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Abstract

In a remarkable series of papers beginning in 1956, Charles Stein set the stage for the future
development of minimax shrinkage estimators of a multivariate normal mean under quadratic
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1 The Beginning of the Hunt for Minimax Shrinkage Estimators

Perhaps the most basic estimation problem in Statistics is the canonical problem of estimating

a multivariate normal mean. Based on the observation of a p-dimensional multivariate normal

random variable

X | µ ⇠ Np(µ, I), (1)

the problem is to find a suitable estimator µ̂(x) of µ. The celebrated result of Stein (1956) dethroned

µ̂MLE(x) = x, the maximum likelihood and best location invariant estimator for this problem, by

showing that, when p � 3, µ̂MLE is inadmissible under quadratic loss

RQ(µ, µ̂) = Eµkµ̂(X)� µk2. (2)

From a decision theory point of view, an important part of the appeal of µ̂MLE was the protection

o↵ered by its minimax property. The worst possible risk RQ incurred by µ̂MLE was no worse than

the worst possible risk of any other estimator. Stein’s result implied the existence of even better

estimators that o↵ered the same minimax protection. He had begun the hunt for these better

minimax estimators.

In a remarkable series of follow up papers Stein proceeded to set the stage for this hunt. James

and Stein (1961) proposed a new closed-form minimax shrinkage estimator

µ̂JS(x) =
✓

1� p� 2
kxk2

◆
x, (3)

the now well-known James-Stein estimator, and showed explicitly that its risk was less than

RQ(µ, µ̂MLE) ⌘ p for every value of µ when p � 3, that is, it uniformly dominated µ̂MLE . The

appeal of µ̂JS under RQ was compelling. It o↵ered the same guaranteed minimax protection as

µ̂MLE while also o↵ering the possibility of doing much better.

Stein (1962), though primarily concerned with improved confidence regions, described a para-

metric empirical Bayes motivation for (3), describing how µ̂JS(x) could be seen as a data based

approximation to the posterior mean

E⇡(µ | x) =
✓

1� 1
1 + ⌫

◆
x, (4)

the Bayes rule which minimizes the average risk E⇡RQ(µ, µ̂) when µ ⇠ Np(0, ⌫I). He here also

proposed the positive-part James-Stein estimator µ̂JS+ = max{0, µ̂JS}, a dominating improvement

over µ̂JS(x), and commented that “it would be even better to use the Bayes estimate with respect to

a reasonable prior distribution”. These observations served as a clear indication that the Bayesian

paradigm was to play a major role in the hunt for these new shrinkage estimators, opening up a

new direction that was to be ultimately successful for establishing large new classes of shrinkage

estimators.
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Dominating fully Bayes shrinkage estimators soon emerged. Strawderman (1971) proposed

µ̂a(x) = E⇡a(µ | x), a class of Bayes shrinkage estimators obtained as posterior means under priors

⇡a(µ) for which

µ | s ⇠ Np (0, s I) , s ⇠ (1 + s)a�2. (5)

Strawderman explicitly showed that µ̂a uniformly dominated µ̂MLE and was proper Bayes, when

p = 5 and a 2 [.5, 1) or when p � 6 and a 2 [0, 1). This was especially interesting because any

proper Bayes was necessarily admissible and so could not be improved upon.

Then, Stein (1974, 1981) showed that µ̂H(x), the Bayes estimator under the harmonic prior

⇡H(µ) = E⇡H (µ | x) = kµk�(p�2), (6)

dominated µ̂MLE when p � 3. A special case of µ̂a when a = 2, µ̂H was only formal Bayes

because ⇡H(µ) is improper. Undeterred, Stein pointed out that the admissibility of µ̂H followed

immediately from the general conditions for the admissibility of generalized Bayes estimators laid

out by Brown (1971). A further key element of the story, was Brown’s (1971) powerful result that

all such generalized Bayes rules (including the proper ones of course) constituted a complete class

for the problem of estimating multivariate normal mean under quadratic loss. It was now clear

that the hunt for new minimax shrinkage estimators was to focus on procedures with at least some

Bayesian motivation.

Perhaps even more impressive than the fact that µ̂H dominated µ̂MLE was the way Stein proved

it. Making further use of the rich results in Brown (1971), the key to his proof was the fact that

any posterior mean Bayes estimator under a prior ⇡(µ) can be expressed as

µ̂⇡(x) = E⇡(µ | x) = x +r log m⇡(x) (7)

where

m⇡(x) /
Z

e�(x�µ)2/2 ⇡(µ) dµ (8)

is the marginal distribution of X under ⇡(µ). (Here r = ( @
@x1

, . . . , @
@xp

)0 is the familiar gradient).

At first glance it would appear that (7) has little to do with the risk. However, Stein noted that

insertion of (7) into RQ, followed by expansion and an integration-by-parts identity, now known as

one of Stein’s Lemmas, yields the following general expression for the di↵erence between the risks

of µ̂⇡ and µ̂MLE ,

RQ(µ, µ̂MLE)�RQ(µ, µ̂⇡) = Eµ

"

kr log m⇡(X)k2 � 2
r2m⇡(X)
m⇡(X)

#

(9)

= Eµ


�4r2

q
m⇡(X)/

q
m⇡(X)

�
(10)

(Here r2 =
P

i
@2

@x2
i

is the familiar Laplacian).
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Because the bracketed terms in (9) and (10) do not depend on µ, (they are unbiased estimators

of the risk di↵erence), the domination of µ̂MLE by µ̂⇡ would follow whenever m⇡ was such that

these bracketed terms were nonnegative. As Stein noted, this would be the case in (9) whenever m⇡

was superharmonic, r2m⇡(x)  0, and in (10) whenever
p

m⇡ was superharmonic, r2
p

m⇡(x)  0,

a weaker condition.

The domination of µ̂MLE by µ̂H was seen now to be attributable directly to the fact that the

marginal (8) under ⇡H , a mixture of harmonic functions, is superharmonic when p � 3. However,

such an explanation wouldn’t work for the domination of µ̂MLE by µ̂a, because the marginal (8)

under ⇡a in (5) is not superharmonic for any a < 1. Indeed, as was shown later by Fourdrinier,

Strawderman and Wells (1998), a super harmonic marginal cannot be obtained with any proper

prior. More importantly however, they were able to establish that the domination by µ̂a was

attributable to the superharmonicity of pm⇡a under ⇡a when p � 5 (and Strawderman’s conditions

on a). In fact, it also followed from their results that pm⇡a is superharmonic when a 2 [1, 2) and

p � 3, further broadening the class of minimax improper Bayes estimators.

Prior to the appearance of (9) and (10), minimaxity proofs, though ingenious, had all been

tailored to suit the specific estimators at hand. The sheer generality of this new approach was

daunting in its scope. By restricting attention to priors that gave rise to marginal distributions

with particular properties, the minimax properties of the implied Bayes rules would be guaranteed.

2 The Parallels in the Predictive Estimation Problem Emerge

The seminal work of Stein concerned the canonical problem of how to estimate µ based on an

observation of X |µ ⇠ Np(µ, I). A more ambitious problem is how to use such an X to estimate the

entire probability distribution of a future Y from a normal distribution with this same unknown

mean µ, the so-called predictive density of Y . Such a predictive density o↵ers a complete description

of predictive uncertainty.

To conveniently treat the possibility of di↵erent variances for X and Y , we formulate the

predictive problem as follows. Suppose X | µ ⇠ Np(µ, vxI) and Y | µ ⇠ Np(µ, vyI) are independent

p-dimensional multivariate normal vectors with common unknown mean µ but known variances vx

and vy. Letting p(y | µ) denote the density of Y , the problem is to find an estimator p̂(y | x) of

p(y | µ) based on the observation of X = x only. Such a problem arises naturally, for example, for

predicting Y | µ ⇠ Np(µ, �2I) based on the observation of X1, . . . ,Xn | µ iid ⇠ Np(µ,�2I) which is

equivalent to observing X̄ | µ ⇠ Np(µ, (�2/n)I). This is exactly our formulation with vx = �2/n

and vy = �2.

For the evaluation of p̂(y | x) as an estimator of p(y | µ), the analogue of quadratic risk RQ for
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the mean estimation problem is the Kullback-Leibler (KL) risk

RKL(µ, p̂) =
Z

p(x | µ)L(µ, p̂(· | x))dx, (11)

where p(x | µ) denotes the density of X, and

L(µ, p̂(· | x)) =
Z

p(y | µ) log
p(y | µ)
p̂(y | x)

dy. (12)

is the familiar KL loss.

For a (possibly improper) prior distribution ⇡ on µ, the average risk r(⇡, p̂) =
R

RKL(µ, p̂)⇡(µ)dµ

is minimized by the Bayes rule

p̂⇡(y | x) = E⇡[p(y | µ) | x] =
Z

p(y | µ)⇡(µ | x)dµ, (13)

the posterior mean of p(y |µ) under ⇡, (Aitchison 1975). It follows from (13) that p̂⇡(y |x) is a proper

probability distribution over y whenever the marginal density of x is finite for all z, (integrate wrt

y and switch the order of integration). Furthermore, the mean of p̂⇡(y | x) (when it exists) is equal

to E⇡(µ | x), the Bayes rule for estimating µ under quadratic loss, namely the posterior mean of µ.

Thus, p̂⇡ also carries the necessary information for that estimation problem. Note also that unless

⇡ is a trivial point prior, such p̂⇡(y | x) will not be of the form of p(y | µ) for any µ. The range of

the Bayes rules here falls outside the target space of the densities which are being estimated.

A tempting initial approach to this predictive density estimation problem is to use the simple

plug-in estimator p̂MLE ⌘ p(y | µ = µ̂MLE) to estimate p(y | µ), the so-called estimative approach.

This was the conventional wisdom until the appearance of Aitchison (1975). He showed that the

plug-in estimator p̂MLE is uniformly dominated under RKL by

p̂U (y | x) ⌘ E⇡U [p(y | µ) | x] =
1

{2⇡(vx + vy)}
p
2

exp
(

� ky � xk2

2(vx + vy)

)

, (14)

the posterior mean of p(y | µ) with respect to the uniform prior ⇡U (µ) = 1, the so-called predictive

approach. In a related vein, Akaike (1978) pointed out that, by Jensen’s inequality, the Bayes rule

p̂⇡(y | x) would dominate the random plug-in estimator p̂(y | µ = µ̂) when µ̂ is a random draw

from ⇡. Strategies for averaging over µ were looking better than plug-in strategies. The hunt for

predictive shrinkage estimators had turned to Bayes procedures.

Distinct from p̂MLE , p̂U was soon shown to be the best location invariant predictive density

estimator, see Murray (1977) and Ng (1980). That p̂U is best invariant and minimax also follows

from the more recent general results of Liang and Barron (2003), who also showed that p̂U is

admissible when p = 1. The minimaxity of p̂U was also shown directly by George, Liang and Xu

(2006). Thus, p̂U , rather than p̂MLE , here plays the role played by µ̂MLE in the mean estimation

context. Not surprisingly, µ̂U = x, the posterior mean under the uniform prior ⇡U is identical to

µ̂MLE in that context.
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The parallels between the mean estimation problem and the predictive estimation problem came

into sharp focus with the stunning breakthrough result of Komaki (2001). He proved that when

p � 3, p̂U (y | x) itself is dominated by the Bayes rule

p̂H(y | x) = E⇡H [p(y | µ) | x], (15)

under the harmonic prior ⇡H(µ) in (6) used by Stein (1974). Shortly thereafter Liang (2002) showed

that p̂U (y | x) is dominated by the proper Bayes rule pa(y | x) under ⇡a(µ) for which

µ | s ⇠ Np (0, s v0I) , s ⇠ (1 + s)a�2, (16)

when vx  v0, and when p = 5 and a 2 [.5, 1) or p � 6 and a 2 [0, 1), the same conditions that

Strawderman had obtained for his estimator. Note that ⇡a(µ) in (16) is an extension of (5) which

depends on the constant v0. As before, ⇡H(µ) is the special case of ⇡a(µ) when a = 2. Note that

p̂U is now playing the “straw-man” role that was played by µ̂MLE in the mean estimation problem.

3 A Unified Theory for Minimax Predictive Density Estimation

The proofs of the domination of p̂U by p̂H in Komaki (2001) and by p̂a in Liang (2002) were both

tailored to the specific forms of the dominating estimators. They did not make direct use of the

properties of the induced marginal distributions of X and Y . From the theory developed by Brown

(1971) and Stein (1974) for the mean estimation problem, it was natural to ask if there was a theory

analogous to (7)–(10) which would similarly unify the domination results in the predictive density

estimation problem.

As it turned out, just such a theory was established in George, Liang and Xu (2006), the main

results of which we now proceed to describe. The story begins with a representation, analogous to

Brown’s representation µ̂⇡(X) = E⇡(µ |X) = X +r log m⇡(X) in (7), that is available for posterior

mean Bayes rules in the predictive density estimation problem. A key element of the representation

is the form of the marginal distributions for our context which we denote by

m⇡(z; v) =
Z

p(z | µ)⇡(µ)dµ. (17)

for Z | µ ⇠ Np(µ, vI) and a prior ⇡(µ). In terms of our previous notation (8), m⇡(z) = m⇡(z; 1).

Lemma 1. The Bayes rule p̂⇡(y | x) in (13) can be expressed as

p̂⇡(y | x) =
m⇡(w; vw)
m⇡(x; vx)

p̂U (y | x) (18)

where p̂U (y | x) is the Bayes rule under ⇡U (µ) = 1 given by (14), m⇡(x; vx) is the marginal distri-

bution of X, and m⇡(w; vw), where vw = vxvy

vx+vy
, is the marginal distribution of W = vyX+vxY

vx+vy
for

independent X | µ ⇠ Np(µ, vxI) and Y | µ ⇠ Np(µ, vyI).
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Lemma 1 shows how the form of p̂⇡(y | x) is determined entirely by p̂U (y | x) and the form of

m⇡(x; vx) and m⇡(w; vw). The essential step in its derivation is to factor the joint distribution of x

and y into terms including a function of the su�cient statistic w. Inserting the representation (18)

into the risk RKL leads immediately to the following unbiased estimate for the KL risk di↵erence

between p̂U (y | x) and p̂⇡(y | x).

RKL(µ, p̂U )�RKL(µ, p̂⇡) =
Z Z

p(x | µ) p(y | µ) log
p̂⇡(y | x)
p̂U (y | x)

dxdy

= Eµ,vw log m⇡(W ; vw)� Eµ,vx log m⇡(X; vx). (19)

As one can see from (19) and the fact that vw = vxvy

vx+vy
< vx, p̂U (y | x) would be uniformly

dominated by p̂⇡(y | x) whenever Eµ,v log m⇡(Z; v) is decreasing in v. As if by magic, the sign of
@
@vEµ,v log m⇡(Z; v) turned out to be directly linked to the same unbiased risk di↵erence estimates

(9) and (10) of Stein (1974).

Lemma 2.

@

@v
Eµ,v log m⇡(Z; v) = Eµ,v

"
r2m⇡(Z; v)
m⇡(Z; v)

� 1
2
kr log m⇡(Z; v)k2

#

(20)

= Eµ,v


2r2

q
m⇡(Z; v)/

q
m⇡(Z; v)

�
(21)

The proof of Lemma 2 relies on Brown’s representation, Stein’s Lemma, and the fact that any

normal marginal distribution m⇡(z; v) satisfies

@

@v
m⇡(z; v) =

1
2
r2m⇡(z; v), (22)

the well-known heat equation which has a long history in science and engineering, for example,

see Steele (2001). Combining (19) and Lemma 2 with the fact that p̂U (y | x) is minimax yields

the following general conditions for the minimaxity of a predictive density estimator, conditions

analogous to those obtained by Stein for the minimaxity of a normal mean estimator.

Theorem 1. If m⇡(z; v) is finite for all z, then p̂⇡(y | x) will be minimax if either of the following

hold for all vw  v  vx:

(i) m⇡(z; v) is superharmonic.

(ii)
p

m⇡(z; v) is superharmonic.

Although condition (i) implies the weaker condition (ii) above, it is included because of its con-

venience when it is available. Since a superharmonic prior always yields a superharmonic m⇡(z; v)

for all v, the following corollary is immediate.
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Corollary 1. If m⇡(z; v) is finite for all z, then p̂⇡(y |x) will be minimax if ⇡(µ) is superharmonic.

Because ⇡H is superharmonic, it is immediate from Corollary 1 that p̂H is minimax. Because
p

ma(z; v) is superharmonic for all v (under suitable conditions on a), it is immediate from Theorem

1 that p̂a is minimax. It similarly follows that any of the improper superharmonic t-priors of Faith

(1978) or any of the proper generalized t-priors of Fourdrinier, Strawderman and Wells (1998) yield

minimax Bayes rules.

The connections between the unbiased risk di↵erence estimates for the KL risk and quadratic

risk problems ultimately yields the following identity

RKL(µ, p̂U )�RKL(µ, p̂⇡) =
1
2

Z vx

vw

1
v2

[RQ(µ, µ̂U )�RQ(µ, µ̂⇡)]v dv, (23)

explaining the parallel minimax conditions in both problems. Brown, George and Xu (2008) used

this identity to further draw out connections to establish su�cient conditions for the admissibility

of Bayes rules under KL loss, conditions analogous to those of Brown (1971) and Brown and Hwang

(1982), and to show that all admissible procedures for the KL risk problems are Bayes rules, a direct

parallel of the complete class theorem of Brown (1971) for quadratic risk.

4 The Nature of Shrinkage in Predictive Density Estimation

The James-Stein estimator µ̂JS(x) in (3) provided an explicit example of how risk improvements for

estimating µ are obtained by shrinking X toward 0 by the adaptive multiplicative factor
⇣
1� p�2

kxk2
⌘
.

Similarly, under unimodal priors, posterior mean Bayes rules µ̂⇡(x) = E⇡(µ | x) shrink x toward

the center of ⇡(µ), the mean of ⇡(µ) when it exists. (Section 6 will describe how multimodal priors

yield multiple shrinkage estimators). As we saw earlier, x here plays both the role of µ̂MLE(x) = x

and of the formal Bayes estimator µ̂U (x) = x.

The representation (18) reveals how p̂⇡(y | x) analogously “shrinks” the formal Bayes estimator

p̂U (y | x), but not p̂MLE 6= p̂U , by an adaptive multiplicative factor

b⇡(x, y) =
m⇡(w; vw)
m⇡(x; vx)

. (24)

However, because p̂⇡(y |x) must be a proper probability distribution (whenever m⇡ is always finite),

it cannot be the case that b⇡(x, y) < 1 for all y at any x. Thus, “shrinkage” here really refers to a

reconcentration of the probability distribution of p̂U (y |x). Furthermore, since the mean of p̂⇡(y |x)

is E⇡(µ | x), this reconcentration, under unimodal priors, is toward the center of ⇡(µ), as in the

mean estimation case.

Consider, for example, what happens under ⇡H which is symmetric and unimodal about 0.

Figure 1 illustrates how this shrinkage occurs for pH for various values of x when p = 5. Figure 1

plots p̂U (y |x) and p̂H(y |x) as functions of y = (y1, y2, 0, 0, 0)0 when vx = 1 and vy = 0.2. Note first
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that p̂U (y |x) is always the same symmetric shape centered at x. When x = (2, 0, 0, 0, 0)0, shrinkage

occurs by pushing the concentration of p̂H(y |x) = bH(x, y) p̂U (y |x) towards 0. As x moves further

from (0, 0, 0, 0, 0)0 to (3, 0, 0, 0, 0)0 and (4, 0, 0, 0, 0)0 this shrinkage diminishes as p̂H(y | x) becomes

more and more similar to p̂U (y | x).

As in the problem of mean estimation, the shrinkage by p̂H manifests itself in risk reduction

over p̂U . To illustrate this, Figure 2 displays the risk di↵erence [RKL(µ, p̂U ) � RKL(µ, p̂H ] at

µ = (c, . . . , c)0, 0  c  4 when vx = 1 and vy = 0.2 for dimensions p = 3, 5, 7, 9. Paralleling the

risk reduction o↵ered by µ̂H in the mean estimation problem, the largest risk reduction o↵ered by

p̂H occurs close to µ = 0 and decreases rapidly to 0 as kµk increases. (RKL(µ, p̂U ) is constant as a

function of µ). At the same time, the risk reduction by p̂H is larger for larger p at each fixed kµk.

5 Many Possible Shrinkage Targets

By a simple shift of coordinates, the modified James-Stein estimator,

µ̂b
JS(x) = b +

✓
1� p� 2

kx� bk2
◆

(x� b), (25)

remains minimax, but now shrinks x towards b 2 Rp where its risk function is smallest. Similarly,

minimax Bayes shrinkage estimators of a mean or of a predictive density, can be shifted to shrink

towards b, by recentering the prior ⇡(µ) to ⇡b(µ) = ⇡(µ � b). These shifted estimators are easily

obtained by inserting the corresponding translated marginal

mb
⇡(z; v) = m⇡(z � b; v) (26)

into (7) to obtain

µ̂b
⇡(x) = Eb

⇡(µ | x) = x +r log mb
⇡(x; 1), (27)

and into (18) to obtain

p̂b
⇡(y | x) =

mb
⇡(w; vw)

mb
⇡(x; vx)

p̂U (y | x). (28)

Recentered unimodal priors such as ⇡b
H and ⇡b

a yield estimators that now shrink x and p̂U (y | x)

towards b rather than towards 0. Since the superharmonic properties of m⇡ are inherited by mb
⇡,

the minimaxity of such estimators will be preserved.

In his discussion of Stein (1962), Lindley (1962) noted that the James-Stein estimator could be

modified to shrink towards (x̄, ..., x̄)0 2 Rp, (x̄ is the mean of the components of x), by replacing

b and (p � 2) in (25) by (x̄, ..., x̄)0 and (p � 3), respectively. The resulting estimator remains

minimax as a long as p � 4 and o↵ers smallest risk when µ is close to the subspace of µ with

identical coordinates, the subspace spanned by the vector 1p = (1, ..., 1)0. Note that (x̄, ..., x̄)0 is

the projection of x into this subspace.
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More generally, minimax Bayes shrinkage estimators of a mean or of a predictive density can

be similarly modified to obtain shrinkage towards any (possibly a�ne) subspace B ⇢ Rp, whenever

they correspond to spherically symmetric priors. Such priors, which include ⇡H and ⇡a, are func-

tions of µ only through kµk. Such a modification is obtained by recentering the prior ⇡(µ) around

B via

⇡B(µ) = ⇡(µ� PBµ), (29)

where PBµ = argminb2Bkµ � bk is the projection of µ onto B. E↵ectively, ⇡B(µ) puts a uniform

prior on PBµ and applies a suitably modified version of ⇡ to (µ� PBµ). Note that the dimension

of (µ�PBµ), namely (p� dim(B)), must be taken into account when determining the appropriate

modification for ⇡. For example, recentering the harmonic prior ⇡H(µ) = kµk�(p�2) around the

subspace spanned by 1p yields

⇡B
H(µ) = kµ� µ̄1pk�(p�3), (30)

where µ̄ = µ01p/p. Here, the uniform prior is put on PBµ = µ̄1p, and the harmonic prior in

dimension (p � dim(B)) = (p � 1) (which is di↵erent from the harmonic prior in Rp) is put on

(µ� µ̄1p), the orthogonal complement of B.

The marginal mB
⇡ corresponding to the recentered ⇡B in (29) can be directly obtained by

recentering the spherically symmetric marginal m⇡ corresponding to ⇡, that is

mB
⇡ (z; v) = m⇡(z � PBz; v), (31)

where PBz is the projection of z onto B. Analogously to ⇡B(µ), mB
⇡ (z; v) is uniform on PBz and

applies a suitably modified version of m⇡ to (z � PBz). Here too, the dimension of (z � PBz),

namely (p� dim(B)), must be taken into account when determining the appropriate modification

for m⇡. For example, recentering the marginal m⇡ around the subspace spanned by 1p would entail

replacing kzk by kz � z̄1pk, where z̄ = z01p/p, and appropriately modifying m⇡ to apply to Rp�1.

Applying the recentering (29) to priors such as ⇡H and ⇡a, which are unimodal around 0, yields

priors ⇡B
H and ⇡B

a and hence marginals mB
H and mB

a , which are unimodal around B. Such recentered

marginals yield mean estimators

µ̂B
⇡ (x) = EB

⇡ (µ | x) = x +r log mB
⇡ (x; 1), (32)

and predictive density estimators

p̂B
⇡ (y | x) =

mB
⇡ (w; vw)

mB
⇡ (x; vx)

p̂U (y | x), (33)

that now shrink x and p̂U (y | x) towards B rather than towards 0. Shrinkage will be largest when

x 2 B, and will diminish as x moves away from B. These estimators o↵er smallest risk when µ 2 B,

but do not improve in any important way over x and p̂U (y | x) when µ is far from B.

10



A superharmonic m⇡ will lead to a superharmonic mB
⇡ as long as (p� dim(B)) is large enough.

For example, the recentered marginal mB
H will be superharmonic only when (p� dim(B)) � 3. In

such cases, the minimaxity of both µ̂B
⇡ and p̂B

⇡ will be preserved.

6 Where To Shrink?

Stein’s discovery of the existence of minimax shrinkage estimators such as µ̂b
JS(x) in (25) demon-

strated that costless improvements over the minimax µ̂MLE were available near any target prese-

lected by the statistician. As Stein (1962) put it when referring to the use of such an estimator

to center a confidence region, the target “should be chosen ... as one’s best guess” of µ. That fre-

quentist considerations had demonstrated the folly of ignoring subjective input was quite a shock

to the perceived “objectivity” of the frequentist perspective.

Although the advent of minimax shrinkage estimators of the form µ̂B
⇡ in (32) and p̂B

⇡ in (33)

opened up the possibility of small risk near any preselected (a�ne) subspace B ⇢ Rp, (this includes

the possibility that B is a single point), it also opened up a challenging new problem, how to best

choose such a B. From the vast number of possible choices, the goal was to choose B close to the

unknown µ, otherwise risk reduction would be negligible. To add to the di�culties, low dimensional

B which o↵ered the greatest risk reduction, were also the most di�cult to get close to µ.

When faced with a number of potentially good target choices, say B1, . . . , BN , rather than

choose one of them and proceed with µ̂B
⇡ or p̂B

⇡ , an attractive alternative is to use a minimax multiple

shrinkage estimator, George (1986abc). Such estimators incorporate all the potential targets by

combining them into an adaptive convex combination of µ̂B1
⇡ , . . . , µ̂BN

⇡ for mean estimation, and of

p̂B1
⇡ , . . . , p̂BN

⇡ for predictive density estimation. By adaptively shrinking towards the more promising

targets, the region of potential risk reduction is vastly enlarged while at the same time retaining

the safety of minimaxity.

The construction of these minimax multiple shrinkage estimators proceeds as follows, again

making fundamental use of the Bayesian formulation. For a spherically symmetric prior ⇡(µ), a set

of subspaces B1, . . . , BN of Rp, and a set of nonnegative weights w1, ..., wN such that
PN

1 wi = 1,

consider the mixture prior

⇡⇤(µ) =
NX

i=1

wi ⇡
Bi(µ), (34)

where each ⇡Bi is a recentered priors as in (29). To simplify notation, we consider the case where

each ⇡Bi is a recentering of the same ⇡, although in principle such a construction could be applied

with di↵erent priors. The marginal m⇤ corresponding to the mixture prior ⇡⇤ in (34) is then simply

m⇤(z; v) =
NX

1

wi m
Bi
⇡ (z; v) (35)

where mBi
⇡ are the recentered marginals corresponding to the ⇡Bi as given by (31).

11



Applying Brown’s representation µ̂⇡ = x+r log m⇡(x; 1) from (7) with m⇤ in (35) immediately

yields the multiple shrinkage estimator of µ,

µ̂⇤(x) =
NX

i=1

p(Bi | x) µ̂Bi
⇡ (x) (36)

where

p(Bi | x) =
wim

Bi
⇡ (x; 1)

PN
i=1 wim

Bi
⇡ (x; 1)

. (37)

Similarly, applying the representation p̂⇡(y | x) = m⇡(w;vw)
m⇡(x;vx) p̂U (y | x) from (18) with m⇤ immedi-

ately yields the multiple shrinkage estimator of p(y | µ),

p̂⇤(y | x) =
NX

i=1

p(Bi | x) p̂Bi
⇡ (y | x) (38)

where

p(Bi | x) =
wim

Bi
⇡ (x; vx)

PN
i=1 wim

Bi
⇡ (x; vx)

. (39)

The forms (36) and (38) reveal µ̂⇤ and p̂⇤ to be adaptive convex combination of the individual

posterior mean estimators µ̂Bi
⇡ and p̂Bi

⇡ , respectively. The adaptive weights p(Bi |x) in (37) and (39)

are the posterior probabilities that µ is contained each of the Bi, e↵ectively putting increased weight

on those individual estimators which are shrinking most. Note that the uniform prior estimates µ̂U

and p̂U are here doubly shrunk by µ̂⇤ and p̂⇤(y |x); in addition to the individual estimator shrinkage

they are further shrunk be the posterior probability p̂(Bi | x).

The key to obtaining µ̂⇤ and p̂⇤(y | x) which are minimax is simply to use priors which yield

super harmonic mB1
⇡ , . . . ,mBN

⇡ . If such is the case, then trivially from (35)

r2m⇤ =
NX

1

wir2mBi
⇡  0, (40)

so that m⇤ will be superharmonic, and the minimaxity of µ̂⇤ and p̂⇤(y | x) will follow immediately.

Note that marginals whose squareroot is superharmonic will not be adequate, as this argument will

fail.

The adaptive shrinkage behavior of µ̂⇤ and p̂⇤ manifests itself as substantial risk reduction

whenever µ is near any of B1, . . . , BN . Let us illustrate how the happens for the predictive den-

sity estimator p̂H⇤ , the multiple shrinkage version of p̂H . Figure 3 illustrates the risk reduction

[RKL(µ, p̂U ) � RKL(µ, p̂H⇤)] at various µ = (c, . . . , c)0 obtained by p̂H⇤ which adaptively shrinks

p̂U (y | x) towards the closer of the two points b1 = (2, . . . , 2)0 and b2 = (�2, . . . ,�2)0 using equal

weights w1 = w2 = 0.5. As in Figure 2, we considered the case vx = 1, vy = 0.2 for p = 3, 5, 7, 9. As

the plot shows, maximum risk reduction occur when µ is close to b1 or b2, and goes to 0 as µ moves

away from either of these points. At the same time, for each fixed kµk, risk reduction by p̂H⇤ is

larger for larger p. It is impressive that the size of the risk reduction o↵ered by p̂H⇤ is nearly the
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same as each of its single target counterparts. The cost of multiple shrinkage enhancement seems

negligible, especially compared to the benefits.

7 Empirical Bayes Constructions

Beyond their attractive risk properties, the the James-Stein estimator µ̂JS and its positive-part

counterpart µ̂JS+ are especially appealing because of their simple closed forms which are easy to

compute. As shown by Xu and Zhou (2011), similarly appealing simple closed form predictive

density shrinkage estimators can be obtained by the same empirical Bayes considerations that

motivate µ̂JS and µ̂JS+.

The empirical Bayes motivation of µ̂JS , alluded to in Section 1, simply entails replacing 1/(1+⌫)

in (4) by (p � 2)/kxk2, its unbiased estimate under the marginal distribution of X | µ ⇠ Np(µ, I)

when µ ⇠ Np(0, ⌫I). The positive-part µ̂JS+ is obtained by using the truncated estimate (p �
2)/ max{1, kxk2} which avoids an implicitly negative estimate of the prior variance ⌫.

Proceeding analogously, Xu and Zhou considered the Bayesian predictive density estimate,

p̂⌫(y | x) ⇠ Np

✓✓
1� vx

vx + ⌫

◆
x,

vx

vx + ⌫
vy +

✓
1� vx

vx + ⌫

◆
(vx + vy)

◆
, (41)

when X | µ ⇠ Np(µ, vxI) and Y | µ ⇠ Np(µ, vyI) are independent, and µ ⇠ Np(0, ⌫I). Replac-

ing vx/(vx + ⌫) by its truncated unbiased estimate (p � 2)vx/ max{vx, kxk2} under the marginal

distribution of X, they obtained the empirical Bayes predictive density estimate

p̂p�2(y | x) ⇠ Np

 ✓
1� (p� 2)vx

kxk2
◆

+

x; vy +
✓

1� (p� 2)vx

kxk2
◆

+

vx

!

(42)

where (·)+ = max{0, ·}, an appealing simple closed form. Centered at µ̂JS+, p̂p�2 converges to the

best invariant procedure p̂U ⇠ N(x, vx + vy) as kxk2 !1, and converges to N(0, vy) as kxk2 ! 0.

Thus, p̂p�2 can be viewed as a shrinkage predictive density estimator that “pulls” p̂U towards 0,

its shrinkage adaptively determined by the data.

To asses the KL risk properties of such empirical Bayes estimators, Xu and Zhou considered

the class of estimators p̂k of the form (42) with (p� 2) replaced by a constant k, a class of simple

normal forms centered at shrinkage estimators of µ with data-dependent variances to incorporate

estimation uncertainty. For this class, they provided general su�cient conditions on k and the

dimension p for p̂k to dominate the best invariant predictive density p̂U and thus be minimax.

Going further, they also established an “oracle” inequality which suggests that the empirical Bayes

predictive density estimator is asymptotically minimax in infinite-dimensional parameter spaces

and can potentially be used to construct adaptive minimax estimators. It appears that that these

minimax empirical Bayes predictive densities may play the same role as the James-Stein estimator

in such problems.
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It may be of interest to note that a particular pseudo-marginal empirical Bayes construction

that works fine for the mean estimation problem, appears not to work for the predictive density

estimation problem. For instance, the positive-part James-Stein estimator µ̂JS+ can be expressed

as µ̂JS+ = x +r log mJS+(x; 1), where mJS+(x; v) is the function

mJS+(x; v) = kp kxk�(p�2) if kxk2/v � (p� 2);

= v�(p�2)/2 exp{�kxk2/2v} if kxk2/v < (p� 2),

with kp = (e /(p � 2))�(p�2)/2 (see Stein 1974). We refer to m(z; v) as a pseudo-marginal because

it is not a bona fide marginal obtained by a real prior. Nonetheless, it plays the formal role of a

marginal in the mean estimation problem, and can be used to generate further innovations such as

minimax multiple shrinkage James-Stein estimators, (see George 1986abc).

Proceeding by analogy, it would seem that m(z; v) could be inserted into the representation

(18) from Lemma 1 to obtain similar results under KL loss. Unfortunately, this does not yield a

suitable minimax predictive estimator because p̂JS+(y | x) is not a proper probability distribution.

Indeed,
R

p̂JS+(y |x)dy 6= 1 and varies with x. What’s gone wrong? Because they do not correspond

to real priors, such pseudo-marginals are ultimately are at odds with the probabilistic coherence of

a valid Bayesian approach. In contrast to the mean estimation framework, the predictive density

estimation framework apparently requires stronger fidelity to the Bayesian paradigm.

8 Predictive Density Estimation for Classical Regression

Moving into the multiple regression setting, Stein (1960) considered the estimation of a p-dimensional

coe�cient vector under suitably rescaled quadratic loss. He there established the minimaxity of the

maximum likelihood estimators, and then proved its inadmissibility when p � 3, by demonstrating

the existence of a dominating shrinkage estimator.

In a similar vein, as one might expect, the theory of predictive density estimation presented in

Sections 2 and 3 can also be extended to the multiple regression framework. We here describe the

main ideas of the development of this extension which appeared in George and Xu (2008). Similar

results, developed independently from a slightly di↵erent perspective, appeared at the same time

in Kobayashi and Komaki (2008).

Consider the canonical normal linear regression setup:

X | � ⇠ Nm(A�,�2I), Y | � ⇠ Nn(B�,�2I), (43)

where A is a full rank, fixed m⇥ p, B is a fixed n⇥ p matrix, and � is a common p⇥ 1 unknown

regression coe�cient. The error variance �2 is assumed to be known, and set to be 1 without loss

of generality. The problem is to find an estimator of p̂(y | x) of the predictive density p(y | �),
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evaluating its performance by KL risk

RKL(�, p̂) =
Z

p(x | �)L(�, p̂(· | x))dx (44)

where L(�, p̂(· | x)) is the KL loss between the density p(y | �) and its estimator p̂(y | x).

The story begins with the result, analogous to Aitchison’s (1975) for the normal mean problem,

that the plug-in estimator p(y | �̂x), where �̂x is the least squares estimate of � based on x, is

dominated under KL risk by the posterior mean of p(y | �), the Bayes rule under the uniform prior

p̂U (y | x) =
1

(2⇡)
n
2

|A0A + B0B|�
1
2

|A0A|�
1
2

exp
⇢
�RSSx,y �RSSx

2

�
. (45)

Here too, p̂U is minimax (Liang, 2002; Liang and Barron, 2004) and plays the straw-man role of

the estimator to beat. The challenge was to determine which priors ⇡ would lead to Bayes rules

which dominated p̂U , and hence would be minimax too. Analogous to the representation (18) in

Lemma 1 for the normal mean problem, the following representation for a Bayes rule p̂⇡(y |x) here,

was the key to meeting this challenge.

Lemma 3. The Bayes rule p̂⇡(y | x) =
R

p(y | �)⇡(�)d� can be expressed as

p̂⇡(y | x) =
m⇡(�̂x,y; ⌃C)
m⇡(�̂x; ⌃A)

p̂U (y | x). (46)

where ⌃A = (A0A)�1, C = A0A + B0B, ⌃C = (C 0C)�1, �̂x is the least squares estimates of � based

on x, and �̂x,y based on x and y, and m⇡(z; ⌃) is the marginal distribution of Z|� ⇠ Np(�,⌃)

under ⇡(�).

The representation (46) leads immediately to following analogue of (19) for the KL risk di↵erence

between p̂U (y | x) and p̂⇡(y | x),

RKL(�, p̂U )�RKL(�, p̂⇡) = E�,⌃C
log m⇡(�̂x,y; ⌃C)� E�,⌃A

log m⇡(�̂x; ⌃A). (47)

The challenge thus became that of finding conditions on m⇡ to make this di↵erence positive, a

challenge made more di�cult than the previous one for (19) because of the complexity of ⌃A and

⌃C . Fortunately this could be resolved by rotating the problem as follows to obtain diagonal forms.

Since ⌃A and ⌃C are both symmetric and positive definite, there exists a full rank p ⇥ p matrix

W , such that

⌃A = WW 0, ⌃C = WDW 0, D = diag(d1, . . . , dp). (48)

Because ⌃C = (⌃�1
A + B0B)�1 where B0B is nonnegative definite, it follows that di 2 (0, 1] for all

1  i  p with at least one di < 1. Thus, the parameters for the rotated problem become

µ = W�1�, µ̂x = W�1�̂x ⇠ Np(µ, I), µ̂x,y = W�1�̂x,y ⇠ Np(µ,D). (49)
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Letting Vw = wI + (1� w)D for w 2 [0, 1], the risk di↵erence (47) could be reexpressed as

RKL(�, p̂U )�RKL(�, p̂⇡) = Eµ,D log m⇡W (µ̂x,y;D)� Eµ,I log m⇡W (µ̂x; I)

= hµ(V0)� hµ(V1), (50)

where hµ(Vw) = Eµ,Vw log m⇡W (Z;Vw) and ⇡W (µ) = ⇡(Wµ). The minimaxity of p̂⇡ would now

follow from conditions on m⇡ such that (@/@w)hµ(w) < 0 for all µ and w 2 [0, 1]. The following

substantial generalizations of Theorem 1 and Corollary 1 provides exactly those conditions.

Theorem 2. Suppose m⇡(z;WW 0) is finite for all z with the invertible matrix W defined as in

(48). Let H(f(z1, · · · , zp)) be the Hessian matrix of f .

(i) If trace{H(m⇡(z;WVwW 0))[⌃A � ⌃C ]}  0 for all w 2 [0, 1], then p̂⇡(y | x) is minimax.

(ii) If trace{H(
p

m⇡(z;WVwW 0))[⌃A � ⌃C ]}  0 for all w 2 [0, 1], then p̂⇡(y | x) is minimax.

Corollary 2. Suppose m⇡(z;WW 0) is finite for all z. Then p̂⇡(y | x) is minimax if

trace{H(⇡(�)[⌃A � ⌃C ]}  0 a.e.

As a consequence of Corollary 2, the scaled harmonic prior ⇡H(�|W ) / kW�1�kp�2 can be shown

to yield minimax predictive density estimators for the regression setting.

Going further, George and Xu (2008) went on to show that the minimax Bayes estimators here

can be modified to shrink towards di↵erent points and subspaces as in Section 5, and that the

minimax multiple shrinkage constructions of Section 6 apply as well. In particular, they obtained

minimax multiple shrinkage estimators that naturally accommodate variable selection uncertainty.

9 Predictive Density Estimation for Non-parametric Regression

Moving in another direction, Xu and Liang (2010) considered predictive density estimation in the

context of modern non-parametric regression, a context in which the James-Stein estimator has

turned out to play an important asymptotic minimaxity role, see Wasserman (2006). Their results

pertain to the canonical setup for non-parametric regression

Y (ti) = f(ti) + "i, i = 1, · · · , n, (51)

where f is an unknown smooth function in L2[0, 1], ti = i/n, and "i’s are i.i.d. N(0, 1). A central

problem here is to estimate f or various functionals of f based on observing Y = (Y (t1), . . . , Y (tn)).

Transforming the problem with an orthonormal basis, (51) is equivalent to estimating the ✓i’s in

yi = ✓i + ei, ei ⇠ N
⇣
0,

1
n

⌘
, i = 1, · · · , n, (52)
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known as the Gaussian sequence model. The model above is di↵erent from the ordinary multivariate

normal model in two aspects: 1) the model dimension n is increasing with the sample size, and

2) under function space assumptions on f , the ✓i’s lie in a constrained space, e.g., an ellipsoid

{
P

i a
2
i ✓

2
i  C, ai !1}.

A large body of literature has been devoted to minimax estimation of f under L2 risk over

certain function spaces, see, for example, Johnstone (2001), Efromovich (1999), and the references

therein. As opposed to the ordinary multivariate normal mean problem, exact minimax analysis is

di�cult for the Gaussian sequence model (52) when a constraint on the parameters is considered.

This di�culty has been overcome by first obtaining the minimax risk of a subclass of estimators of

a simple form, and then showing that the overall minimax risk is asymptotically equivalent to the

minimax risk of the subclass. For example, an important result from Pinsker (1980) is that when

the parameter space is constrained to an ellipsoid, the non-linear minimax risk is asymptotically

equivalent to the linear minimax risk, namely the minimax risk of the subclass of linear estimators

of the form ✓̂i = cixi.

For non-parametric regression, the following analogue between estimation under L2 risk and

predictive density estimation under KL risk was established in Xu and Liang (2010). The prediction

problem for non-parametric regression is formulated as follows. Let Ỹ = (Ỹ (u1), . . . , Ỹ (um)) be

future observations arising at a set of dense (m � n) and equally spaced locations {uj}m
i=1. Given

f , the predictive density p(ỹ |f) is just a product of Gaussians. The problem is to find an estimator

p̂(ỹ | y) of p(ỹ | f), where performance is measured by the averaged KL risk

R(f, p̂) =
1
m

EY,Ỹ |f log
p(Ỹ | f)
p̂(Ỹ | Y )

. (53)

In this formulation, densities are estimated at the m locations simultaneously by p̂(ỹ | y). As it

turned out, the KL risk based on the simultaneous formulation (53) is the analog of the L2 risk for

estimation. Indeed, under the KL risk (53), the prediction problem for a non-parametric regression

model can be converted to the one for a Gaussian sequence model.

Based on this formulation of the problem, minimax analysis proceeds as in the general framework

for the minimax study of function estimation used by, for example, Pinsker (1980) and Belitser

and Levit (1995, 1996). The linear estimators there, which play a central role in their minimax

analysis, take the same form as posterior means under normal priors. Analogously, predictive

density estimates under the same normal priors turned out to play the corresponding role in the

minimax analysis for prediction. (The same family of Bayes rules arises from the empirical Bayes

approach in Section 7). Thus, Xu and Liang (2010) were ultimately able to show that the overall

minimax KL risk is asymptotically equivalent to the minimax KL risk of this subclass of Bayes

rules, a direct analogue of Pinker’s Theorem for predictive density estimation in non-parametric

regression.
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10 Discussion

Stein’s (1956) discovery of the existence of shrinkage estimators that uniformly dominate the

minimax maximum likelihood estimator of the mean of a multivariate normal distribution un-

der quadratic risk when p � 3 was the beginning of a major research e↵ort to develop improved

minimax shrinkage estimation. In subsequent papers Stein guided this e↵ort towards the Bayesian

paradigm by providing explicit examples of minimax empirical Bayes and fully Bayes rules. Mak-

ing use of the fundamental results of Brown (1971), he developed a general theory for establishing

minimaxity based on the superharmonic properties of the marginal distributions induced by the

priors.

The problem of predictive density estimation of a multivariate normal distribution under KL

risk has more recently seen a series of remarkably parallel developments. With a focus on Bayes

rules catalyzed by Aichison (1975), Komaki (2001) provided a fundamental breakthrough by demon-

strating that the harmonic prior Bayes rule dominated the best invariant uniform prior Bayes rule.

These results suggested the existence of a theory for minimax estimation based on the superhar-

monic properties of marginals, a theory that was then established in George, Liang and Xu (2006).

Further developments of new minimax shrinkage predictive density estimators now abound, in-

cluding, as described in this article, multiple shrinkage estimators, empirical Bayes estimators,

normal linear model regression estimators, and non-parametric regression estimators. Examples of

promising further new directions for predictive density estimation can be found in Komaki (2004,

2006, 2009) which includes results for Poisson distributions, for general location-scale models and for

Wishart distributions, in Ghosh, Mergel and Datta (2008) which develops estimation under alterna-

tive divergence losses, and Kato (2009) which established improved minimax predictive domination

for the multivariate normal distribution under KL risk when both the mean and the variance are

unknown. Minimax predictive density estimation is now beginning to flourish.
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Figure 1: Shrinkage of p̂U(y | x) to obtain p̂H(y | x) when vx = 1, vy = 0.2 and p = 5.

Here y = (y1, y2, 0, 0, 0)0.
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Figure 2: The risk di↵erence between p̂U and p̂H when µ = (c, · · · , c)0
, vx = 1, vy =

0.2.
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Figure 3: The risk di↵erence between p̂U and multiple shrinkage p̂H⇤ when µ =

(c, · · · , c)0
, vx = 1, vy = 0.2, b1 = (2, ..., 2)0

, b2 = (�2, . . . ,�2)0, and w1 = w2 = 0.5.
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