 1 and λ = λk,+(x) =


1 − kvx/‖x‖2


+
,

respectively. To simplify the notations, in the rest of the paper we will assume that the ‘‘linear coefficients’’ are always
positively truncated and we will use λk and λk,+(x) indistinguishably. The next lemma provides a lower bound for the KL
risk difference between p̂U and p̂k.

Lemma 2. For any k ≥ 0, the KL risk difference between p̂U in (3) and p̂k in (9) has a lower bound

R(θ, p̂U) − R(θ, p̂k) ≥ E
[
p
2
log

1 + vr

λk + vr
+


p − 4 − k −

4k + 6
kvr

−
8

kv2
r


1 − λk

2(λk + vr)

]
, (12)

where λk =

1 − kvx/‖x‖2


+
.

Proof. See Appendix. �

This expression (12) plays a key role in the predictive density estimation problem. Based on it, we can now establish the
following sufficient conditions for an empirical Bayes predictive density p̂k to dominate p̂U and thus be minimax.

Theorem 1. The empirical Bayes predictive density (9) is minimax under the KL loss if

p ≥ p0(vr) and k ∈ [kmin(vr), kmax(vr , p)], (13)

where

p0(vr) =
4(vr + 1) + 4

√
2 + 3vr/2

(1 + 2vr)vr/(1 + vr)
, (14)

kmin(vr) =
1
vr

(2 +

2 + 3vr/2), and kmax(vr , p) =

1 + 2vr

1 + vr
p − 4 −

1
vr

(4 + 2

2 + 3vr/2). (15)

Proof. By Taylor expansion, for any λk ∈ [0, 1],

E
[
p
2
log

1 + vr

λk + vr

]
= E

[
−

p
2
log


1 −

1 − λk

1 + vr

]
≥ E

[
p(1 − λk)

2(1 + vr)

]
≥ E

[
vr

1 + vr
·
p(1 − λk)

2(λk + vr)

]
.

Therefore, the KL risk lower bound (12) can be rewritten as

R(θ, p̂U) − R(θ, p̂k) ≥ E
[

1 + 2vr

1 + vr
p − 4 − k −

4k + 6
kvr

−
8

kv2
r


1 − λk

2(λk + vr)

]
.

If we have

1 + 2vr

1 + vr
p − 4 − k −

4k + 6
kvr

−
8

kv2
r

≥ 0, (16)

then obviously R(θ, p̂k) ≤ R(θ, p̂U), and the minimaxity of p̂k would follow immediately from the minimaxity of p̂U . Direct
calculation yields that the inequality (16) holds when

k ∈

 1+2vr
1+vr

pvr − 4(vr + 1) −
√

∆

2vr
,

1+2vr
1+vr

pvr − 4(vr + 1) +
√

∆

2vr


, (17)

where

∆ =

[
1 + 2vr

1 + vr
pvr − 4(vr + 1)

]2
− 4(6vr + 8)

is non-negative iff p ≥ p0(vr) given in (14). Moreover, it is easy to check that when p ≥ p0(vr),

∆ ≥


1 − 2vr

1 − vr

2

v2
r (p − p0(vr))

2.

Thus, to obtain the inequality (16), it suffices to replace ∆ in (17) by


1−2vr
1−vr

2
v2
r (p − p0(vr))

2, which produces k ∈

[kmin(vr), kmax(vr , p)]. �

The above sufficient conditions show that for an empirical Bayes predictive density p̂k to dominate the best invariant
predictive density p̂U , the parameter dimension p needs to be at least p0. Note that p0 is a decreasing function of the variance
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Fig. 1. The KL risks of the empirical Bayes predictive densities p̂p−2 , p̂p−3 and the Bayesian predictive densities p̂U , p̂H for θ = (c, . . . , c).

ratio vr , and as vr → ∞, p0 reaches its lower limit 2. Therefore, for any finite vr , we can find an empirical Bayes predictive
density p̂k to dominates p̂U only when the parameter dimension is at least 3. This is consistent with the result that p̂U is
admissible when p = 1 or 2 [7].
Examples.

(i) Suppose that vr = 1. Then p0 = 10.32, kmin = 3.74 and kmax = 1.5p−11.74. Therefore, the empirical Bayes predictive
density p̂p−7 is minimax when p ≥ 11.

(ii) Suppose that vr = 3. Then p0 = 4.99, kmin = 1.70 and kmax = 1.75p − 7.03. Therefore, the empirical Bayes predictive
densities p̂p−3 and p̂p−4 are minimax when p ≥ 6.

(iii) Suppose that vr = 5. Then p0 = 3.96, kmin = 1.23 and kmax = 1.83p − 6.03. Therefore, the empirical Bayes predictive
densities p̂p−2 and p̂p−3 are minimax when p ≥ 5.

(iv) Suppose that vr = 10. Then p0 = 3.17, kmin = 0.82 and kmax = 1.91p−5.22. Therefore, the empirical Bayes predictive
densities p̂p−2 and p̂p−3 are minimax when p ≥ 4.

(v) Suppose that vr = 20. Then p0 = 2.73, kmin = 0.57 and kmax = 1.95p−4.77. Therefore, the empirical Bayes predictive
density p̂p−2 is minimax when p ≥ 3.

3.2. Numerical analysis

To demonstrate the risk performances of our empirical Bayes predictive densities, we conduct simulation studies to
compare the KL risks of two empirical Bayes predictive densities, p̂p−2 and p̂p−3, with those of two (generalized) Bayesian
predictive densities: (i) p̂U under the uniform prior πU ≡ 1; (ii) p̂H under the harmonic prior πH(θ) ∝ ‖θ‖

−(p−2). Here p̂U
serves as a benchmark for minimax predictive densities because it is best invariant and minimax with constant risk, and p̂H
represents the admissible predictive densities that have excellent risk properties but very complicated functional forms.

In Fig. 1, to illustrate the KL risk functions when θ is high dimensional, we let θ = (c, . . . , c)′, where c ∈ [0, 4]. Four
different combinations of the variance ratio vr and the parameter dimensions p are considered. In the upper two plots, vr
and p do not satisfy the minimax sufficient conditions in Theorem 1, so the KL risk of p̂p−2 is larger than that of p̂U for some
θ values. In the bottom two plots, the minimax sufficient conditions are satisfied, so p̂p−2 and p̂p−3 uniformly improve p̂U
for every θ value.

In all these scenarios, when θ is close to 0, the empirical Bayes predictive densities p̂p−2, p̂p−3 and the Bayesian predictive
density p̂H have substantially smaller KL risks than the best invariant estimator p̂U , and the risk reduction offered by p̂p−2
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is the greatest. This is because the normal prior πv and the harmonic prior πH are unimodal at 0, so the corresponding
predictive densities ‘‘shrink’’ p̂U toward 0, and p̂p−2 shrinks the most among these three. When θ is far from 0, the risks of
p̂p−2, p̂p−3 and p̂H asymptote to the risk of p̂U and are very close to each other. At the same time, risks reductions are larger
for larger p at each fixed vr .

Overall speaking, the KL risk of p̂p−2 is comparable to that of p̂H when the minimaxity sufficient conditions in Theorem 1
are satisfied, and p̂p−2 could offer even larger risk reductions when θ is close to the shrinkage target 0. Moreover, p̂p−2 is
much easier to implement in practice because of its simple normal form.

4. An oracle inequality and asymptotic minimaxity

We now turn to investigate the KL risk properties of the empirical Bayes predictive densities in infinite-dimensional
spaces. Suppose that the outcome of interest is associated with predictors through a nonparametric regression model,
where the unknown function f is in a compact functional space such as a Sobolev space. Xu and Liang [44] showed that
estimating the density of a future outcome from this nonparametric regression model based on n observations is equivalent
to estimating the density of Y ∼ Nn(θ, vyIn) based on observing X ∼ Nn(θ, vxIn), where vx = vy = n and θ is constrained
in an ellipsoidal space. Therefore, constructing an optimal predictive density for the nonparametric regression model
is equivalent to constructing an asymptotically optimal predictive density for the infinite-dimensional normal sequence
model. We shall show that analogous to the James–Stein estimator, an empirical Bayes predictive density satisfies an oracle
inequality, so its KL risk may exceed the oracle risk by only a constant and thus the empirical Bayes predictive density is
asymptotically minimax.

We begin with a lemma that provides an explicit representation of the oracle risk, which is the risk of the ideal predictive
density

p̂λ∗ ∼ N


1 −
pvx

pvx + ‖θ‖2


x; vy +


1 −

pvx

pvx + ‖θ‖2


vx


,

where θ is the true parameter value.

Lemma 3. The oracle risk for the predictive density estimation problem can be represented by

R(θ, p̂λ∗) = inf
p̂∈L

R(θ, p̂) =
p
2
log

‖µ‖
2
+ (p + ‖µ‖

2)vr

(p + ‖µ‖2)vr
, (18)

where µ = θ/
√

vx and L is the collection of all ‘‘linear’’ predictive densities.

Proof. See Appendix. �

Although the oracle risk can only be obtained by an ‘‘oracle’’ who knows the true parameter value θ , the next theorem
shows that an empirical Bayes predictive density p̂k can nearly achieve this optimal risk. To make the proof easier, we will
show this result for the empirical Bayes predictive density p̂p−2. However, similar conclusions can be easily drawn for other
empirical Bayes predictive densities p̂k following the same steps.

Theorem 2. When p ≥ 3, the KL risk of the empirical Bayes estimator p̂p−2 satisfies the following ‘‘oracle’’ inequality

R(θ, p̂λ∗) ≤ R(θ, p̂p−2) ≤ R(θ, p̂λ∗) +


2
vr

+
5

2v2
r

+
4
v3
r


, (19)

where vr = vy/vx is the variance ratio.

Proof. The first half of the inequality (19) follows immediately from the facts that p̂p−2 is a ‘‘linear’’ predictive density and
that p̂λ∗ has the smallest risk among all ‘‘linear’’ predictive densities.

To prove the second half of the inequality, we note that the KL risk difference between the best invariant estimator p̂U
and p̂λ∗ an be represented by

R(θ, p̂U) − R(θ, p̂λ∗) =
p
2
log

1 + vr

vr
−

p
2
log

‖µ‖
2
+ (p + ‖µ‖

2)vr

(p + ‖µ‖2)vr

= −
p
2
log


1 −

p
(1 + vr)(p + ‖µ‖2)


= −

p
2
log


1 −

p − 2
(1 + vr)(p + ‖µ‖2)


+

p
2
log


1 +

2
(1 + vr)‖µ‖2 + pvr


≤ −

p
2
log


1 −

(p − 2)
(1 + vr)(p + ‖µ‖2)


+

p
2
log


1 +

2
pvr
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= −
p
2
log


1 −

(p − 2)
(1 + vr)(p + ‖µ‖2)


+

1
vr

log

1 +

2
pvr

 pvr
2

≤ −
p
2
log


1 −

(p − 2)
(1 + vr)(p + ‖µ‖2)


+

1
vr

≤ E
[
p
2
log

1 + vr

λk + vr

]
+

1
vr

,

where the second inequality follows from the facts that the function (1+1/x)x is increasing in x and that limx→∞(1+1/x)x =

e, and the third inequality follows from the Jensen’s inequality and that E(1/‖Z‖
2) ≥ 1/(p + ‖µ‖

2). Combining this
expression with the expression (12) in Lemma 2, we obtain the following upper bound of KL risk difference between p̂p−2
and p̂λ∗

R(θ, p̂p−2) − R(θ, p̂λ∗) =

R(θ, p̂U) − R(θ, p̂λ∗)


−

R(θ, p̂U) − R(θ, p̂p−2)


≤ E

[
p
2
log

1 + vr

λk + vr

]
+

1
vr

− E
[
p
2
log

1 + vr

λk + vr
−


2 +

4(p − 2) + 6
(p − 2)vr

+
8

(p − 2)v2
r


×

1 − λk

2(λk + vr)

]
≤

1
vr

+ E
[

2 +
10
vr

+
8
v2
r


1
2vr

]
≤

2
vr

+
5
v2
r

+
4
v3
r
.

This finishes the proof of the second part of inequality (19). �

In the infinite-dimensional normal sequence model, as shown in [44], the parameter dimension p is equal to the sample
size n and the variances vx = vy = n. Therefore, the oracle inequality (19) becomes

R(θ, p̂λ∗) ≤ R(θ, p̂p−2) ≤ R(θ, p̂λ∗) + 17/2. (20)

The asymptotic optimality of a predictive density for this model is evaluated under the average KL risk R(θ, p̂)/n. It can be
shown that as n → ∞, the average oracle risk reaches the asymptotic minimax risk, and by (20), the average KL risk of p̂p−2
asymptotes to the average oracle risk. Therefore, p̂p−2 also reaches the asymptotic minimax risk.

Example. Suppose that θ is restricted in aL2 ballΘ(C) = {θ :
∑n

i=1 θ2
i ≤ C}. Xu and Liang [44] showed that the asymptotic

minimax risk for this space is

lim
n→∞

R(Θ(C)) =
1
2
log

1 + 2C
1 + C

.

Since µ = θ/
√

vx = θ/
√
n satisfies ‖µ‖

2
≤ nC , by Lemma 3, the average oracle risk achieves this asymptotic minimax risk.

Moreover, the average risk difference between p̂p−2 and p̂λ∗ is bounded by 17/2n, which goes to 0 as n → ∞. Therefore, the
empirical Bayes predictive density p̂p−2 also achieves the asymptotic minimax risk and thus is asymptotically minimax.

5. Discussions

In this paper, we consider the problem of predictive density estimation for multivariate normal models under the KL
divergence. We propose a class of empirical Bayes predictive densities that have simple normal forms and share many
similar properties with the famous James–Stein estimator in the classic point estimation problem. In particular, we show
that these empirical Bayes predictive densities dominate the best invariant predictive density and thus are minimax under
some general conditions. We also establish an ‘‘oracle’’ inequality that shows the KL risk of an empirical Bayes predictive
density may exceed the oracle risk only by a constant. Therefore, the empirical Bayes predictive density is asymptotically
minimax and can potentially be used to construct adaptive minimax predictive densities.

The normal priors πv that we used to construct the empirical Bayes predictive densities p̂k are centered at 0, so that p̂k
‘‘shrinks’’ p̂U toward 0 and offers the greatest reduction around this point. However, if θ is suspected to be close to a different
point or even an affine subspace, we can easily re-center the prior to let the risk reduction most pronounced around that
region. For example, a popular prior belief is that the coordinates of the parameter θ are similar, i.e., θ is contained in the
subspace S = [1p] = {θ : θ = u1p}, where u is an unknown constant and 1p = (1, . . . , 1)′. This leads to the prior
πu,v ∼ N(u1, vIp) and a new class of empirical Bayes predictive densities

p̂′

k(y | x) ∼ N

x̄1p +


1 −

kvx

‖x − x̄1p‖
2


+

(x − x̄1p); vy +


1 −

kvx

‖x − x̄1p‖
2


+

vx


,
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where k ≥ 0 and x̄ =
∑p

i=1 xi/p. These new predictive densities p̂′

k’s will ‘‘shrink’’ p̂U toward the subspace S and will offer
greatest risk reduction around it. We can analogously establish minimax conditions and oracle inequalities for these p̂′

k’s.
Furthermore, in situations where the shrinkage target is unclear, we can vastly enlarge the region of improved

performance by constructingmultiple shrinkage predictive densities following the approaches in [17–19]. Such a predictive
density can be viewed as a convex combination of re-centered p̂′

k’s at desired targets. Since the Kullback–Leibler loss is a
convex function in p̂, by Jensen’s inequality,

R


θ,

R−
i=1

cip̂′

ki


= E log

p(Y | θ)
r∑

i=1
cip̂′

ki
(Y | X)

≤ E
r−

i=1

ci log
p(Y | θ)

p̂′

ki
(Y | X)

=

r−
i=1

ciR(θ, p̂′

ki)

for any 0 ≤ c1, . . . , cr ≤ 1 and
∑r

i=1 ci = 1. Therefore, if p̂′

ki
, i = 1, . . . , r areminimax, their convex combination

∑r
i=1 cip̂

′

ki
is also minimax. George [17–19] showed that such a multiple shrinkage estimators can adaptively shrink toward the point
or subspace most favored by the data. George and Xu [21] used the same idea to construct multiple shrinkage Bayesian
predictive densities for linear regression models.

Another possible extension of this work is to consider different ‘‘linear coefficients’’ for the mean and the variance of the
empirical Bayes predictive densities. For example, we could set themean of the predictive density at θ̂k =


1 − kvx/‖x‖2


+
x

and then estimate the optimal variance vk separately. It is easy to check that the KL risk of p̂k,vk

R(θ, p̂k,vk) = E


−

p
2

+
p
2


log

v̂k

vy
+

vy

v̂k


+

‖θ̂ − θ‖
2

2 · v̂k


is minimized at v∗

k = vy+E‖θ̂ −θ‖
2/p. Analogous to the approach in Section 2, we could estimate E‖θ̂ −θ‖

2 by its unbiased
estimate


1 − [2k(p − 2) − k2]vx/(p‖x‖2)


pvx and truncate it at 0. This will lead to a new class of predictive densities

p̂′′

k (y | x) ∼ N


1 −
kvx

‖x‖2


+

x; vy +


1 −

k2vx

‖x‖2


+

vx


,

where k2 = [2k(p − 2) − k2]/p. When k ≥ max(0, p − 4), the new ‘‘linear coefficient’’ k2 ≤ k, hence p̂′′

k does not shrink as
much as p̂k. We can similarly establish minimax sufficient conditions and oracle inequalities for p̂′′

k ’s using the approaches
in Sections 3 and 4.
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Appendix

In this Appendix, we provide the proofs of Lemmas 1 and 2 from Section 3 and Lemma 3 from Section 4.
Proof of Lemma 1. Through straightforward calculation, we can write the KL risk of p̂λ as

R(θ, p̂λ) = E log
p(Y | θ)

p̂k(Y | X)
= E

[
p
2
log

λvx + vy

vy
+

‖Y − λX‖
2

2(λvx + vy)
−

p
2

]
= E

[
p
2
log

λvx + vy

vy
+

‖λX − θ‖
2
− pλvx

2(λvx + vy)

]
.

The expression (11) then follows by dividing the numerator and the denominator in both terms by vx. �

Proof of Lemma 2. Since p̂U and p̂k are ‘‘linear’’ predictive densities with λ = 1 and λ = λk respectively, by Lemma 1, their
KL risk difference can be represented by

R(θ, p̂U) − R(θ, p̂k) = E
[
p
2
log

1 + vr

vr
+

‖Z − µ‖
2
− p

2(1 + vr)
−

p
2
log

λk + vr

vr
−

‖λkZ − µ‖
2
− pλk

2(λk + vr)

]
= E

[
p
2
log

1 + vr

λk + vr
−

‖λkZ − µ‖
2
− pλk

2(λk + vr)

]
, (21)

where vr = vy/vx, Z = X/
√

vx and µ = θ/
√

vx. We expand the second term in (21) as

E
[
−

‖λkZ − µ‖
2
− pλk

2(λk + vr)

]
= E

[
−

(1 − λk)
2
‖Z‖

2
− 2(1 − λk)Z(Z − µ) + ‖Z − µ‖

2
− pλk

2(λk + vr)

]
, (22)

and we next derive a lower bound for it.
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Firstly, note that 1 − λk satisfies

k/‖z‖2
≥ 1 − λk =


k/‖z‖2 if ‖z‖2

≥ k
1 if ‖z‖2 < k.

Therefore, the first term in (22) can be expressed as

− E
[

(1 − λk)
2
‖Z‖

2

2(λk + vr)

]
≥ −E

[
k(1 − λk)

2(λk + vr)

]
. (23)

Secondly, since λk is differentiable at all points except ‖z‖2
= k with

∂

∂zi
λk =


2kzi/‖z‖4 if ‖z‖2 > k
0 if ‖z‖2 < k,

by Stein’s identity [38], the second term in (22) can be represented by

E
[
2(1 − λk)Z(Z − µ)

2(λk + vr)

]
= E


n−

i=1

∂

∂zi

2(1 − λk)Z
2(λk + vr)



= E
[
2p(1 − λk)

2(λk + vr)

]
− E‖Z‖

2
≥k
[

4k
2‖Z‖2(λk + vr)

+
4k2

2‖Z‖4(λk + vr)2

]
= E

[
2p(1 − λk)

2(λk + vr)

]
− E‖Z‖

2
≥k
[
4(1 − λk)

2(λk + vr)
+

4(1 − λk)
2

2(λk + vr)2

]
≥ E

[
(2p − 4)(1 − λk)

2(λk + vr)
−

4(1 − λk)
2

2(λk + vr)2

]
. (24)

Finally, by Stein’s identity again, the third term in (22) can be expressed as

− E
[

‖Z − µ‖
2

2(λk + vr)

]
= −E


n−

i=1

∂

∂zi

Z − µ

2(λk + vr)



= −E
[

p
2(λk + vr)

]
+ kE‖Z‖

2
≥k
[

2Z(Z − µ)

2‖Z‖4(λk + vr)2

]
. (25)

Wemake an orthogonal transformation thatmaps Z into a random variable T such that Ti|ξi independently∼N(ξi, 1), where
ξ1 = ‖µ‖ and ξ2 = ξ3 = · · · = ξp = 0. Then in (25),

E‖Z‖
2
≥k
[

Z(Z − µ)

‖Z‖4(λk + vr)2

]
= E‖T‖

2
≥k


T1(T1 − ξ1) + T 2

2 + · · · + T 2
p

‖T‖4(λk + vr)2


≥ E‖T‖

2
≥k
[

T1(T1 − ξ1)

‖T‖4(λk + vr)2

]
.

Conditioning on T 2
2 + · · · + T 2

p = c ∈ [0, k], the restriction ‖T‖
2

≥ k is equivalent to T 2
1 ≥ k − c , and the conditional

expectation

ET21 ≥k−c
[

T1(T1 − ξ1)

‖T‖4(λk + vr)2
| T 2

2 + · · · + T 2
p = c

]
= −

t1
‖t‖4(λk + vr)2

ϕ(t1 − ξ1)

|
−

√
k−c

−∞ + |
∞√
k−c


+ ET21 ≥k−c

[
∂

∂T1

T1
‖T‖4(λk + vr)2

| T 2
2 + · · · + T 2

p = c
]

≥ ET21 ≥k−c
[

1 − 4T 2
1 /‖T‖

2

‖T‖4(λk + vr)2
−

4kT 2
1 /‖T‖

2

‖T‖6(λk + vr)3
| T 2

2 + · · · + T 2
p = c

]
, (26)

where ϕ(·) is the density function of the standard normal distribution. Combining (25) and (26), we obtain

− E
[

‖Z − µ‖
2

2(λk + vr)

]
≥ −E

[
p

2(λk + vr)

]
− E‖Z‖

2
≥k
[

6k
2‖Z‖4(λk + vr)2

+
8k2

2‖Z‖6(λk + vr)3

]
≥ −E

[
p

2(λk + vr)
+

6(1 − λk)
2/k

2(λk + vr)2
+

8(1 − λk)
3/k

2(λk + vr)3

]
. (27)
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Now substituting (23), (24) and (27) into (22) yields

E
[
−

‖λkZ − µ‖
2
− pλk

2(λk + vr)

]
≥ E

[
(p − 4 − k)(1 − λk)

2(λk + vr)
−

(4k + 6)(1 − λk)
2/k

2(λk + vr)2
−

8(1 − λk)
3/k

2(λk + vr)3

]
≥ E

[
p − 4 − k −

4k + 6
kvr

−
8

kv2
r


1 − λk

2(λk + vr)

]
, (28)

where the second inequality follows from the fact (1 − λk)/(λk + vr) ≤ 1/vr for any 0 ≤ λk ≤ 1. Combining from (21) and
(28) leads to the KL risk lower bound (12) in Lemma 2. �

Proof of Lemma 3. The ideal predictive density p̂λ∗ is a ‘‘linear’’ density estimator with coefficient

λ∗
= 1 −

pvx

pvx + ‖θ‖2
=

‖µ‖
2

p + ‖µ‖2
,

where µ = θ/
√

vx. Therefore, by Lemma 1, the KL risk of p̂v∗ can by represented by

R(θ, p̂λ∗) = E
[
p
2
log

λ∗
+ vr

vr
+

‖λ∗Z − µ‖
2
− pλ∗

2(λ∗ + vr)

]
=

p
2
log

‖µ‖
2
+ (p + ‖µ‖

2)vr

(p + ‖µ‖2)vr
,

where the second equation follows from the facts that E(Z) = µ and E(Z2) = p + ‖µ‖
2. �
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