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Abstract Analyses of multivariate ordinal probit models typically use data augmentation

to link the observed (discrete) data to latent (continuous) data via a censoring mechanism

defined by a collection of “cutpoints.” Most standard models, for which effective Markov

chain Monte Carlo (MCMC) sampling algorithms have been developed, use a separate (and

independent) set of cutpoints for each element of the multivariate response. Motivated by

the analysis of ratings data, we describe a particular class of multivariate ordinal probit

models where it is desirable to use a common set of cutpoints. While this approach is

attractive from a data-analytic perspective, we show that the existing efficient MCMC algo-

rithms can no longer be accurately applied. Moreover, we show that attempts to implement

these algorithms by numerically approximating required multivariate normal integrals over

high-dimensional rectangular regions can result in severely degraded estimates of the pos-

terior distribution. We propose a new data augmentation that is based on a covariance

decomposition and that admits a simple and accurate MCMC algorithm. Our data aug-

mentation requires only that univariate normal integrals be evaluated, which can be done

quickly and with high accuracy. We provide theoretical results that suggest optimal de-

compositions within this class of data augmentations, and, based on the theory, recommend

default decompositions that we demonstrate work well in practice.
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1 Introduction

Statistical models involving discrete behaviors and responses often view the observed data as

a censored outcome of a latent, continuous variable. Classical inference for models involving

discreteness requires the calculation of integrals over the space of error terms associated

with specific response options. Bayesian methods, in contrast, have relied on the method

of data augmentation to simplify these calculations. Rather than dealing directly with the

integrals associated with discreteness, data augmentation introduces a latent variable used as

a conditioning argument in Markov chain Monte Carlo (MCMC) estimation. Early examples

of applying data augmentation to choice data are the binary and multivariate probit models

of Albert and Chib (1993) and Chib and Greenberg (1998), and the multinomial probit

model of McCulloch and Rossi (1994) and McCulloch et al. (2000).

Methods of data augmentation and associated computation for Bayesian ordinal probit

models have received extensive attention in the literature. Albert and Chib (1993) intro-

duced the basic setup, with computational improvements offered by Cowles (1996), Nandram

and Chen (1996) and Chen and Dey (2000), among others. The interplay of identification

constraints and computation has been explored by Jeliazkov et al. (2008). The major compu-

tational challenge in MCMC for (multivariate) ordinal probit models relates to the “cutpoint”

parameters that map the latent responses to the observed data. Efficient sampling of the cut-

points — the key to good MCMC for these models — features heavily in the literature. The

gold standard approaches to sampling in these models integrate out portions of the latent

responses when updating the cutpoints, allowing for more aggressive moves in the cutpoint

space and resulting in Markov chains that converge faster. Use of these advanced algorithms

is imperative in order to obtain accurate MCMC-based inference; this is especially true when

working with high-dimensional models for large datasets.

A common formulation of the multivariate ordinal probit model uses a different, inde-

pendent set of cutpoints for each element of the latent response. In Section 2.1 we describe

data-analytic settings where a strongly dependent, perhaps even common set of cutpoints

across elements of the latent response, is preferred. While attractive from a modeling per-

spective, collapsing to a common set of cutpoints has the unfortunate effect of rendering
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the gold standard sampling approaches unusable under standard data augmentations, as the

latent variables can no longer be accurately marginalized when sampling the cutpoints. At-

tempting to approximate the marginalization in MCMC results in sampling from the wrong

transition kernel, which can severely alter the limiting distribution of the Markov chain.

In this paper we propose a new data augmentation for the broad class of multivariate

ordinal probit models where standard sampling approaches cannot be applied. The data

augmentation is based on a covariance decomposition and results in an MCMC algorithm

which is easy to implement and has the correct limiting distribution. In Section 2 we in-

troduce the particular version of the multivariate ordinal probit model we use to motivate

and illustrate our new computational methodology. The particular model is designed for

the analysis of scale-usage effects in ratings data (see also Rossi et al., 2001; Javaras and

Ripley, 2007). This model has wide application to the analysis of survey response data,

where respondents are known to have a tendency to use only portions of the response scale

(e.g., yea-sayers and nay-sayers). The formulation and motivation of the common cutpoint

model is given in Section 2.1 along with a discussion of identification constraints.

Computational challenges under the common cutpoint model are described in Section 3.

Our new covariance-based data augmentation is introduced in Section 3.1, and the new

MCMC sampler is described in Section 3.2. We introduce theoretical results describing

an “optimal” data augmentation/decomposition in Section 4. Our approach is similar in

spirit to the conditional augmentation of van Dyk and Meng (2001), however we propose a

different criterion for picking a good data augmentation. We provide a default decomposition

method that is suggested by the theory, is easy to implement and that works well in practice.

The decomposition-based approach to MCMC is illustrated in Section 5. In particular,

we highlight the need for the new data augmentation by providing a comparison with an

approach that approximates the marginalization of the latent variables when updating the

cutpoints. We demonstrate that the posterior distribution under the approximation approach

can be severely altered unless the approximations are extraordinarily accurate, which can

correspond to compute times of several weeks instead of several hours.
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2 A Scale-Usage Model for Survey Data

In this paper we develop computational methodology for models for data where N individuals

provide responses to M questions, and the responses are given on a K-level ordinal scale.

The observed data are represented by an N × M matrix X, where Xij ∈ {1, . . . , K} is

the response provided by individual i to question j. The responses are modeled with a

multivariate ordinal probit model by introducing an N ×M matrix of latent variables Y

with rows Yi distributed conditionally independently according to

Yi | µ, σ2
i , τi,Σ

ind∼ N(µ + τi1, σ
2
iΣ), i = 1, . . . , N, (1)

where 1 is a vector of ones. Given Yij and a vector of cutpoints c, the observed data satisfy

Xij | c, Yij = {k : ck−1 < Yij ≤ ck, k = 1, . . . , K}, (2)

where −∞ = c0 < · · · < cK =∞.

The above model, introduced by Rossi et al. (2001), is designed to incorporate hetero-

geneity in scale-usage across individuals through inclusion of the individual-specific location

and scale parameters τi and σ2
i . Throughout this paper we illustrate the computational

methodology we propose using the customer satisfaction survey dataset examined in Rossi

et al. (2001) and Rossi et al. (2005), which is available in the R package bayesm (Rossi and

McCulloch, 2008). The data consist of the responses of N = 1, 811 customers who were

asked M = 10 questions about a particular advertising product. The response scale contains

K = 10 ordinal values. A complete description of the data, along with a justification of the

scale-usage model in this setting, can be found in Rossi et al. (2001) and Rossi et al. (2005).

While we choose to illustrate our computational methodology in this interesting model

setting, we note that our methods can be applied under a variety of related models: the mean

of Yi may be µ +σiτi1, and it may have additional structure reflecting other features of the

study, e.g. fixed- and random-effect covariates or additional structure to capture longitudinal

effects (Chib and Jeliazkov, 2006). Individual heterogeneity may exhibit substructure with

demographic or other variables driving a latent class model for the (τi, σ
2
i ). The covariance

matrix Σ may be constrained to encode other structure in the model. We focus on the basic
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model as it is of interest in marketing applications (Rossi et al., 2001) with the understanding

that our new computational methods can also be applied in more complicated model settings.

Our particular formulation of the scale-usage model assumes that the individual-specific

effects arise from population distributions τi
iid∼ N(0, σ2

τ ) and σ2
i

iid∼ IG(a/2, (a − 2)/2). The

prior means of the τi are taken to be zero so that µj is the baseline mean for the latent

response to question j; the individual scale parameters σ2
i are specified with prior means

of one so that Σ represents the baseline covariance structure for Yi. We model the shared

parameters µ and Σ with prior distributions µ ∼ N(0,V) and Σ ∼ IW(δ,Σ0), with the

inverse Wishart distribution parameterized so that E [Σ] = (δ−M − 1)−1Σ0. When lacking

substantive prior information about the covariance structure, we take Σ0 = (δ−M − 1)I so

that E [Σ] = I.

2.1 Cutpoints and Identification Constraints

The models we consider have a single vector of cutpoints c that is shared across the J

questions. This choice is motivated by the applications we consider. In other versions of the

multivariate ordinal probit model (Chen and Dey, 2000; Jeliazkov et al., 2008), different sets

of cutpoints for each response are used, replacing (2) with

Xij | c′j, Yij = {k : c′j,k−1 < Yij ≤ c′j,k, k = 1, . . . , K}, (3)

where c′j is a vector of cutpoints corresponding to the jth response. The c′j are typically

considered to be a priori independent. Chen and Dey (2000) have exploited this a priori

independence structure in developing efficient algorithms for updating the entire collection

of cj in an MCMC setting by carefully transforming the parameters. In the applications we

consider, responses tend to have the same meaning across questions: in customer satisfaction

surveys, a response of 8 out of 10 on one question should have the same meaning on the

latent scale as a response of 8 out of 10 on another. The cutpoints, then, should be very

similar, if not identical, across questions. This suggests a prior that features very strong

dependence between the c′j. The limiting case where the dependence becomes arbitrarily

strong results in a parsimonious model with a single vector of cutpoints c that is shared

across questions. Unfortunately, while this formulation of the model is attractive from a data-
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analytic perspective, the efficient computational methodology of Nandram and Chen (1996)

or Chen and Dey (2000) can no longer be applied. The specific computational challenges

associated with the common cutpoint model are discussed in Section 3.

In general, one must be careful when performing inference under the multivariate ordinal

probit model described above due to lack of identifiability of the parameters. A common

approach is to force identifiable inference by imposing constraints on the parameters. For ex-

ample, fixing the boundary values c0 = −∞ and cK =∞, as well as one additional cutpoint

(say cm = 0 for some m), and then specifying an improper, uniform prior on the remaining

cutpoints (subject to the constraint that they are nondecreasing) guarantees identifiability.

This approach is described by Albert and Chib (1993), Cowles (1996), Johnson and Albert

(1999) and Bradlow and Zaslavsky (1999). Another approach is to fix the two end cutpoints

c1 and cK−1 at particular values and then specify a proper uniform prior on the remaining

free cutpoints subject to the ordering constraints (Webb and Forster, 2008). Jeliazkov et al.

(2008) compares computation under both of these approaches. Rossi et al. (2001) constrain

their single set of cutpoints to lie on a parabola, which, along with further identification

restrictions, results in an even more parsimonious model requiring only a single free param-

eter. Kottas et al. (2005) avoid cutpoint-related issues entirely by using a nonparametric

mixture of normal distributions for the latent variables, allowing the cutpoints to be fixed

arbitrarily. We do not provide a more detailed discussion of identification constraints as

this has been investigated extensively elsewhere (e.g. Jeliazkov et al., 2008). We note that

different identification constraints correspond to different Bayesian models and choose to

focus on our particular application-motivated, albeit generalizable, model.

For identification purposes we pursue the approach of fixing the two end cutpoints, which

requires no further restrictions on the covariance matrix Σ, and note that the following prior

under these constraints is attractive and flexible. Fix c1 and cK−1 at points −C and C,

respectively, for some C > 0. This sets a baseline location and scale for the latent data. The

prior for the remaining cutpoints is specified indirectly by modeling the distances between
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adjacent cutpoints:

ζk
ind∼ Γ(αk, 1), k = 1, . . . , K − 2,

ck|ζ = −C + 2C

(
k−1∑
l=1

ζl

/K−2∑
l=1

ζl

)
, k = 2, . . . , K − 2.

Under this prior the conditional distribution of ck given its neighbors ck−1 and ck+1 is a

scaled and shifted beta distribution with density function

p(ck|ck−1, ck+1) ∝ (ck − ck−1)
αk−1(ck+1 − ck)αk+1−1, ck−1 < ck < ck+1. (4)

If we set αk = α for all k, then α = 1 reduces to the usual (constrained) uniform prior.

As α → ∞, the prior favors evenly spaced cutpoints; as α → 0, the prior favors unevenly

spaced cutpoints. This model is easily extended to allow strong dependence in cutpoints

across questions if (3) is used in place of (2).

3 Computational Challenges and Innovations

The main computational challenges to MCMC for this model are related to sampling the

latent responses Y and the cutpoints c. While there has been considerable research into

improving computation for the multivariate ordinal probit model, the work has focused on

models where different cutpoints are used for different questions, and where the cutpoints for

different questions are conditionally independent. Under these models the latent data can

be partially or entirely marginalized when sampling the cutpoints, resulting in faster-mixing

Markov chains. For the model with a single set of cutpoints, this marginalization cannot

be done accurately under the standard data augmentation, as described below. Under the

standard data augmentation, the most näıve — and current standard — approach to MCMC

updates each Yij and each ck individually from their full conditional distributions. These

two full conditionals have the restricted supports

cXij−1 < Yij < cXij
and max

(i,j) : Xij=k
Yij < ck < min

(i,j) : Xij=k+1
Yij. (5)

The full conditional for Yij — a truncated normal distribution — is essentially a regression

on Yi,−j (we use the notation Yi,−j to represent all elements of the vector Yi except Yij).
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The full conditional for ck is a renormalized version of (4) where the support is restricted

as in (5). As noted by Cowles (1996), the width of the restricted support of ck can be

extremely small, especially when N or M is large, which causes the Markov chain to mix

very slowly because each ck can only move a small amount at each step in the sampler.

Letting θ = (θ1, . . . ,θ4) ≡ (µ, τ ,σ,Σ), the standard sampler, which uses one-at-a-time

updating, is as follows.

Algorithm 1 : Standard Sampler

STEP 1: Update θl from p(θl | θ−l,Y, c,X) for l = 1, . . . , 4.

STEP 2: Update ck from p(ck | c−k,Y,θ,X) for k = 2, . . . , K − 2.

STEP 3: Update Yij from p(Yij | Y−i,−j,θ, c,X) for j = 1, . . . ,M and i = 1, . . . , N .

Typical output from this sampler is displayed in Figure 1. The chains are for the seven

free cutpoints for the model described in Section 2 when applied to the customer satisfaction

survey data. The slowly mixing black chains are from the Standard Sampler (the gray chains

are from the sampler we later propose in Section 3.2). The chains from the Standard Sampler

have extremely high autocorrelation, which can be seen even more clearly in Figure 2. The

thick, solid lines in this plot (labeled as ρ = 0) are the estimated autocorrelation functions

for the cutpoints under the Standard Sampler. The acfs were estimated based on all but

the first 50,000 samples from a run of million iterations. The rest of the figure is explained

in Section 5.2. The obvious poor mixing and slow convergence makes inference based on

output from the Standard Sampler practically impossible.

Two early approaches for improving MCMC convergence and mixing are to block variates

or to marginalize them (Liu et al., 1994; MacEachern, 1994). In this context, one might

marginalize the latent variable Y when updating c. This is known to work well for the

univariate ordinal probit model (Cowles, 1996), and is the foundation of the approaches

introduced by Nandram and Chen (1996) and Chen and Dey (2000). Such a sampler is

structured as follows.

Algorithm 2 : Blocked Sampler

STEP 1: Update θl from p(θl | θ−l,Y, c,X) for l = 1, . . . , 4.
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STEP 2: Update c from p(c | θ,X) (perhaps via the Metropolis-Hastings algorithm).

STEP 3: Update Y from p(Y | c,θ,X) =
∏N

i=1 p(Yi | c,θ,X).

This strategy of updating is also known as a partially collapsed Gibbs sampler (van Dyk

and Park, 2008) where the update for (c,Y) is blocked in Steps 2 and 3. The acceptance

probability in Step 2 requires evaluation of the integral∫
p(X | Y, c) p(Y | θ) dY =

N∏
i=1

∫
Ri(c)

N(Yi | µ + τi1 , σ
2
iΣ) dYi (6)

under both the proposed and current values of the cutpoints, where Ri(c) are the rectangular

regions implied by the observed data Xi for a given set of cutpoints c. Step 3 requires sam-

pling Yi independently from multivariate normal distributions restricted to the rectangular

regions Ri(c). Use of these two steps would remove the hard (conditional) restrictions on c

in (5), allowing the cutpoints to move more freely at each step in the sampler.

There are two major challenges to face when implementing the Blocked Sampler in the

common cutpoint model. First, sampling directly from the truncated normal distributions in

Step 3 is nontrivial when M is even moderately large. Most commonly-used approaches rely

on full-conditional (Gibbs) sampling (though see Damien and Walker, 2001; Liechty and Lu,

2010, for auxiliary variables approaches) where the components of Yi are updated sequen-

tially from the conditional distributions Yij | Yi,−j, c,θ,X or where similar full conditional

generations are made after a transformation. Unfortunately, such approaches cannot be used

to perform Step 3 when Y has been marginalized for the generation of c in Step 2: because

c was updated without conditioning on Y, each Yi must be generated de novo from its full

conditional distribution Yi | c,θ,X in order for the sampler to have the correct limiting

distribution.

The second challenge to face is the evaluation of the integrals in (6). This is a difficult

problem even in low-dimensional settings (see Hsu, 1992; Genz, 1992; Hajivassiliou et al.,

1996, for approximation methods). For survey data the number of questions determines

the dimension of the integrals, and the number of respondents determines the number of

such integrals that must be evaluated at each iterate of the sampler. The integrals must be

evaluated under both the current and proposed sets of cutpoints, and the ratio of these two
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integrals is a core component of the Metropolis–Hastings acceptance probability. For exam-

ple, if the cutpoints are jointly updated via Metropolis–Hastings in the customer satisfaction

dataset, 3,622 ten-dimensional integrals would have to be approximated at each iteration of

the MCMC. The combination of a difficult integral with great replication leads to the pos-

sibility of substantial approximation error, both in terms of bias and variance. Currently,

there is no theory that describes the impact of substituting the “wrong” acceptance proba-

bilities on the limiting distribution of the Markov chain; our empirical investigation of such

approximations for this model in Section 5.3 demonstrates that the limiting distribution can

indeed be severely altered. With these difficulties in mind, we propose a new approach to

computation for this model.

3.1 Data augmentation by covariance decomposition

Instead of attempting to obtain better approximations to Yi | c,θ,X or to the integrals

in (6), we devise a different sampler which allows us to bypass these challenges. Here we

employ a decomposition of the covariance matrix Σ which facilitates a new sampler with

the useful properties that (i) the limiting distribution of the Markov chain is indeed the

posterior distribution of interest, (ii) the cutpoints can be updated without imposing the

hard constraints in (5), and (iii) sampling from multivariate truncated normal distributions

is not required.

Rather than working directly with the latent Yi which have covariances σ2
iΣ, we create an

additional orthogonalizing latent variable that will allow us to turn the multivariate integral

into a product of univariate integrals. Specifically, we decompose the covariance matrix Σ

into two parts,

Σ = D + R, (7)

where D = diag(d1, · · · , dM) is a positive definite matrix and R is a non-negative definite

matrix. This allows us to represent the likelihood as

Yi | µ, τi, σ2
i ,Zi,D ∼ N

(
µ + τi1 + Zi, σ

2
iD
)
,

Zi | σ2
i ,Σ,D ∼ N

(
0, σ2

i (Σ−D)
)
, (8)
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by introducing a new collection of latent variables Zi. The original data augmentation is

recovered by integrating out the new latent variables Zi.

Before describing how we use the decomposition to facilitate computation, we note that

this decomposition has been used for different purposes in related model settings. Stern

(1992, 1997) uses this decomposition to construct an efficient Monte Carlo estimator of

the likelihood probabilities (6) under a related model. Chib and Jeliazkov (2006) use this

decomposition and data augmentation to facilitate a matrix inversion in an MCMC algorithm

for a highly-structured multivariate probit model. Their use of the decomposition speeds

computation but does not affect properties of the MCMC algorithm. In contrast, our use of

the decomposition, as described below, is unique in that we explicitly use the orthogonalizing

latent variables Zi to allow a fraction of the data augmentation to be integrated out when

moving the cutpoints. The specific decomposition impacts the mixing of the Markov chain,

as discussed in Section 4 and illustrated in Section 5.

The key to moving the cutpoints in the Blocked Sampler (Algorithm 2) is being able to

evaluate integrals like (6), which under our new data augmentation becomes∫
p(X | Y, c) p(Y | Z,σ, τ ,µ,D) dY. (9)

The Yij are conditionally independent given the Zij and so we can express this probability

by

N∏
i=1

M∏
j=1

∫ cxij

cxij−1

(σi
√
dj)
−1φ

(
yij − µj − τi − zij

σi
√
dj

)
dyij

=
N∏
i=1

M∏
j=1

[
Φ

(
cxij
− µj − τi − zij
σi
√
dj

)
− Φ

(
cxij−1 − µj − τi − zij

σi
√
dj

)]
, (10)

where φ and Φ are, respectively, the pdf and cdf of the standard normal distribution. Evalua-

tion of the above one-dimensional normal integrals (or their logarithms to improve accuracy

over sometimes very large products) is quick and accurate. This leads to an accurately-

computed acceptance probability for the Metropolis–Hastings step in which we move the

cutpoints, solving the approximation problem associated with Step 2 of the Blocked Sam-

pler.

The difficulty associated with Step 3 of the Blocked Sampler is sampling from the condi-

tional distributions Yi | c,θ,X. Under our decomposition we can focus on the conditional
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distributions Yi | Zi, c,θ,X, which decompose into independent truncated normal distribu-

tions Yij | Zij, c,θ, Xij that are easily sampled (details in Section 3.2). Our decomposition

also requires that Z be updated in the new Gibbs sampler we use to fit the scale-usage model

(or any variant on it); we show in Section 3.2 that Z can be easily updated using draws from

multivariate normal distributions.

Different decompositions of Σ into R and D will lead to different Markov chains, and these

chains will have different convergence rates. The space of all allowable decompositions can be

thought of as a class of data augmentations. Any particular decomposition then corresponds

to a conditional augmentation in the sense of van Dyk and Meng (2001), who provide a

framework for choosing good augmentations within a class. In Section 4 we propose a new

approach for choosing good conditional augmentations and derive a theoretical description

of an “optimal” decomposition for our model. For the moment we assume we have a method

of decomposing Σ.

3.2 Covariance Decomposition MCMC

We use our new data augmentation to construct the following improved MCMC algorithm.

Each step can be implemented quickly and accurately.

Algorithm 3 : Decomposition Sampler

STEP 1: Update θl from θl | θ−l,Y, c,X for l = 1, . . . , 4.

STEP 2: Decompose Σ into R and D, and update Zi independently from Zi | Yi,θ, c,Xi for

i = 1, . . . , N .

STEP 3: Update ck given c−k via Metropolis–Hastings with p(ck | c−k,Z,θ,X) as the target

density functions for k = 2, . . . , K − 2.

STEP 4: Update Yij independently from Yij | Zij, c,θ, Xij for i = 1, . . . , N and j = 1, . . . ,M .

Steps 1 and 2 are blocked for θ and Z, as are Steps 3 and 4 for c and Y. Blocking typically

results in a better convergence rate of the Gibbs sampler when compared to standard one-

at-a-time updating (MacEachern and Müller, 1998; van Dyk and Park, 2008).

The conditional distributions in Step 1 for the elements of θ (i.e. µ, Σ and the individual-

specific parameters τi and σ2
i ) have standard forms and are described in Appendix B. Meth-
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ods for decomposing Σ in Step 2 are discussed in Section 4.2. Given a decomposition of Σ

into R and D, the full conditional distribution of Z factors into the independent conditional

distributions Zi | Yi,θ, c,Xi in Step 2 which have the form

N
(
(R−1 + D−1)−1D−1(Yi − µ− τi1), σ2

i (R
−1 + D−1)−1

)
, (11)

and which do not depend on the cutpoints c. Generating the Zi is straightforward if we

decompose Σ so that R = Σ−D is positive definite. In our definition of the decomposition we

allowed for decompositions that result in singular R matrices. Such singular decompositions

are important, as we will show in Sections 4.1 and 5.2 that good decompositions correspond

to singular R.

If we decompose Σ so that R is singular, the conditional distributions for Zi are of reduced

rank and care must be taken when sampling. In the singular case where rank(R) = M − 1,

orthogonally diagonalize the matrix D−1/2RD−1/2 as HΛH′, where λM = 0 due to the

singularity of R. To sample Zi, first compute wi = D−1/2(Yi−µ− τi1)/σi and then sample

uij ∼ N

(∑M
l=1Hljwil

1 + λ−1
j

,
1

1 + λ−1
j

)

independently for j = 1, . . . ,M−1, setting uiM = 0. A sample from the reduced-rank normal

distribution is Zi = σiD
1/2Hui.

Because we condition on Z, the cutpoints can be updated in Step 3 without conditioning

on Y. We cycle through the conditional distributions p(ck|c−k,Z,X,θ) ∝ p(ck|ck−1, ck+1)wk(ck),

where

wk(ck) =
k+1∏
l=k

∏
(i,j)∈Al

{
Φ

(
cl − µj − τi − zij

σi
√
Djj

)
− Φ

(
cl−1 − µj − τi − zij

σi
√
Djj

)}
,

which comes from integral (9) with Al = {(i, j) : Xij = l}. The one-dimensional integrals

Φ(·) can be evaluated numerically with high accuracy. Metropolis-Hastings steps are used to

update each ck: the probability of accepting a proposed value c∗k generated from a proposal

distribution with density function g is

αk = min

{
1,

(
c∗k − ck−1

ck − ck−1

)αk−1(
ck+1 − c∗k
ck+1 − ck

)αk+1−1
w(c∗k)g(ck)

w(ck)g(c∗k)

}
.
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We take the proposal distribution to be a truncated normal distribution “centered” at the

current value of ck: g(c∗k|ck) ∝ s−1φ((c∗k−ck)/s)I(ck−1 < c∗k ≤ ck+1), where I(·) is an indicator

function.

The cutpoints are updated one-at-a-time in Step 3 of the Decomposition Sampler de-

scribed above. This choice was made in part due to ease of computation. A more attractive

sampler would perform a joint update of the cutpoints, as this is known to help improve

mixing in related models. While we do not explore such an approach here, we note that

a joint update is feasible now that we are able to condition on the orthogonalizing latent

variables Z. For example, a modified version of the Metropolis-Hastings approach described

by Chen and Dey (2000) would provide an automatic method for generating a joint update.

It is important to note, however, that under the single cutpoint model this approach could

not be accurately applied without conditioning on Z.

Finally, Step 4 requires sampling from p(Y | Z, c,θ,X) =
∏N

i=1

∏M
j=1 p(Yij | Zij, c,θ, Xij),

where the full conditional distribution of Yij is N(µj + τi + zij , σ
2
iDjj) restricted to the

interval (cxij−1, cxij
]. A draw from this univariate truncated normal distribution can be

obtained efficiently using the method of Geweke (1991).

4 Approaches to Covariance Decomposition

Different covariance decompositions correspond to different data augmentations, which lead

to Markov chains with different convergence rates. van Dyk and Meng (2001) study the

problem of selecting a good data augmentation when the class of augmentations is indexed

by a working parameter. They propose an optimality criterion for choosing a particular value

of the working parameter — a conditional augmentation — that is motivated by convergence

properties of related EM algorithms.

Here, we propose a different approach to choosing a conditional augmentation. To study

the problem of choosing a decomposition theoretically, we pass from the full hierarchical

model with unknown τi and σ2
i and with constraints and cutpoints to a simpler proxy model

which focuses only on unconstrained Y and Z. Our approach is to optimize the convergence

dynamics of the two-step Gibbs sampler that can be used to fit this proxy model (8), which
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has steps [Z|Y] and [Y|Z]. Focusing on the transition from the (k − 1)st iterate to the kth

iterate, the conditional distribution for the ith subject, Y
(k)
i | Y

(k−1)
i , is

N
(

(R−1 + D−1)−1D−1(Y
(k−1)
i − µ− τi1) + µ + τi1, σ

2
iD + σ2

i (R
−1 + D−1)−1

)
. (12)

We recognize this as a vector autoregressive model for which Roberts and Sahu (1997)

have developed convergence results. Their Theorem 1 states that the convergence rate is

geometric, with the largest eigenvalue of the propagator matrix determining the rate. Thus

to maximize the convergence rate of the Markov chain (12) for Yi, we wish to find a diagonal,

positive definite matrix D such that the largest eigenvalue of (R−1 +D−1)−1D−1 is minimal.

4.1 Eigenvalue theory for the optimal covariance decomposition

We first provide some general conditions for the optimal D in the matrix decomposition

(7). “Optimal” is used here with respect to the simplified proxy model (12). In particular,

we show that (i) the optimal decomposition must be singular (i.e., R must be a singular

matrix) and that (ii) in attempting to find the optimal decomposition we can equivalently

work with Σ in correlation matrix form. Throughout this section we denote the eigenvalues

of an M ×M matrix P by λ(P) = (λ1(P), · · · , λM(P)) with λ1(P) ≥ · · · ≥ λM(P). We

begin by defining the decomposition space.

Definition 1 The decomposition space of the M ×M positive definite covariance matrix Σ

is DS(Σ) = {A | A = diag(a1, · · · , aM) > 0 and R = Σ−A ≥ 0} .

In this definition, > denotes positive definiteness of the matrix A and ≥ denotes non-negative

definiteness of the matrix R.

The first proposition characterizes the optimal decomposition. As later examples show,

this optimal decomposition need not be unique. Proofs of the results appear in Appendix A.

Proposition 1 To achieve the maximum possible convergence rate of the Markov chain (12)

for Yi, the optimal D in the matrix decomposition (7) must lie in the decomposition space

of Σ, and

D = arg min
A∈DS(Σ)

λ1(A
−1/2ΣA−1/2). (13)
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Proposition 1 shows that the problem of finding the optimal matrix decomposition is

equivalent to the problem of finding an optimal D ∈ DS(Σ) that minimizes the largest

eigenvalue of D−1/2ΣD−1/2. The next result shows that, under the optimal decomposition,

R = Σ−D must be singular.

Corollary 1 Let T be a diagonal and positive definite matrix. Consider the class of decom-

positions generated by tT, where tT ∈ DS(Σ). The resulting t lies in some interval (0, tmax].

Within this class, D = tmaxT provides the best decomposition of Σ.

To search for the optimal decomposition, the next proposition allows us to focus on the

correlation matrix rather than the covariance matrix. The result follows from the observation

that the Markov chains based on the covariance matrix Σ and the corresponding correlation

matrix, C, can be perfectly coupled.

Proposition 2 Let V = diag(Σ) denote a matrix of the diagonal elements of Σ. The

optimal convergence rate for the Markov chain based on Y is equal to that for the Markov

chain based on V−1/2Y, which has covariance matrix C = V−1/2ΣV−1/2. Furthermore, if

DΣ = arg min
A∈DS(Σ)

λ1

(
A−1/2ΣA−1/2

)
, then

DC = arg min
A∈DS(C)

λ1

(
A−1/2CA−1/2

)
= DΣV−1.

In other words, if we can find the optimal decomposition for the chain with covariance matrix

C, we can then transform to find the optimal decomposition for the chain with covariance

matrix Σ. We use this approach in our default method of decomposition described below.

4.2 Default Decomposition

An explicit form for the optimal D can be found in special cases where Σ or C have partic-

ular structure. Such cases include independence structure, certain exchangeable correlation

structures (including circular and reversible correlation structures), and block diagonal struc-

tures where each block itself has a special structure. We derive the optimal D for these cases

in Appendix C (in the online supplement to the paper). For a general covariance matrix,
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it is difficult to obtain a solution to the eigenvalue problem, and so if we want to find the

optimal decomposition we must resort to numerical searches.

We have investigated several guided search strategies for the proxy model (12) that per-

turb elements of D deterministically or stochastically, with the search terminating according

to a specified convergence criterion (e.g., the decrease in largest eigenvalue of D−1/2ΣD−1/2

at a particular iteration of the search is less than a certain tolerance value). While these

searches appear to work reasonably well, implementing a search at each iteration of the

MCMC algorithm for the real model is computationally expensive, and “optimal” decompo-

sitions may not necessarily provide noticeable improvements over decompositions that are

“nearly optimal.” In practice it is more important to avoid decompositions that result in

obviously and demonstrably poor data augmentations.

With this in mind, we propose a default approach to covariance decomposition that is

motivated by the theory and that works well in practice. After Σ is sampled at each iterate,

we employ the decomposition defined by D = ρλM(C)V, where λM(C) is the smallest

eigenvalue of the sampled covariance matrix C = V−1/2ΣV−1/2 and ρ ∈ [0, 1]. Taking

ρ = 1 results in singular R. Values of ρ in (0, 1) result in nonsingular R, while ρ = 0

corresponds to the case were Z is removed from the model. We prefer working with the

correlation matrix, which places all variates on a common scale, as it tends to stabilize

the decomposition by not allowing any one direction to dominate. We explore the class of

decompositions D = ρλM(C)V indexed by ρ in Section 5.2. Our results indicate that the

choice of ρ substantially impacts the convergence properties of the chain, with chains based

on singular decompositions (ρ = 1) performing best, in accordance with the theory developed

above. While this default approach to decomposition may not be “optimal”, we find that for

the datasets we have looked at this approach produces Markov chains with good behavior.

5 Illustrations and Comparisons

Here we use the customer satisfaction dataset to illustrate some properties of our new De-

composition Sampler and provide comparisons with other existing approaches to sampling.

All of our examples were run on a Mac Pro with eight cores (two 2.66 GHz Quad-Core Intel
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Xeon 3500 series processors) with 8 GB of RAM.

5.1 Comparing the Standard and Decomposition Samplers

We first compare our new Decomposition Sampler (Algorithm 3) with the Standard Sam-

pler (Algorithm 1) in order to demonstrate improvements in convergence and mixing of the

Markov chain. Both samplers were run for 100,000 iterations using the same starting values

and hyperparameter settings of V = 16 × I10, δ = 15, Σ0 = (δ −M − 1) × I10 = 4 × I10,

σ2
τ = 16, a = 5, αk = 1 and C = 10 (details in Section 2). For the decomposition sampler,

the covariance matrix Σ was decomposed at each iteration as described in Section 4.2 with

D = λM(C)V, corresponding to ρ = 1 and yielding a singular R matrix. Also for the decom-

position sampler, the “standard deviation” of the truncated normal proposal distribution for

the cut points was taken to be s = 0.1, which was appropriate for this dataset.

Traceplots for the seven free cutpoint parameters c2, . . . , c8 for both samplers are shown

in Figure 1. The black sample paths are from the Standard Sampler and the gray sample

paths are from the Decomposition Sampler. The new Decomposition Sampler has a much

shorter burn-in period, mixes better and converges faster than does the standard sampler.

The improvement in mixing is confirmed by Figure 2, which compares the autocorrelation

functions for the cutpoints under the Standard Sampler (ρ = 0) and the Decomposition

Sampler (ρ = 1). The plots are based on all but the first 50,000 samples from a run of one

million iterations. While we have focused here on output for the cutpoints — the parameters

that are known to exhibit poor mixing in these models — we note that the chains for the

other parameters of interest, µ and Σ, mix well under our sampler.

5.2 Impact of the choice of decomposition

We described our default approach to covariance decomposition in Section 4.2: set D =

ρλM(C)V, with ρ = 1 (a singular decomposition) recommended. This recommendation was

based on the theoretical results developed in Section 4.1 for the proxy model (12). Within

the class of decompositions indexed by ρ, we expect decompositions with ρ close to zero to

perform poorly. In this case, the conditional variance of Yij, σ
2
iDjj, will also be close to zero
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and so the matrix of latent variables Y will be very highly pinned down at each step in the

MCMC algorithm, resulting in high autocorrelation. When ρ = 1 (or nearly so), the matrix

R will be singular (or nearly so), and we expect the Markov chain to mix well based on the

theoretical results.

To demonstrate this empirically with the scale-usage model, we ran the Decomposition

Sampler five times with values of ρ ∈ {0.05, 0.10, 0.25, 0.5, 1}. The hyperparameters were set

as above, and each of the five chains was run for 1,000,000 iterations, with the first 50,000

iterations discarded as burn in. Autocorrelation functions for the cutpoints c2, . . . , c8 for the

five different values of ρ are shown in Figure 2. As expected, the autocorrelation function

decays most rapidly for values of ρ near one, with the chain with ρ = 0.05 exhibiting

the slowest decay. Because singular decompositions provide no particular computational

challenges, we recommend their use as a default.

We also note that in some cases, regardless of the choice of decomposition, our data

augmentation sampler may perform poorly. If Σ is nearly singular, the decomposition will

necessarily have some Djj close to zero even if we push all the way to a singular R. The

resulting Markov chain will behave similarly to the ρ ≈ 0 case described above: the con-

ditional updates [Y | Z] and [Z | Y] will not allow the chain to mix freely and the data

augmentation sampler will not perform much better than the standard sampler.

5.3 Comparison to approximation methods

Here we document the impact that approximating the multivariate integrals in (6) can have

on the limiting distribution of the Markov chain, highlighting the importance of avoiding

such integrals in our Decomposition Sampler. In comparing our Decomposition Sampler with

any approximation approach, it is essential to use the identical model (including identical

prior distributions), to use as much of the same code as possible, and to run the code on the

same platform. This reduces the likelihood of coding errors and stabilizes trace comparisons.

It also controls for a variety of (presumably) minor numerical issues such as machine roundoff

and variations in methods used to generate particular variates. It is also necessary to have

a low-dimensional summary of the posterior distribution so that any effect of the choice of

algorithm can be easily visualized.
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To make the comparisons, we focus on the scale-usage model of Rossi et al. (2001, 2005)

which has an excellent implementation in the R package bayesm as the function rscaleUsage.

This model is very similar to the model we described in Section 2; the most important

difference is the treatment of the cutpoints. Rossi et al. (2001) constrain the cutpoints to lie

on a parabola and then apply further restrictions to ensure identification. As a result, a single

free parameter e determines the entire set of cutpoints. As the cutpoints are closely tied

to the approximation issues, we focus on the single parameter e to make our comparisons.

The Gibbs sampler implemented in the rscaleUsage function has the form of the Blocked

Sampler (Algorithm 2), where c is replaced with the single parameter e. The integrals (6)

required in Step 2 of the Gibbs sampler are estimated using the GHK importance sampling

method (Keane, 1994; Hajivassiliou et al., 1996), which requires specification of the number

of replications, nghk, to be used for importance sampling. The approximation becomes better

as nghk increases, however the integrals must be done for each of the N = 1, 811 respondents

at each iteration of the sampler and so there is a practical trade-off between accuracy and

computation time.

We first fit the model using the default settings in the rscaleUsage function (except

that we fixed the matrix hyperparameter Λ to have diagonal elements 10 and 1, with 0 in

the off-diagonal elements). The default setting for the GHK method is nghk = 100. We ran

four independent chains each for 26,000 iterations and discarded the first 1,000 iterations of

each chain as burn in, providing a total of 100,000 samples. Each chain took approximately

12 hours to run. The estimated marginal posterior distribution of e is given by the blue dots

in Figure 3. The rscaleUsage function discretizes the support of e in the implementation

of the MCMC algorithm and so the posterior distribution in Figure 3 is estimated on a grid;

the lines are added for visual reference. The vertical lines through the points in the figure

represent approximate 95% confidence intervals that were constructed using the batch means

method based on m = 50 batches of length k = 2,000 iterations; the intervals were robust

to reasonable changes in m and k.

To assess the impact of the GHK approximation on the limiting distribution we re-ran

the sampler two more times with nghk = 1, 000 (five independent chains yielding 100,000

samples) and nghk = 10,000 (four independent chains yielding 50,000 samples). Each of the
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five chains with nghk = 1,000 took approximately 68 hours to run, and each of the four

chains with nghk = 10,000 took approximately 308 hours — almost 13 days — to run. The

estimated posterior distributions of e for these two runs are given by the green and red

dots in Figure 3. It is clear that the different values of nghk result in different estimates of

the posterior distribution. Smaller values of nghk correspond to more approximation error

and result in a “flattening” of the estimated posterior distribution. Larger values of nghk

correspond to less approximation error and should result in more accurate estimates.

To assess the accuracy of the estimate of the posterior distribution when nghk = 10,000,

we created a modified version of the rscaleUsage sampler that uses our decomposition of Σ.

Our decomposition approach avoids approximating the integrals in (6), and so comparing the

posterior distribution estimated under the nghk = 10,000 sampler to the posterior distribution

estimated under the decomposition sampler should indicate whether further increases in nghk

would result in further changes to the estimated posterior distribution. To implement our

sampler, we modified the rscaleUsage function in three specific ways. First, we added a

step to decompose Σ into R and D and sample Z from its full conditional distribution,

as described in Section 3.2. Second, we modified the update of e in the Gibbs sampler by

conditioning on Z and replacing the approximation of the integrals in (6) with evaluation of

the integrals in (10). Third, we modified the step where Y is updated by sampling from the

full conditional distributions Yij | Zij, c, µj, σ2
i , Djj, τi, Xij as described in Section 3.2, where

c is the set of cutpoints implied by the current value of e.

We ran four independent chains of our modified sampler for 26,000 iterations each, dis-

carding the first 1,000 iterations of each chain as burn in, providing 100,000 samples from

the posterior distribution. On average, the run time for a single chain was slightly less than

12 hours, which is comparable to the sampler that used nghk = 100. The estimated posterior

distribution of e is given by the black points in Figure 3. We expect this estimated posterior

distribution to be close to the true posterior distribution because the modified sampler does

not include any approximate likelihood evaluations. Indeed, we see that moving toward a

more exact evaluation of the likelihood by increasing nghk in the rscaleUsage sampler from

100 to 1,000 to 10,000 moves the estimated posterior distribution closer to the posterior

estimated by our decomposition sampler.
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6 Discussion

We have introduced a new data-augmentation scheme that facilitates MCMC for a widely-

used class of multivariate ordinal probit models, and, in particular, Bayesian models incor-

porating scale-usage heterogeneity. Current MCMC methods for fitting such models either

converge too slowly or rely on approximations that distort the limiting distribution of the

Markov chain. Our new data augmentation, which is based on a covariance decomposition,

preserves the correct limiting distribution and facilitates Markov chain mixing. An exam-

ination of a method that relies on approximations showed that the approximations have a

surprisingly large effect on the limiting distribution of the Markov chain. In the illustration

in Section 5, the approximations resulted in a severe “flattening” of the posterior distribution

of the parameter e, the parameter determining the location and spacing of the cutpoints. In

general, we expect such flattening to occur when approximations to the Metropolis–Hastings

acceptance probability are used, as stochastic simulation experiments have reproduced this

behavior in simple cases. We suspect that the large effect observed in our example is due

to accumulation of error over the large number of individual approximations that make up

the likelihood calculation required in the Metropolis–Hastings acceptance probability. As

dataset sizes continue to increase in applications within and beyond the field of marketing,

understanding the impact of such approximations will become increasingly important, un-

derscoring the value of Markov chains that are carefully designed to have the desired limiting

distribution.

A Proofs of the results

Proof of Proposition 1 In the matrix decomposition (7), we require that matrix D be

diagonal and positive definite and that the matrix R be non-negative definite. Throughout,

where R is singular, we use the convention of replacing the expression for a singular R

with its limit under a sequence of decompositions. Moreover, as shown in Roberts and

Sahu (1997), the convergence rate of the Markov Chain (12) for Yi is given by the largest

eigenvalue of the matrix (R−1 + D−1)−1D−1. Recalling that R = Σ − D, the optimal D
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matrix satisfies

D = arg min
A∈DS(Σ)

λ1

(
(R−1 + A−1)−1A−1

)
= arg min

A∈DS(Σ)

λ1

((
AR−1 + I

)−1
)
.

Since for any invertible matrix P, eigenvalues of P−1 are reciprocals of those of P, and

eigenvalues of P± I are those of P increased/decreased by 1, we have

D = arg max
A∈DS(Σ)

λM
(
AR−1

)
= arg min

A∈DS(Σ)

λ1

(
RA−1

)
= arg min

A∈DS(Σ)

λ1

(
ΣA−1 − I

)
= arg min

A∈DS(Σ)

λ1

(
ΣA−1

)
.

Finally, since for any two n × n matrices P and Q, the eigenvalues of PQ are the same as

those of QP, the optimal matrix D satisfies D = arg min
A∈DS(Σ)

λ1

(
A−1/2ΣA−1/2

)
, which

is the same as condition (13). ‡

Proof of Corollary 1 For any t ∈ (0, tmax],

λ1

(
(tT)−1/2Σ(tT)−1/2

)
= λ1

(
t−1T−1/2ΣT−1/2

)
= t−1λ1

(
T−1/2ΣT−1/2

)
.

This shows that the largest eigenvalue of (tT)−1/2Σ(tT)−1/2 is monotonically decreasing in

t ∈ (0, tmax]. Thus, within this class D = tmaxT has the minimum largest eigenvalue and

provides the optimal decomposition of Σ. ‡

B Other conditional distributions

The conditional distributions for which details were not provided in Section 3.2 are as follows.

For i = 1, . . . , N the conditional distributions for the individual-specific location parameters

are τi | Yi, σ
2
i ,µ,Σ ∼ N(mi, u

2
i ), where u2

i = (σ−2
i 1TΣ−11 + σ−2

τ )−1 and mi = u2
iσ
−2
i (Yi −

µ)TΣ−11. The conditional distributions for the individual-specific scale parameters are

σ2
i | Yi,µ, τi,Σ ∼ IG((a+M)/2 , ((Yi−µ−τi1)TΣ−1(Yi−µ−τi1)+b)/2). The conditional

distribution for the common location parameter is µ | Y, τ ,σ,Σ ∼ N(γ,Ψ), where Ψ =

(tr(S−2)Σ−1 + V−1)−1, S−2 = diag(σ−2
i ) and γ = ΨΣ−1(Y − τ1TM)TS−21N . The shared

covariance matrix is updated from the conditional distribution Σ | Y,µ, τ ,σ ∼ IW(N +

δ,SN + Σ0), where SN =
∑N

i=1(Yi − µ− τi1)(Yi − µ− τi1)T/σ2
i .
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Supplemental Materials

Additional Appendices: Two additional appendices can be found in the online supple-
ment to the paper. In these appendices we derive the optimal decomposition in a
variety of special cases.
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Figure 2: Autocorrelation functions for the cutpoints c2, . . . , c8 for various values of ρ. The
thick black line (ρ = 0) corresponds to the Standard Sampler (Algorithm 1); all other lines
correspond to output from the Decomposition Sampler (Algorithm 3).
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Figure 3: Estimated posterior distribution for the parameter e controlling the cutpoints in
the Rossi et al. (2001) model. “Decomp.” refers to the modified rscaleUsage function that
uses the new covariance decomposition data augmentation. The several lines labeled “GHK”
correspond to the unmodified rscaleUsage function using the specified values of nghk.
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C Optimal Decomposition in Special Cases

C.1 Independence structure

Suppose that the distribution of Yi | µ, τi, σ
2
i is normal with diagonal covariance matrix

Σ. Then the optimal D is D = Σ, and all the eigenvalues of D−1/2ΣD−1/2 are 1. Thus,

λ1(D
−1/2ΣD−1/2) = 1 and R = Σ − D = 0. Convergence is immediate, and the Markov

chain yields independent draws from the limiting distribution.

Suppl. Example 1 (One-way ANOVA, independence prior) The case of Σ = (σ2
a + σ2

e)I

with σ2
a and σ2

e known corresponds to a model with an i.i.d. N(0, σ2
a) treatment effect plus an

i.i.d. N(0, σ2
e) error. The optimal D maximizing the convergence rate is Σ.

C.2 Exchangeable correlation structure

Suppose that, among the coordinates of Yi | µ, τi, σ
2
i , a set of variables is exchangeable

in the sense that the correlation matrix C remains unchanged under any permutation of

these variables. In this case, the following proposition shows that an optimal D based on

the correlation matrix C = V−1/2ΣV−1/2 has equal diagonal elements at the exchangeable

coordinates.
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Suppl. Proposition 1 Suppose that Yi | µ, τi, σ
2
i follows a multivariate normal distribu-

tion, and there exist two variables (Yij, Yik) that are exchangeable. Then there exists an

optimal matrix D = diag(d1, · · · , dM) based on the correlation matrix C with dj = dk.

Proof of Suppl. Proposition 1 Assume that D0 = diag(d1
0, · · · , dM0 ) ∈ DS(C) is an

optimal matrix that minimizes the largest eigenvalue value of D
−1/2
0 CD

−1/2
0 and di0 6= dj0.

We can construct a new diagonal matrix D1 = diag(d1
1, · · · , dM1 ) where dk1 = dk0 for k 6= i

or j, di1 = dj0 and dji = di0, i.e., D1 swaps the positions of di0 and dj0. This corresponds to a

relabeling of coordinates i and j. Thus, D1 ∈ DS(C), and the eigenvalues of D
−1/2
1 CD

−1/2
1

are the same as those of D
−1/2
0 CD

−1/2
0 , although the eigenvectors may differ. Now let

D∗ = 1
2
(D0 + D1), then D∗ is still in DS(C), and by a well-known result in linear algebra

(see, e.g., Bhatia, 1996),

λ1((D
∗)−1/2C(D∗)−1/2) ≤ 1

2

[
λ1(D

−1/2
0 CD

−1/2
0 ) + λ1(D

−1/2
1 CD

−1/2
1 )

]
= λ1(D

−1/2
0 CD

−1/2
0 ).

Therefore, λ1((D
∗)−1/2C(D∗)−1/2) is at most as large as λ1(D

−1/2
0 CD

−1/2
0 ), and so D∗ is an

optimal matrix based on the correlation matrix. ‡

The key idea in Suppl. Proposition 1 is that, for a given i, the Yij’s can be reordered

without changing the correlation matrix, then the corresponding diagonal elements of a

matrix D can be reordered in the same way without affecting the convergence rate of the

Markov chain. Convexity suggests that averaging D and its reordered version can only

hasten convergence. This argument can be applied or extended in various cases to obtain

optimal decompositions. We illustrate this procedure for the following well known models.

Case 1: Exchangeable correlation structure Consider the exchangeable correlation

structure, where all coordinates of Yi | µ, τi, σ2
i are exchangeable, i.e., the correlation matrix

C is of the form C = aI + bJ with a = 1 − b. The following corollary shows that in this

situation, an optimal D for Σ is proportional to diag(Σ).

Suppl. Corollary 1 If the correlation matrix C is of the form aI + bJ where a = 1 − b,

then the matrix D = d diag(Σ) is optimal, where d = 1− b if b ≥ 0 and d = 1 + (M − 1)b if

b < 0.
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Proof of Suppl. Corollary 1 By Proposition 2 in Section 4.1 of the main text of the

paper, it suffices to show that an optimal D based on the correlation matrix is dI. Since,

when the correlation matrix is aI+bJ, any pair within Yi1, · · · , YiM | µ, τi, σ2
i is exchangeable,

by Suppl. Proposition 1 an optimal D is proportional to the identity matrix. Moreover, it is

easy to see that for any fixed t, the largest eigenvalue of (tI)−1/2Σ(tI)−1/2 is λ1(C)/t. Thus,

to retain R as a non-negative definite matrix, the largest t that can be used is tmax = λM(C),

which is 1− b if b ≥ 0 and is 1 + (M − 1)b if b < 0. ‡

Suppl. Example 2 (One-way ANOVA, hierarchical prior) With the one-way ANOVA model

now assume that the prior distribution for the treatment is hierarchical. The center of the

distribution of the treatment effects, µ, follows the N(0, σ2
µ) distribution. The M treatment

effects are jointly N(µ1, I), conditional on their center. This implies that the treatment ef-

fects are jointly N(0, I+σ2
µJ), and thus the correlation matrix is C = aI+bJ, where a = 1−b

and b = σ2
µ/(1+σ2

e +σ2
µ). Appealing to Corollary 1, the optimal D is (1+σ2

e)/(1+σ2
e +σ2

µ)I.

Case 2: Circular correlation structure Consider the circular correlation structure,

where Yik, · · · , YiM , Yi1, · · · , Yi,k−1 | µ, τi, σ2
i is the same as the distribution of Yi1, · · · , YiM | µ, τi, σ2

i

for any k = 1, . . . ,M . Thus, the covariance matrix remains the same under a circular trans-

formation of the coordinates. In this case, we can easily extend the symmetric argument in

Suppl. Proposition 1 to show that an optimal D is a multiplier of the identity matrix.

Suppl. Corollary 2 Suppose that Yi1, · · · , YiM | µ, τi, σ2
i follows a multivariate normal dis-

tribution and its covariance matrix is invariant under circular transformations. Then an

optimal D in the decomposition Σ = D + R is D = tI, where t = λM(Σ).

Proof of Suppl. Corollary 2 Following similar steps as in the proof of Proposition 1, we

can see that there exists an optimal D that satisfies (dk, · · · , dM , d1, · · · , dk−1) = (d1, · · · , dM)

for each k = 1, . . . ,M . That is, d1 = · · · = dM = t for some t > 0. To retain R as a

nonnegative definite matrix, the largest t that we can choose is tmax = λM(C). Therefore,

this optimal D is equal to λM(Σ)I. ‡

We demonstrate this theory in the case of the circular AR(1) process. Further details

3



of the process, eigenvalue decomposition, and another example (the circular MA(1) process)

are provided in Appendix D below.

Suppl. Example 3 (Circular AR(1) process) For M > 2, the stationary circular autore-

gressive process of order 1 has a covariance matrix Σ that is circular, with Σjk = γi−j mod M

and γh = σ2(φ|h|+φM−|h|)/((1−φ2)(1−φM)), h = 0, . . . ,M − 1, for autocorrelation param-

eter −1 < φ < 1 and innovation variance σ2 > 0. The smallest eigenvalue of Σ when φ ≥ 0

is λM(Σ) = σ2/(1 − 2φ cos(2πbM/2c/M) + φ2) (which simplifies to λM(Σ) = σ2/(1 + φ)2

when M is even). When φ < 0, the smallest eigenvalue is λM(Σ) = σ2/(1− φ)2. Therefore,

by Corollary 2 an optimal D based on Σ is λM(Σ)I.

Case 3: Reversible correlation structure Consider the reversible correlation structure,

where the correlation matrix remains unchanged when the order of the variables is reversed.

In this case, we characterize a property of the optimal D. The proof follows the argument

in Suppl. Proposition 1.

Suppl. Corollary 3 Suppose that the correlation matrix has the form Cij = CM+1−i M+1−j,

for j = 1, . . . ,M . Then the optimal D matrix based on C has, with diag(D) = (d1, . . . , dM),

di = dM+1−i for i = 1, . . . ,M .

Suppl. Example 4 (AR(1) process). An autoregressive process of order 1 has a correlation

matrix which is reversible. Direct application of Suppl. Corollary 3 implies that the optimal

D is symmetric, with dj = dM+1−j for j = 1, . . . ,M .

C.3 Block diagonal structure

Suppose that the observations Yi1, · · · , YiM (i = 1, . . . , N) can be divided into several parts

where variables in different parts are independent conditional on µ, τi, σ
2
i , i.e., the covari-

ance matrix Σ is a block diagonal matrix. Then we can divide the matrix D into several

corresponding blocks. The optimization problems in different blocks are independent, and

the overall convergence rate is determined by the “worst” block. The next result shows that

one can optimize each block separately and then paste the pieces together to get a big D

matrix.
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Suppl. Proposition 2 Suppose the covariance matrix Σ is block diagonal with k blocks,

and D ∈ DS(Σ) is diagonal. Then the matrix D−1/2ΣD−1/2 is also block diagonal with k

blocks, and its eigenvalues are of the form λ1, . . . ,λk, where λi is the vector of eigenvalues

from the ith block. Solving each block and collecting the results together guarantees an optimal

solution.

Suppl. Example 5 (Two-way ANOVA) The prior distribution for the J treatment effects

is N(µ1, σ2
αI), conditional on a known value µ. The nj replicate measurements on treat-

ment j are conditionally independent, with mean equal to the treatment mean and vari-

ance σ2
e . The covariance matrix of Yi is Σ = diag(Σ1, . . . ,ΣJ), with Σi = σ2

eI + σ2
αJ.

By Suppl. Proposition 2 and Suppl. Corollary 1, an optimal D = diag(D1, . . . ,DJ) where

Dj = (1 + σ2
e)/(1 + σ2

e + σ2
α)I.

D Eigenvalues of a circulant matrix

For a positive integer M , a circulant M ×M covariance matrix Σ is defined by the relation

Σjk = γj−k mod M , for M constants γ0, . . . , γM−1, such that Σ is positive definite. In this case

there is a closed from expression for the eigenvalues of Σ. The unordered eigenvalues are

calculated using the discrete Fourier transform (DFT) of {γk : k = 0, . . . ,M − 1} (Gray,

2006), where i =
√
−1:

ψj =
M−1∑
k=0

γke
−i2π(j−1)k/M , j = 1, . . . ,M.

An example of a process with a circular covariance matrix is the circular autoregressive

process of order one. For an integer M ≥ 2, let {Ut : t = 0, . . . ,M − 1} be a set of

uncorrelated mean zero random variables with variance σ2, such that 0 < σ2 < ∞. Then

the circular AR(1) process is defined by the recursion, ηt = φηt−1 mod M +Ut, t = 0, . . . ,M −

1. For |φ| < 1 this process is stationary and for each t we can express ηt as ηt = (1 −

φM)−1
∑M−1

k=0 φkUt−k mod M , which leads to that fact that E(ηt) = 0 for all t and for |h| < M ,

γh = cov(ηt, ηt+h) =
σ2(φ|h| + φM−|h|)

(1− φ2)(1− φM)
.
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The DFT of {γk} is

ψj =
M−1∑
k=0

γke
−i2π(j−1)k/M =

σ2

1− 2φ cos(2π(j − 1)/M) + φ2
, j = 1, . . . ,M.

For φ ≥ 0, the smallest eigenvalue occurs at j = bM/2c+1, with value σ2/(1−2φ cos(2πbM/2c/M)+

φ2), which simplifies to σ2/(1 + φ2) when M is even. For φ < 0, the smallest eigenvalue

occurs at j = 1 with value σ2/(1− φ2).

Another example is the circular moving average (MA) process of order one. For some

integer M ≥ 3 and θ 6= 0, the circular MA(1) process is defined by ηt = Ut+θUt−1 mod M , t =

0, . . . ,M − 1, where {Ut} was defined as for the circular AR(1) process. We restrict to the

case that the process is invertible; i.e., when |θ| < 1 (e.g., Brockwell and Davis, 2002). Then

this process has mean zero with a covariance structure described, for |h| < M by,

γh = cov(ηt, ηt+h) =


σ2(1 + θ2), h = 0

σ2θ, h = ±1,±(M − 1)

0, otherwise.

The M ×M covariance matrix again is circular with Σjk = γj−k mod M , and the unordered

eigenvalues are ψj = σ2 (1 + 2θ cos(2π(j − 1)/M) + θ2) for j = 1, . . . ,M. When θ is positive,

the minimum eigenvalue occurs at j = bM/2c+ 1, with value σ2 (1 + 2θ cos(2πbM/2c/M) + θ2),

which simplifies to a value of σ2 (1− θ)2 when M is even. When θ is negative, the minimum

eigenvalue occurs at j = 1, with value σ2 = σ2(1 + 2θ + θ2) = σ2(1 + θ)2.
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