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Optimal Nonbipartite Matching and Its Statistical Applications

Bo LU, Robert GREEVY, Xinyi XU, and Cole BECK

Matching is a powerful statistical tool in design and analy-
sis. Conventional two-group, or bipartite, matching has been
widely used in practice. However, its utility is limited to sim-
pler designs. In contrast, nonbipartite matching is not limited to
the two-group case, handling multiparty matching situations. It
can be used to find the set of matches that minimize the sum
of distances based on a given distance matrix. It brings greater
flexibility to the matching design, such as multigroup compar-
isons. Thanks to improvements in computing power and freely
available algorithms to solve nonbipartite problems, the cost
in terms of computation time and complexity is low. This ar-
ticle reviews the optimal nonbipartite matching algorithm and
its statistical applications, including observational studies with
complex designs and an exact distribution-free test comparing
two multivariate distributions. We also introduce an R pack-
age that performs optimal nonbipartite matching. We present an
easily accessible web application to make nonbipartite match-
ing freely available to general researchers.

KEY WORDS: Bipartite matching; CRAN; Observational
studies; Propensity score; R package.

1. INTRODUCTION

A major goal of many empirical studies in the health and so-
cial sciences is to evaluate the causal effect of an intervention,
such as a medical treatment or a policy change. The ideal setup
for conducting causal inference is a well-executed randomized
experiment (Shadish, Clark, and Steiner 2008). However, ran-
dom allocation of participants to treatments is often not feasi-
ble due to practical or ethical reasons, and observational studies
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have to be performed instead. For example, in most smoking
cessation studies, participants are given the option to choose the
treatment they would like to receive. In this case, participants
who choose the treatment may differ from those who choose the
control condition. Lack of adequate controls for treated partic-
ipants often leads to biased treatment effect estimation, where
the observed effect may be due, in part, to selection effects.

Matching is a popular approach to guard against such se-
lection bias (Cochran and Chambers 1965). It classifies par-
ticipants into homogeneous groups or strata according to cer-
tain criteria, such that the individuals within the same matched
groups were comparable before they received a treatment. Pro-
vided the probability of treatment is influenced only by vari-
ables balanced through matching, the difference in their out-
comes provides an unbiased estimate of the treatment effect.
Matching is appealing for adjusting for measured confound-
ing in observational studies for several reasons. First, well-
matched sets provide easily interpretable analyses. Second, it
draws the attention of the users to the covariate balance between
matched groups to understand the limits of the analysis. Third,
some matched analyses do not need the parametric assump-
tions required by most regression methods. Fourth, matching
that produces nonoverlapped pairs (matching without replace-
ment) maintains an independent structure and thus enables the
proper use of the existing statistical inference methods (Hansen
and Klopfer 2006). Fifth, the matching process itself does not
use the outcome variable information, preventing inappropri-
ate manipulation of the data. Matching-based analysis has been
widely applied in various fields, including health care research,
sociology, economics, business, and political science (see, e.g.,
Smith 1997; Dehejia and Wahba 1999; Harding 2003; Ho et al.
2007; Armstrong, Jagolinzer, and Larcker 2009).

Most of the existing matching methods in the literature are
bipartite matching methods, which are adequate for simple de-
signs with only two treatment options such as one treatment
group and one control group. In many practical studies, how-
ever, participants may have the option to receive multiple dif-
ferent treatments. For example, in a study to investigate the in-
fluence of in-pregnancy smoking cessation, participants volun-
tarily go through one of the three treatments—standard care,
a combination of enhanced counseling and self-help manual,
and a combination of enhanced counseling and an interactive
computer program (Aveyard et al. 2005). To conduct causal in-
ference in studies with multiple treatment groups, nonbipartite
matching methods have been proposed. However, in contrast to
the extensive discussions on bipartite matching methods in the
statistical literature (see Gu and Rosenbaum 1993; Ming and
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Rosenbaum 2001; Hansen 2004), the discussions on nonbipar-
tite matching have been scarce. Moreover, as far as we know,
there is no publicly available statistical software package to
conduct nonbipartite matching.

The major thrust of this article is to provide a comprehen-
sive description of the nonbipartite matching method, including
clarifying its association to bipartite matching and introducing
an optimal nonbipartite matching algorithm; and to demonstrate
its applications in statistical analysis, including performing
causal inference in observational studies with complex designs
and conducting an exact distribution-free test between two mul-
tivariate distributions. Moreover, we implement this optimal
nonbipartite matching algorithm in R, create a freely available
R package, and provide an easily accessible web application for
researchers in various scientific fields.

The article is organized as follows. In Section 2, we intro-
duce general matching methodology and optimal nonbipartite
matching. In Section 3, we discuss the applications of opti-
mal nonbipartite matching in statistical analysis with various
designs. Then in Section 4, we propose a new R package for
conducting optimal matching and illustrate its implementation
through an observational study on a media campaign. Finally,
we summarize the major contributions of the article and discuss
possible extensions.

2. OPTIMAL NONBIPARTITE MATCHING

2.1 The Basic Idea of Matching and Optimal Matching

In this subsection, we demonstrate the basic idea of matching
methodology. To make the demonstration easier, we consider a
simple design with only one treatment group and one control
group. Matching in more complex designs will be discussed in
the next subsection.

In graph-theoretic terminology, a graph consists of nodes
and edges between nodes, usually denoted by G = (V ,E),
where V = {vi, i = 1, . . . , n} denotes the set of nodes and
E = {[vi, vj ], vi, vj ∈ V } denotes the set of edges. In statisti-
cal applications, we may call each individual unit of interest a
node; for example, in medical research, a node could be a hos-
pital, a patient, or a cell line. A matching of a graph is a set of
distinctive edges with no shared nodes. Denoted by M , a match-
ing is a collection of paired nodes {[vi, vj ]} between which an
edge exists and each node can appear at most once. A matching
is called complete or perfect if the cardinality of M is �|V |/2�,
which is the largest integer not greater than |V |/2 (|V | denotes
the number of nodes in the graph). If |V | is an even number,
a complete matching would cover all nodes in the graph.

In a two-group setup, we would match one node from the
treatment group with one node from the control group, and rep-
resent this match by an edge in the graph. We could also eval-
uate the “closeness” of the matched nodes by assigning non-
negative weights to the matches. The weights can be calculated
as the distance between units based on the available covariates
information in a study, such as age difference, |agei − agej |. If
each node has k ≥ 2 covariates, an appropriate distance mea-
sure in k-dimensional space may be chosen. Of course, for any
two groups there could be numerous ways of matching. To eval-
uate the causal effect of a treatment, we would like to create

homogenous pairs in which the two individual units have simi-
lar pretreatment covariates, and thus the outcome difference be-
tween the treatment group and the control group must be due to
the treatment, provided that there is no unmeasured confound-
ing. Therefore, matched pairs with smaller distance are prefer-
able.

A traditional algorithm to create such pairs is the greedy
matching algorithm (Rubin 1973). Using this algorithm, we first
randomly order the units in one group. Then we pair the first
unit in this group with its nearest neighbor in the other group
based on the weights or distances. Next we match the second
unit with its nearest neighbor in the other group’s remaining
units and continue this procedure until no more pairs can be
formed. This algorithm is very intuitive and easy to implement.
However, it fails to produce the smallest total distance among
all the pairs, because the units in later pairs can be very “far
away” from each other.

The matching that minimizes the total distance among all the
pairs is called an optimal matching. It can be formulated as the
solution to a restricted minimization problem. Without loss of
generality, we focus on complete matching with an even num-
ber of nodes in the following discussion. Assume that every
edge [vi, vj ] ∈ E is associated with a nonnegative weight wij .
Then finding the optimal matching that minimizes the total dis-
tance is equivalent to finding a set of

xij =
{

1, if [vi, vj ] ∈ M

0, if [vi, vj ] /∈ M

which solves the restricted minimization problem

min
∑

[vi ,vj ]∈E

wij · xij

(1)
s.t.

∑
j :[vi ,vj ]∈E

xij = 1 for vi ∈ V.

Rosenbaum (1989) discussed the optimal matching for two
disjoint groups in detail. Simulation studies have shown that
optimal matching is noticeably better than nearest neighbor
matching in the sense of producing closely matched pairs in
all cases (Gu and Rosenbaum 1993).

2.2 Optimal Bipartite Matching and Optimal
Nonbipartite Matching

In general, a matching can be classified as bipartite or nonbi-
partite depending on the number of disjoint groups in the graph.
Matching producing pairs in a bipartite graph that involves only
two disjoint groups is known as bipartite matching. The group is
defined in the sense that two nodes in the same group cannot be
matched together, as illustrated in the left panel in Figure 1 (the
ovals define two groups). Literally, the term “bipartite” refers
to “two parts.” In contrast, when a graph has multiple groups,
it is called a nonbipartite graph and the associated matching is
referred to as nonbipartite matching. The right panel in Figure 1
shows an extreme case of nonbipartite matching in which every
single node is considered to be a group and, as a result, any two
nodes can be paired up in the matching.

The bipartite matching corresponds perfectly to the clas-
sical two-arm design in observational studies, and so it has
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Figure 1. Bipartite matching and nonbipartite matching.

been extensively discussed in the literature. Optimal bipartite
matching algorithms are available and usually implemented as
a max-flow problem in the network flow framework (Rosen-
baum 1989). Numerous statistical analyses of observational
studies under various two-arm designs have used optimal bipar-
tite matching to provide appropriate adjustments for unbiased
estimation of treatment effects (see, e.g., Ming and Rosenbaum
2001; Hansen 2004).

In contrast, the optimal nonbipartite matching has received
much less attention. The main reason is that the optimal nonbi-
partite matching problem requires a more complex algorithm to
solve it. The simple optimal bipartite matching algorithm can-
not be used for nonbipartite matching. Nonbipartite matching
can only be reduced to an extension of the max-flow problem
with bidirected graph, which has no easy solution. A widely
accepted algorithm to solve nonbipartite matching is by search-
ing augmenting paths (Papadimitriou and Steiglitz 1998). Our
implementation of the optimal nonbipartite matching is based
on Derig’s shortest augmentation path algorithm, discussed in
Section 3.

Practically, the demand for nonbipartite matching is by no
means meager. In many observational studies where the inves-
tigators have no control over the treatment given to each par-
ticipant, the classic two-arm design is not satisfactory and a
nonbipartite matching is required. For example, in a study in-
vestigating the effect of a media campaign on reducing illegal
drug use by young Americans, the exposure to the media cam-
paign is measured as the number of hours of antidrug adver-
tisements the teenagers watched from various media sources.
The treatment is perceived in a continuous scale rather than di-
chotomous. Lu et al. (2001) classified the kids into five ordinal
dose groups and conducted an optimal nonbipartite matching to
generate matched pairs that will be close on their covariates but
far apart on the exposure levels. Then the within-pair response
difference was aggregated to estimate the treatment effect for
various levels of exposure differences.

Theoretically, optimal nonbipartite matching encompasses
optimal bipartite matching as a special case, as shown in the
following proposition.

Proposition 1. For a bipartite graph, the optimal nonbipar-
tite matching produces the same result as the optimal bipartite
matching, provided that the optimal matching for such graph is
unique.

Proof. The bipartite graph differs from the nonbiparite graph
structurally in terms of the number of disjoint groups. The bi-
partite graph has only two groups and the edges connect one
node from each group. When the optimal matching algorithm
is applied, it searches the entire set of possible edges to find
the best result. Therefore, the optimal bipartite and the optimal
nonbipartite matching algorithms have the same set of edges to
search. Moreover, both algorithms minimize the same objective
function (1). Hence, the two minimization problems are identi-
cal and would yield the same result provided that the optimal
matching is unique.

In summary, optimal nonbipartite matching can be applied in
observational studies with more complex designs and provides
a unified framework for matched analyses in observational stud-
ies that encompasses optimal bipartite matching. Thus, it can be
widely applied in statistical analysis with a variety of designs.

2.3 A Small Example of Optimal Nonbipartite Matching

To illustrate the basic idea of optimal nonbipartite matching,
consider a small matching example with six nodes (Figure 2).
Assume that each node forms a different group, and so it could
be matched with any other nodes in the figure. The lines be-
tween two nodes denote existing edges, and the numbers be-
sides the lines denote the associated distances. If a line is miss-
ing between two nodes, such as between nodes 3 and 4, it means
that the two nodes can not be matched (the distance between
them is usually referred to as an infinite distance). We could
also summarize the distances between the nodes in a distance
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Figure 2. Nonbipartite matching with six nodes.

matrix as in Table 1. This matrix is symmetric because the dis-
tance between the pair [i, j ] is the same as the distance between
the pair [j, i].

The goal of optimal matching is to create a matching that
has three disjoint pairs and achieves the smallest total distance.
Under formulation (1), the optimal matching for this figure is
{[1,6], [2,4], [3,5]}. The distances between these three pairs
are highlighted in the distance matrix, and the total distance is
10 + 10 + 10 = 30. It is worth noting that node 1 is actually
closer to node 2 than node 6, but if we matched node 1 with
node 2, we would have to match node 6 with nodes 4 or 5 which
incurs a very large distance. This illustrates a scenario when
the optimal matching beats the greedy matching. Since the data
cannot be clustered into two groups, the bipartite matching al-
gorithm does not apply and the optimal nonbipartite matching
algorithm must be used.

3. APPLICATIONS OF OPTIMAL NONBIPARTITE
MATCHING IN STATISTICAL ANALYSIS

This section outlines the use of optimal nonbipartite match-
ing in statistical analysis with different designs through four
concrete scenarios. We focus on how nonbipartite matching can
be used to generate comparable pairs, hence providing unbiased
treatment effect estimates assuming strongly ignorable treat-
ment assignment. Put simply, this assumption posits that the
variables matched on are the only ones that influence treatment
assignment. Naturally, if there exists an important variable that
has not been balanced after matching, the estimates may still be
biased. The detailed implementations in standard software are
deferred to Section 4.

Table 1. Distance matrix for the small example.

Node 1 2 3 4 5 6

1 ∞ 1 ∞ 2 ∞ 10
2 1 ∞ 2 10 100 ∞
3 ∞ 2 ∞ ∞ 10 ∞
4 2 10 ∞ ∞ 30 100
5 ∞ 100 10 30 ∞ 100
6 10 ∞ ∞ 100 100 ∞

3.1 Observational Studies With Complex Design

A major advantage of nonbipartite matching is that it can
lead to unbiased treatment effect estimation in complicated ob-
servational studies where the classic bipartite matching is not
applicable.

• Matching with multiple ordinal dose groups. In some nonex-
perimental studies, control groups might not be available and
the level of exposure to treatment could vary significantly
among the participants. For example, Flores-Kagybes, Gon-
zalez, and Neumann (2007) studied a job training program, in
which the enrollment was voluntary and the time that the par-
ticipants stayed in the program varied substantially. The level
of exposure (the length of the program) would be an impor-
tant factor in estimating the treatment effect. A nonbipartite
matching can be used to compare the treatment effects among
different “dose” groups. A reasonable approach is to first cre-
ate propensity scores through an ordinal logit model and use
them to measure distances between participants. Then con-
duct an optimal nonbipartite matching to match participants
with similar pretreatment characteristics. This matching de-
sign is illustrated in the upper left panel of Figure 3. The
detailed implementation with an antidrug media campaign
dataset is shown in Section 4.

• Matching with multiple unordered groups. In order to de-
tect hidden biases due to failure to control for an unob-
served covariate, some observational studies use two control
groups selected to systematically vary the unobserved covari-
ate. There is usually no ordering among those three groups.
Matched pairs are created not only between the treated group
and the control groups, but also between the two control
groups. Eventually, three two-group comparisons would be
conducted, treated versus control 1, treated versus control 2,
and control 1 versus control 2. If there is a treatment effect
and no hidden bias with regards to the speculated unobserved
variable, we would expect to see significant differences in the
first two comparisons, but not in the third. Bipartite matching
can only generate matched pairs between two groups. With
three groups, bipartite matching needs to be applied three
times and results in overlapped matched pairs. In contrast,
nonbipartite matching can produce nonoverlapping matched
pairs between three groups simultaneously. They can be eas-
ily analyzed as either a balanced incomplete block design
or unbalanced incomplete block design as shown in Lu and
Rosenbaum (2004). The upper right panel of Figure 3 illus-
trates this matching design.

• Matching with time varying covariates. Many observational
studies on chronic diseases are longitudinal. A patient’s co-
variates may change over time, and at each time point,
whether a patient receives the treatment depends on their
symptoms at that time and on the physician’s judgment.
Thus, there is a group of treated patients and a group of
people not yet treated, at each time point. Matching can be
conducted at each time point, and the treatment effect is es-
timated by taking the outcome difference between matched
pairs. The overall treatment effect is the average of the treat-
ment effects at all time points. This design is known as the
risk set matching design (Li, Propert, and Rosenbaum 2001).
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Figure 3. Complex nonbipartite matching designs.

If the bipartite matching algorithm is used, we need to con-
duct the matching separately at each time point, which can
be very computationally intensive when the number of time
points is large. The nonbipartite matching can reduce the
computational burden significantly by treating risk sets at
different time points as different groups, then running the
matching once for all. For example, Lu (2005) investigated
the effect of a certain surgical procedure on interstitial cys-
titis (IC) with a cohort of women who were followed up
with every three months for up to four years. Therefore, there
were 16 time points. An optimal nonbipartite matching was
applied once to generate matched pairs between treated and
not-yet-treated women at all time points. The lower left panel
of Figure 3 illustrates this matching design.

3.2 Comparing Distributions Based on Adjacency

In addition to conducting matched pair analyses in obser-
vational studies with complex designs, optimal nonbiparite
matching can be used to construct a distribution-free test for
comparing two multivariate distributions. Rosenbaum (2005)
used the optimal nonbipartite matching to develop an exact test
for checking whether the outcomes from two populations, say
the treated and the control populations, follow the same distri-
bution. He first pooled the observations from these two pop-
ulations together and ignored the grouping information. Then
he used optimal nonbipartite matching to create matched pairs
among all the observations. After the matching is done, he clas-
sified these matched pairs into three categories based on their
compositions, namely, pairs consisting of treated subjects only,
pairs consisting of control subjects only, and pairs consisting of
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one treated and one control subject. A substantially lower num-
ber in the third category would provide evidence against the null
hypothesis that the two groups have exactly the same distribu-
tion. This test is known as the cross-match test. Rosenbaum also
derived the normal approximation version of the exact test and
compared the test with the well-known Kolmogorov–Smirnov
test. He concluded that the cross-match test is consistent for
comparing any two discrete distributions with finitely many
mass points. It could also be extended to comparing continuous
distributions given that the distributions can be approximated
well by discrete distributions with finitely many mass points.
The lower right panel of Figure 3 illustrates the nonbipartite
matching design for the cross-match test.

4. SOFTWARE

The optimal matching problem is a combinatorial optimiza-
tion problem that can be solved with a polynomial time algo-
rithm. In general, it takes O(|V |3) arithmetic operations to fin-
ish a complete optimal bipartite matching and takes O(|V |4)
arithmetic operations to finish a complete optimal nonbipartite
matching, where |V | is the number of nodes in the graph. The
complexity of nonbipartite matching can be brought down to
O(|V |3) with some careful refinement to the original algorithm
(Papadimitriou and Steiglitz 1998).

Matching routines are available for bipartite matching in
many standard statistical software packages, such as R, Stata,
and SAS. For example, King and his colleagues introduced a
comprehensive R package MatchIt to conduct matching, check
balance and perform post-matching analysis (Ho et al. 2007 and
website http://gking.harvard.edu/matchit/ ). Hansen provided a
R package for conducting optimal bipartite matching (http://
cran.r-project.org/web/packages/optmatch). Sianesi and Leu-
ven (2003) made a Stata package for conducting bipartite
matching with either Mahalanobis distances or propensity score
distances (see http:// ideas.repec.org/c/boc/bocode/s432001.
html). Moreover, Bergstralh, Kosanke, and Jacobsen (1996) im-
plemented the optimal bipartite matching algorithm in SAS.

As far as we know, however, codes for the optimal nonbi-
partite matching exist in C and FORTRAN languages, but are
not available in any standard statistical software. The C code
may be downloaded from http://elib.zib.de/pub/Packages/
mathprog/matching/weighted/ index.html, which was based on
Gabow’s (1973) algorithm. The objective of this algorithm is
maximizing the total weights, that is, the weight between sub-
ject i and j is βij , rather than minimizing the total distance,
that is, the distance between subject i and j is δij . To use it in
our setup, we must redefine the weights based on the distance
measure, βij = maxi,j {δij }− δij . The FORTRAN codes for the
optimal nonbipartite matching can be found in Derigs (1988).
His algorithm—based on searching the shortest augmentation
path with respect to an initial extreme matching—was intended
to minimize the total cost in an undirected graph. His imple-
mentation is also efficient in terms of achieving a computational
complexity of O(|V |3). Therefore, we used Derigs’ algorithm
to create our R matching package.

4.1 A New R Package

The R language has become widely used for statistical re-
search and data analysis, and its use is standard among sta-
tisticians for software development. We have created a new R
package for the optimal nonbipartite matching based on Derig’s
algorithm and made it freely available to public. It can be down-
loaded from the CRAN website http://cran.r-project.org/web/
packages/nbpMatching or the Vanderbilt Biostatistics website
http://biostat.mc.vanderbilt.edu/NonbipartiteMatching.

To use this package for the optimal nonbipartite match-
ing, users need to first pass their distance matrices to func-
tion distancematrix(), which performs validity checks
on the matrix and converts it into a readable object for the non-
bimatch() function. In version 1.0, distancematrix()
takes the integer part of the distance matrix values. Users may
wish to rescale their distance matrix prior to passing it to dis-
tancematrix() by, for example, multiplying by 1000, to
achieve the desired accuracy. Because Derig’s algorithm only
solves the complete nonbipartite matching problem with an
even number of subjects, the distancematrix() function
automatically adds one artificial subject (known as sink, see
Section 4.2 for details) to make the total number even. Users
should make sure the generated distance matrices reflect their
planned matching designs prior to performing matching. The
function nonbimatch() in the package calls Derig’s FOR-
TRAN codes and returns the optimal matching result in a com-
plete list, which has all k subjects in column one and their re-
spective matches in column two. It also returns a nonredundant
list, which has k/2 subjects in column one with their respec-
tive matches in column two. Furthermore, for those not familiar
with R, we implemented the package in an interactive webpage
http://biostat.mc.vanderbilt.edu/NonbipartiteMatching, which
calls the nbpMatching package’s functions using rapache
by Horner (2008).

4.2 Matching Design and Distance Specification

Our R package is a general-purpose matching routine that
can generate the optimal pairing under various matching de-
signs. The only information that users need to input is the dis-
tance matrix. The grouping information is contained in the dis-
tance matrix because the distances between two subjects in the
same group are set to be infinity, which prevents matching these
subjects. To correctly specify the distance matrix, users should
be familiar with the following common matching designs and
understand how our matching algorithm works under these dif-
ferent designs.

• Bipartite 1–1 matching. Under a simplified bipartite match-
ing design, each matched pair consists of one subject from
the treatment group and one subject from the control group.
Suppose that there are m1 and m2 subjects in these two
groups, respectively. If m1 = m2 = m, our package produces
m matched pairs using all the subjects. If m1 < m2, some
subjects in the control group cannot be matched. Since De-
rigs’ algorithm only works with complete matching, we in-
troduce artificial nodes (or sinks) to match with the extra
control subjects. The sinks are set to have zero distances
with all control subjects and have infinite distances with all
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treated subjects and among themselves. Thus, they can only
be matched to the control group. Therefore, by including
s = m2 −m1 sinks in the treated group, both groups have m2
subjects and we can proceed with the complete matching.

• Bipartite 1–k matching. The 1–k matching design is an
extension of the simple pair design. It was motivated by
the matched sampling scenario described by Rubin (1973),
where there is a huge pool of control subjects and only a lim-
ited number of treated subjects. To improve the efficiency
of the treatment effect estimation, each treated subject is
matched with k controls, where k is a prespecified integer.
When k = 1, this is reduced to simple pair matching. To con-
duct a bipartite 1–k matching using our R package, we need
to create k − 1 replicates for each of the treated subjects.
These replicates will take exactly the same outcomes and co-
variates values as their original ones. Then the treated group
has k×m1 subjects and k should not exceed m2/m1. We may
consider this as a regular bipartite 1–1 matching. Additional
sinks may be needed to meet the complete matching required
by the algorithm.

• Bipartite variable matching. The bipartite variable match-
ing design further extends the 1–k design by allowing each
treated subject to be matched with different number of con-
trols. It can reduce more bias than simple pair matching
(Ming and Rosenbaum 2000). To conduct a bipartite vari-
able matching, we need to first specify the lower bound and
the upper bound of the number of control subjects matched
to each treated subject. By default, the lower bound is set to 1
and the upper bound is set based on the sample sizes of the
two groups. Suppose that the upper limit is u, then up to u

control subjects can be matched to each treated subject, so
u − 1 replicates are created for each treated subject. Unlike
the fixed 1–k design, these replicates can be matched to not
only the control subjects, but also designated sinks (if less
than u controls should be used). Again, additional sinks may
be needed to meet the complete matching requirement.

• Nonbipartite multiple group 1–1 matching. As we have seen
in Section 2.2, a nonbipartite matching could simultaneously
match subjects from more than two groups. For example,
suppose there are five dose groups, then a subject in dose
one group can be matched to any subject in dose two, dose
three, dose four or dose five groups. The optimal matching
result minimizes the total distance among all possible par-
ings between these five groups. A key to using the matching
algorithm is to identify the correct distance matrix among
groups. Usually we calculate the distance between two sub-
jects from different groups based on their covariates. As in
bipartite matching, artificial sinks will be introduced to sat-
isfy the complete matching requirement if there is an odd
number of subjects.

• Nonbipartite matching with no group classification. This no-
group matching design is an extreme case of nonbipartite
matching. Under this design, each subject is considered to
form a separate group, so it can be matched to any other
subject in the dataset. Rosenbaum (2005, sec. 3.2) used this
matching design in his cross-match test for multivariate dis-
tributions. First, all subjects are pooled together and the
grouping information is ignored. Then a nonbipartite match-
ing is conducted with no group classification. Finally, the

number of cross matches is identified and used as the pivotal
quantity in the test.

Under any of the above matching designs, the distance ma-
trix should be appropriately specified to reflect the matching
design. The choice of the distance measure is up to users. In-
terested users are referred to Gu and Rosenbaum (1993), where
an extensive simulation study was conducted to compare three
popular distance metrics in observational studies, namely, the
Mahalanobis distance, the propensity score distance, and the
Mahalanobis distance with propensity score caliper. Since our
focus in this article is to discuss nonbipartite matching, we do
not discuss the choice of distance further here.

4.3 An Example: Optimal Nonbipartite Propensity Score
Matching in an Observational Study With Multiple
Ordinal Treatment Groups

This section reviews a concrete example where we used our
R package to conduct optimal nonbipartite matching.

In 1998, the United States Office of National Drug Control
Policy (ONDCP) launched a media campaign intended to re-
duce illegal drug use by young Americans. This made for a
challenging observational study. Not only was each teenager’s
exposure to media self-selected, but no natural control group
existed for evaluating the campaign’s effects because the cam-
paign was launched nationwide. In total 521 teenagers partici-
pated in the pilot study.

To evaluate the effect of the antidrug media campaign, Lu et
al. (2001) classified the teenagers into five ordinal dose groups
based on how often they reported seeing antidrug commercials
in three major media sources. They used “1” to denote least
exposure and “5” for most exposure. They used the following
ordinal logit model to estimate the distribution of the doses:

log
Pr(Zk ≥ d)

Pr(Zk < d)
= θk + βT xk, for d = 2,3,4,5,

where Zk is the dose level. Twenty-two covariates regarding
the teenagers’ background information were included to fit this
model. Note that the distribution of doses depends on the ob-
served covariates only through e(xk) = βT xk . Therefore, the
maximum likelihood estimate β̂T xk was used as the propensity
score component in the matching to balance the distributions of
the covariates. If a dose-dependent treatment effect exists, sub-
jects with similar covariates but very different dose exposures
are more likely to show significant results. Therefore, in match-
ing with doses, the goal is not only to balance the observed
covariates, but also to produce pairs with very different doses.
To this end, the following distance was considered:

�(xi, xj ) = (β̂T xi − β̂T xj )
2 + ε

(Zi − Zj )2
,

where ε > 0 was a vanishingly small but strictly positive num-
ber, which serves two functions. First, it makes the distance be-
tween two subjects with the same dose equal ∞, regardless of
their observed covariates. Second, when two subjects have iden-
tical covariates, the distance will be smaller as the dose differ-
ence increases. The addition of a sufficiently small ε > 0 would
not affect the optimal matching result.
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The teenagers from the same dose group cannot be matched
to each other, so their distances are set to be ∞. In practice,
a huge positive integer is often used to facilitate the computa-
tion, say 1,000,000. Derig’s algorithm works only for integer
distances. When propensity score related distance is calculated,
it often involves small decimal values which may lead to nonop-
timal results with Derig’s algorithm. One practical remedy is to
multiply all distances by 10 to an appropriate power. For exam-
ple, if the desired accuracy is three decimal places, we can mul-
tiply all distances by 1000 and round them. Thus, a 521 × 521
distance matrix between all of the teenagers can be generated.
Because the number of teenagers is odd, one sink is added to
meet the complete matching requirement. The sink has zero dis-
tance to all 521 original subjects and infinity distance to itself.
As a result, the final distance matrix is 522 × 522.

Using the optimal nonbipartite matching, we created 261
pairs and discarded one original subject by using the sink.
Within each pair, the teenager with the higher dose was clas-
sified into the high dose group and the other was classified into
the low dose group. As a result, two groups with 260 teenagers
each were generated. Lu et al. (2001) showed that 7 of the 22
covariates were significantly associated with the dose levels be-
fore matching, and after matching, no significant differences
were observed between high and low dose groups.

Specifically, to accomplish the optimal nonbipartite match-
ing with ordinal dose groups, we take the following steps:

1. Estimate the ordinal propensity score with the ordinal logit
model and save the propensity score component β̂T xk for
each subject, k = 1, . . . ,521.

2. Generate a 521 × 521 distance matrix between all subjects
with the above formula, denote it by distmx1. It is sym-
metric with infinity distance on the diagonal and between
subjects with same dose. (A very large integer value is used
to represent ∞ in practice.)

3. Expand the distance matrix to 522 × 522 by introducing
a sink, which has zero distance to all 521 original sub-
jects and infinity distance to itself. We add the sink at
the very end and denote the matrix by distmx2 which
looks like the following using the command distmx2<-
distancematrix(distmx1)

distmx2=
(
distmx1521×521 01×521

0521×1 ∞
)

522×522

4. Conduct the optimal nonbipartite matching to create 261
matched pairs using the command:

nonbimatch(distmx2)

5. The matched pair consisting of the sink (the 522nd node)
should be discarded. The remaining 260 pairs are clustered
into a high-dose and a low-dose group for checking balance
after matching and for subsequent analyses.

5. SUMMARY

Matching plays a critical role in statistical study design and
analysis. Many observational studies have a relatively small
number of treated subjects and a much larger number of con-
trol subjects. Matched sampling is often used to select a group

of control subjects who are comparable to the treated with re-
gard to the background variables to allow valid treatment effect
estimation (Rosenbaum and Rubin 1985). This is particularly
important when the cost of obtaining the outcome is nontrivial
for each subject.

Most of the matching algorithms discussed in the statisti-
cal literature are confined to two group matching. However,
bipartite matching cannot accommodate more complex study
designs. In this article, we provide a comprehensive description
of the optimal nonbipartite matching methodology and demon-
strate its applications in statistical analysis with various com-
plex designs. Optimal nonbipartite matching has gained its pop-
ularity recently as being adopted in more and more publications
to address various issues in observational studies (Rosenbaum
and Silber 2009; Silber et al. 2009; Small and Rosenbaum 2009;
Baiocchi et al. 2010; Heller et al. 2010). Nonbipartite matching
can also be extended to randomized studies, especially when the
sample size is small and the conventional randomization mech-
anism cannot guarantee the balance of the baseline covariates
in both groups (Greevy et al. 2004). To aid in implementation,
we develop a new R package that conducts optimal nonbipartite
matching and encompasses optimal bipartite matching as a spe-
cial case. The function is easy to use and runs quickly for mod-
erately large cohorts. For users who are not familiar with R, we
provide an interactive website to conduct the matching. Users
may optionally have their matching results e-mailed to them
and import those results into their preferred statistical software
for analysis.

Our experience suggests that, for sample sizes up to a cou-
ple of thousand, the running times to solve a bipartite match-
ing problem are similar for the optimal bipartite matching
algorithm and the optimal nonbipartite matching algorithm.
However, when the sample size is much larger than that, the
nonbipartite algorithm is noticeably slower. Therefore, in a
large study with well-defined dichotomous treatment options,
the bipartite matching algorithm may be preferred. In a study
with a polychotomous treatment, which will usually be in-
tractable for the bipartite algorithm, nonbipartite matching pro-
vides a solution.

One limitation of our current R package is that it cannot per-
form full matching, which allows both multiple controls to be
matched with one treated subject and multiple treated subjects
to be matched with one control. Full matching can be viewed as
an extension of bipartite matching, and may maximally elimi-
nate observed bias (Hansen 2004). We are working on modify-
ing our package to accommodate full matching. The idea is to
add super sinks to increase the matching flexibility by allowing
variable matching in both directions.

Many other interesting topics regarding matching are in the
literature and are being developed. A practical issue is how to
check the degree of balance after matching. One way is to per-
form hypothesis tests, such as two-sample tests after matching
two groups and ANOVA or χ2-tests after matching multiple
groups. Rosenbaum and Rubin (1985) pointed out that two-
sample t -tests are relevant for comparing the distribution of
the covariates between the treated and control group; whereas,
paired t -tests are relevant for assessing residual biases. They
suggested reporting standardized differences to examine the
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imbalance in covariates. In contrast, Imai, King, and Stuart
(2008) argued against using tests to check balance because bal-
ance is a sample characteristic while most statistical tests infer
about population quantities. Therefore, they recommended us-
ing graphical means to illustrate the balance and echoed the
standardized difference approach. Love (2002) proposed for-
est plots as an effective way to show covariate balance before
and after matching. Hansen extended the discussion in a series
of papers that proposed a randomization-based test to appraise
the balance for stratified and clustered designs (Hansen 2008;
Hansen and Bowers 2008). Bowers and Hansen’s R package
RItools implements both the balance test and the forest plot
as a graphical diagnostic tool. Many good matching methodolo-
gies are available and more work is needed in this area, espe-
cially with regard to synthesizing the interpretation of the meth-
ods and making them more accessible.

[Received January 2009. Revised January 2011.]
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