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ABSTRACT
It is well known that traditionalmean-variance optimal portfolio delivers rather erratic and unsat-
isfactory out-of-sample performance due to the neglect of estimation errors. Constrained solu-
tions, such as no-short-sale-constrained and norm-constrained portfolios, can usually achieve
much higher ex post Sharpe ratio. Bayesian methods have also been shown to be superior to tra-
ditional plug-in estimator by incorporating parameter uncertainty through prior distributions.
In this paper, we develop an innovative method that induces priors directly on optimal portfolio
weights and imposing constraints apriori in our hierarchical Bayesmodel.We show that such con-
structed portfolios are well diversified with superior out-of-sample performance. Our proposed
model is tested on a number of Fama–French industry portfolios against the naïve diversification
strategy and Chevrier and McCulloch’s (2008) economically motivated prior (EMP) strategy. On
average, our model outperforms Chevrier and McCulloch’s (2008) EMP strategy by over 15% and
outperform the ‘1/N’ strategy by over 50%.

1. Introduction

Portfolio optimisation is a fundamental problem in
financial research. Its most common formulation
is Markowitz’s (1952) mean-variance paradigm (see
Brandt, 2009, for a detailed review). Suppose that an
investor would like to choose a portfolio in the uni-
verse of a risk-free asset and p risky assets, which have
returns rf and rt at time t, respectively, where rt is
a p-dimensional vector. Denote the excess returns by
Rt = rt − rf1p, where 1p is a vector of ones, and assume
that Rt

iid∼ Np(μ, �). Based on the observed returns
R1,… , RT in that past T periods, the goal is to find an
optimal portfolio weight vector w that minimises the
utility function

U (w) = w′E[RT+1] − γ

2
w′Var(RT+1)w

= w′μ − γ

2
w′�w, (1.1)

where RT + 1 is the excess return vector to be realised in
the next period and γ is the relative risk-aversion coef-
ficient. If both μ and � were known, the optimal port-
folio weight can be expressed in the closed-form

w∗ = arg maxwU (w) = 1
γ

�−1μ, (1.2)

and the corresponding utility isU(w∗)=μ′�−1μ/2γ =
θ2/2γ , where θ2 = μ′�−1μ is the squared ratio of the
ex ante tangency portfolio of the risky assets. How-
ever, in practice, the true values of μ and � are never
known. To compute the portfolio weight, the traditional
approach is to first estimate these parameters and then
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plug the estimates into (1.2) as if they were the true
parameters. This common practice, however, ignores
the uncertainty in parameter estimation. The resulting
portfolios usually have extreme long or short positions
on very few assets, hence are not well diversified and
have poor performances (see e.g. Bawa, Brown,&Klein,
1979).

Extensive efforts have been made to improve port-
folio allocation, among which a very successful class
of methods avoid extreme portfolio positions by effec-
tively shrinking the weights towards a certain tar-
get. Under the Bayesian framework, this shrinkage
can be achieved by placing prior distributions on the
model parameters. Integrating out the parameters with
respect to the posteriors leads to the predictive dis-
tribution π(RT + 1|R1,… , RT) of the future outcome,
and the optimal portfolio weight w is the Bayes rule
that maximises the expected utility (1.1) under the
predictive distribution. This approach naturally incor-
porates the uncertainty in parameter estimation, and
thus may lead to sharper risk assessment and bet-
ter decision-making (see e.g. Avramov & Zhou, 2010).
However, the performance of a Bayesian procedure
is impacted by the choice of the priors. Frost and
Savarino (1986) showed that an empirical Bayes model
based on informative priors could outperform a sim-
ple Bayesian model based on non-informative priors.
Greyserman, Jones, and Strawderman (2006) showed
that for a long enough investment horizon, a hierar-
chical Bayes model with conjugate priors outperforms
those based on non-informative priors and James–
Stein priors, in terms of both direct utility factors
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and turnover rates. Tu and Zhou (2010) developed
‘economic-objective-based’ priors and showed that the
resulting portfolio can achieve better out-of-sample
Certainty-Equivalent Returns (CER) and utility gains.
Moreover, Chevrier and McCulloch (2008) incorpo-
rated economic theory into their priors and obtained
excellent out-of-sample Sharpe ratios and turnover
rates.

Another natural approach for avoiding extremeposi-
tions is to impose pre-specified constraints on the
portfolio weight w. The most commonly used con-
straints are the no-short-sale constraint (i.e., w � 0)
and L1-/L2-norm constraints (i.e. |w| � c or |w|2 <

c, where c is a pre-specified constant). The no-short-
sale constraint was first explored by Frost and Savarino
(1988). Under the mean-variance paradigm, it has been
shown that imposing the no-short-sale constraint can
be viewed as shrinking the expected return towards the
mean (DeMiguel, Garlappi, & Uppal, 2009b). More-
over, Jagannathan andMa (2003) showed that under the
alternative minimal variance paradigm, where

w = arg min Ũ (w) = arg min w′�w

s.t. w′1 = 1, (1.3)

imposing the no-short-sale constrain is equivalent
to shrinking the sample estimate of the covariance
matrix, which is a well-studied method pursued by
many researchers including Ledoit and Wolf (2003a)
and Ledoit and Wolf (2003b). The L1-/L2-norm con-
straints were carefully studied by DeMiguel, Garlappi,
Nogales, and Uppal (2009a), who showed that under
the minimal-variance paradigm, certainL1-constraints
lead to the no-short-sale-constrained solution and cer-
tain L2-constraints are equivalent to that of Ledoit
and Wolf (2003a). More recent developments along
this line include the sparsity penalty method proposed
by Brodie, Daubechies, De Mol, Giannone, and Loris
(2009).

Inspired by the successes of the Bayesian approach
and the constrained optimisation approach, in this
paper, we propose an innovative method that restricts
the parameter space over which hierarchical priors
span.We demonstrate the superior performances of our
method through a series of empirical studies, compar-
ing with the traditional mean-variance plug-in strat-
egy, the so-called ‘1/N’ or naïve diversification strat-
egy, and Chevrier and McCulloch (2008)’s Economi-
cally Motivated Prior (EMP) strategy. The ‘1/N’ strat-
egy, which simply assigns equal weights to all assets, is
a common benchmark used in the literature. DeMiguel
et al. (2009b) examinedmany competing portfolio opti-
misationmethods and showed that nomethod can out-
perform the ‘1/N’ strategy consistently. As far as we
know, Chevrier and McCulloch’s (2008)EMP strategy
is one of the very few methods that have been shown
to outperform the ‘1/N’ portfolio on a large collection
of data-sets. Our investigation demonstrates that the

proposed restricted Bayesian strategy outperforms both
the ‘1/N’ strategy and Chevrier andMcCulloch (2008)’s
EMP strategy under several measures.

The remainder of the paper is organised as follows. In
Section 2, we first propose two hierarchical priors based
on the hyper-g and the economic-objective-based pri-
ors, and then impose the no-short-sale constraint on the
parameter space as a priori. In Section 3, we construct
MCMC algorithms for fitting the proposed restricted
Bayesian models. Then we evaluate the performance
of the proposed restricted Bayesian models through a
series of empirical analysis in Section 4. Finally, we
summarise the findings and discuss future directions in
Section 5.

2. Model specification

Under the mean-variance paradigm, the unknown
parameters in the distribution of the excess returns are
μ and �. Common Bayesian portfolio optimisation
models can be represented by

R1, . . . ,RT |μ, �
iid∼ Np(μ, �),

μ|τ, � ∼ Np(μ0, τ�),

� ∼ π(�), (2.1)

whereμ0 is the investor’s view of themean asset returns,
τ determines the strength of belief in the value of μ0,
and π(�) is usually a conjugate, or a non-informative,
or a more complicated hierarchical prior on the covari-
ance matrix �. Frost and Savarino (1986) utilised the
empirical Bayes method to estimate μ0, τ and the
hyper-parameters in an inverse-Wishart prior on �,
and showed that the resulting portfolio overperforms
that under the non-informative priors on both μ and
�. Greyserman et al. (2006) further proposed a hierar-
chical prior that places another layer of priors onμ0 and
�, and showed that the fully hierarchical Bayes proce-
dure produces promising results compared to the classic
procedures.

As pointed out by Tu and Zhou (2010) and the ref-
erences therein, traditional diffuse priors on μ and �

could imply very informative and unreasonable priors
on w. To avoid this pitfall, it is better to use the first-
order condition (1.2) to reparameterise themodel (2.1),
so that the priors are placed directly on w and � rather
than on μ and �. The same approach has been used in
Kandel, McCulloch, and Stambaugh (1995) and Lam-
oureux and Zhou (1996), and a similar idea has been
used in the famous Black–Litterman model (Black &
Litterman, 1992). Replacing μ by μ = γ�w based on
the first-order condition, we obtain the following repa-
rameterised model:

R1, . . . ,RT |w, �
iid∼ Np(γ�w, �),

w|τ, � ∼ Np

(
1
γ

�−1μ0,
1
γ 2 τ�−1

)
,

� ∼ π(�). (2.2)
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It is interesting to notice that conditional on �, the
excess return Rt can be viewed to follow a classic nor-
mal linear regressionmodel with the designmatrixX=
γ� and the regression coefficientw. There is a large lit-
erature on prior elicitation for linear regression coeffi-
cients (see e.g. Clyde & George, 2004). One of the most
widely adopted classes of priors are Zellner’s (1986)
g-priors, where w follows a multivariate normal distri-
bution with the covariance matrix g(X′�X)−1 and �

follows a non-informative prior (Liang, Paulo, Molina,
Clyde, & Berger, 2008). In this portfolio optimisation
problem, note that (X′�X)−1 = �−1/γ 2. Therefore,
(2.2) can viewed as placing a g-prior on the portfolio
weight w, where g = τ .

Conditional on τ and�, the posteriormean ofw can
be represented by

E[w|R, τ, �] = 1
1 + τT

1
γ

�−1μ0 + τT
1 + τT

1
γ

�−1R̄T ,

where R̄T is the sample average of the excess returns,
that is, the optimal portfolio weight is a weighted aver-
age of the prior portfolio weight 1

γ
�−1μ0 and the ‘plug-

in’ estimator 1
γ
�−1R̄T . The prior parameter τ , scaled

by the length of the observation window T, adjusts the
shrinkage degree of the plug-in estimator towards the
prior portfolio weights, and hence plays an important
role in this optimisation problem. To decide the value
of τ , Greyserman et al. (2006) fixed τ at a pre-specified
value. However, as shown by Liang et al. (2008), fixed
choices of τ do not utilise the information in the data,
and thus may cause undesirable consistency issues for
model selection. Instead, they recommended integrat-
ing the marginal likelihood under a proper prior on τ ,
and showed that under certain regularity conditions,
such mixtures of g-priors resolve many problems with
the fixed τ priors, while maintaining the computational
tractability. In this paper, we follow Liang et al.’s (2008)
suggestion and use the hyper-g priors with

p(τ |α) ∝ (1 + τT )−α, α > 0. (2.3)

This family of priors includes the priors used by Straw-
derman (1971) to provide improved mean square risk
over ordinary maximum-likelihood estimates in the
normal means problem. These priors have also been
studied by Cui and George (2008) for the problem of
variable selection in the case of known error variance.
We further extend this class of priors by placing a con-
jugate priorπ(α)∝ e−α on the hyper-parameterα. As in
(mixtures of) g priors, we place a non-informative prior
π(�) ∝ |�|− p+1

2 on the covariance matrix �.
Furthermore, note that in the model (2.2), the port-

folio weight w follows a multivariate normal distribu-
tion conditional on τ and �, which assigns positive
prior weight to any non-empty open set in theRp space.
Therefore, the portfolio weight potentially can still take
extreme long or short positions. To alleviate this danger

and to future stabilise the portfolio choices, we investi-
gate placing regularisations or constraints on the port-
folio weight. Such regularisations have been shown to
be very helpful for improving out-of-sample perfor-
mances for financial returns data which typically has
very low signal-to-noise ratio (see e.g. Brodie et al.,
2009; DeMiguel et al., 2009a, 2009b; Jagannathan&Ma,
2003). Under the Bayesian framework, the parameters
are considered as random variables, and so the ranges
of their values are determined by the supports of their
distributions. The reparameterisation (2.2) models w

directly, and thus allows us to place constraint on the
portfolio weight by restricting the support of the prior
on w to a subset in Rp. As mentioned in Section 1, a
widely used constraint in the literature is the no-short-
sale constraint w � 0. Combining this constraint with
the Bayesian hierarchical model (2.2) yields the follow-
ing restricted Return-based Hierarchical Bayes (rRHB)
model:

R1, . . . ,RT |w, �
iid∼ Np(γ�w, �),

w|τ, � ∼ Np

(
1
γ

�−1μ0,
1
γ 2 τ�−1

)

× I(w ∈ [0, ∞)p),

π(τ |α) ∝ (1 + τT )−α,

π(α) ∝ e−α,

π(�) ∝ |�|− p+1
2 . (2.4)

The first-order condition (1.2) holds for any pair of
parameter values μ and �, and so also holds on this
restricted subspace.

It is important to note that our cRHB model (2.4) is
fundamentally different from the constrained optimi-
sation approaches in many previous works, including
Jagannathan and Ma (2003), DeMiguel et al. (2009a),
DeMiguel et al. (2009b) and Brodie et al. (2009). We are
simply restricting the parameter space so that the opti-
mal portfolio weights w is non-negative for all assets,
but an individual investor is still allowed to hold short
positions on any asset as he/she wants (i.e. E(w|R1,… ,
RT) could have negative components based on cer-
tain sets of observations). On the other hand, the con-
strained optimisation approaches restrict all investors’
action spaces by imposing constrains on the portfo-
lio weights that they can choose, but do not constrain
the parameter space. Therefore, the first-order condi-
tion (1.2) does not hold for these constrained opti-
misation solutions under either the mean variance or
minimal variance framework, but still holds for our
cRHB model. To the best of our knowledge, the only
other paper that has similarly constrained the parame-
ter space is Chevrier and McCulloch (2008), but their
underlying hierarchical model is entirely different from
ours.Wewill compare ourmethodwith that inChevrier
and McCulloch (2008) through empirical studies in
Section 4.
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3. Model fitting

We use the Gibbs sampler to simulate from the joint
posterior distributions of the proposed Bayesian hier-
archical models. The algorithm for a single iteration in
the Gibbs sampler is described below.

� Step 1 – Update w from the truncated multivari-
ate normal distributionN(μw ,�w)I{w � (0,�)p},
where

μw = τT
1 + τT

1
γ

�−1R̄T + 1
1 + τT

1
γ

�−1μ0,

�w = τ

γ 2(1 + τT )
�−1.

By the results inRodriguez-Yam,Davis, and Scharf
(2004), sampling from the truncated multivariate
normal distribution can be implemented by sam-
pling from a series of truncated univariate normal
distributions

w[i]|w[−i] ∼ N(μ[i], �[i])I{w[i] ≥ 0},
i = 1, . . . , p

where μ[i] = μ[i] + �[i,−i]�
−1
[−i,−i](w[−i] − μ[−i]),

�[i] = �[i,i] − �[i,−i]�
−1
[−i,−i]�[−i,i].

� Step 2 – Update τ through a Metropolis–Hastings
algorithm, where the conditional posterior distri-
bution is

p(τ |R, α,�) ∝ τ−p/2(1 + τT )−α

exp
{
−γ 2

2τ

(
w − 1

γ
�−1η0

)′
�

(
w − 1

γ
�−1η0

)}
,

and the proposal distribution is a truncated nor-
mal distribution on the positive values.

� Step 3 – Update α from the exponential distribu-
tion with mean (1 + log (1 + τT))−1.

� Step 4 – Update � from its conditional posterior
distribution

p(�|R, τ, w) ∝ |�|−(T+p)/2

exp
{
−1
2
trace(�−1	 + �
)

}
,

where 	 = ∑T
t=1 RtR′

t + 1
τ
η0η

′
0 and 
 = γ 2(T +

1
τ
)ww′. This distribution is a multivariate version

of the famous generalised inverse Gaussian (GIG)
distribution, and is sometimes called the matrix
GIG distribution (Butler, 1998). Sampling from
this distribution is much harder than sampling
from the commonWishart or inverseWishart dis-
tributions. Most of the existing sampling algo-
rithms depend on some form of matrix decom-
position. In this paper, we use the hit-and-run
sampler designed by Yang and Berger (1994), since
it works reasonablywell for the sizes ofmatrix con-
sidered in our empirical studies. This sampler can
be described as follows:

(1) Generate a random lower triangle matrix L
with elements li j

iid∼ N(0, 1) for i � j.
(2) Define a step matrix D by scaling and
reflecting L. Let s = √∑

{(i, j)|i≤ j} l2i j, then

L̃ = 1
s
L, and D = L̃ + L̃T − diag(L̃).

(3) Generate a random step-size variable λ ∼
N(0, 1).
(4) Given the last update �[k], propose a new
update

�prop = exp(log(�[k]) + λD),

where exp ( · ) and log ( · ) arematrix functions
defined by exp(A) = ∑∞

m=0 A
m/m!.

(5) Accept �prop with probability

min
(
1,

p(�prop|R, τ, w)

p(�[k]|R, τ, w)

)
.

Otherwise, set �[k + 1] = �[k].

For the other analysis, different samplers for the
matrix GIG distribution could be implemented for
this step as well.

Note that in the above algorithm, the values of w are
directly drawn from its conditional posterior distribu-
tion, and thus the optimal portfolio weight can be sim-
ply computed as the average of these posterior draws.

4. Empirical studies

We now evaluate the performances of our proposed
cRHB model (2.4) through comparisons with the fol-
lowing benchmark methods in the literature:

� MeanVar: The traditional mean-variance plug-in
portfolio. It simply plugs the sample mean and
sample covariance matrix into the first-order con-
dition (1.2), which yields

w = �̂−1μ̂

1′�̂−1μ̂
.

� 1/N:Thenaïve diversification strategy.When there
are p assets in the portfolio, it assigns each asset
exactly the same weight, i.e.

w = 1
p
1p.

Despite its simple form, this naïve diversification
strategy has excellent performances. DeMiguel
et al. (2009b) performed a comprehensive analy-
sis comparing it with a large collection of compet-
ing methods, including the mean variance plug-in
method, the minimal variance optimisation under
no-short-sale constraints, the James–Stein shrink-
age estimator, etc. They found that none of these
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methods can consistently and significantly outper-
form this naïve diversification strategy in terms of
out-of-sample Sharpe ratio and CER. As a result, a
lot of recent research works evaluate newmethods
by comparing with only the 1/N portfolio.

� EMP: The Bayesian portfolio using economic
theory in Chevrier and McCulloch (2008). It is
under a hierarchical prior constructed from the
CAMP model, the no-short-sale constraint, and
another constraint that guarantees that the mar-
ket portfolio lies on the efficient part of the mean
variance frontier. The authors compared their
portfolio with the “1/N’ strategy on 27 domestic
and international data-sets, and discovered that
their approach overperforms by over 30% on aver-
age in terms of out-of-sample Sharpe ratio, while
maintaining a similar low turnover. As far as we
know, this is one of the very few strategies in
the literature that have been shown to outperform
the 1/N portfolio on a large collection of data-sets.

For the cRHB model, we construct the portfolios
using relative weights w

|w′1| rather than absolute weights
w. The parameter μ0 that represents the investor’s view
of the mean asset returns in cRHB is set to be a vector
of zeros.

4.1. Data

To facilitate the comparison, we use the following
data-sets from DeMiguel et al. (2009b) and Chevrier
and McCulloch (2008) – the Fama French 5, 10 and 49
industry portfolios and the 6 and 25 portfolios formed
on size and book-to-market; and also an additional
data-set – the FamaFrench 17 industry portfolio. All the
data were retrieved from http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html. The
data-sets on this website are regularly updated and span
nearly 80 years. In order to allow direct comparison
with the results of Chevrier and McCulloch (2008), we
use the data in the same time period as theirs – from
August 1963 to July 2007.

Following Chevrier and McCulloch (2008), we pre-
pare the data by subtracting the risk-free rate from
the portfolio returns and augmenting the data with the
Fama French 3 factors. Monthly market excess returns
are used for the industry assets, and nominal returns
are used for the Fama and French factor assets. We also
remove the industry labelled ‘other’ from the data when
considering the Fama French industry portfolios, since
in theory the industry portfolios span the market.

To evaluate the out-of-sample performances, as in
Ledoit and Wolf (2003b) and Chevrier and McCulloch
(2008), we use 10 years of data (from August of year
t − 10 to July of year t, T = 120) to obtain the portfolio
weights. The formed portfolios are then held from the

first day in August of year t to the last day in July of year
t + 1. We then repeat this ‘rolling window’ procedure,
i.e. we assume automatic yearly rebalance of all portfo-
lio assets. In total, we obtain 34 years of out-of-sample
performance based on the realised excess returns from
August 1973 to July 2007.

4.2. Out-of-sample performance criteria

The out-of-sample performance of a portfolio can be
measured under many different criteria. For example,
Greyserman et al. (2006) examined the Sharpe ratio,
portfolio turnover and the utility gain. Chevrier and
McCulloch (2008) used the Sharpe ratio and turnover.
DeMiguel et al. (2009b) compared the Sharpe ratio,
turnover and certainty-equivalent return (CER), while
Tu and Zhou (2010) mainly examined CER and the
out-of-sample utility gain. To facilitate our compari-
son with the ‘1/N’ and the ‘EMP’ strategies, we use the
Sharpe ratio and turnover, as suggested by Chevrier and
McCulloch (2008) and DeMiguel et al. (2009b).

... Sharpe ratio
This is probably the most common portfolio perfor-
mance measure in the literature. By the definition of
Sharpe (1994), the single-period ex post Sharpe ratio
compared to risk-free asset is

SR1 = μ̂

σ̂
, (4.1)

where μ̂ is the mean of out-of-sample series of one-
month excess returns of the portfolio for all 34 test peri-
ods, and σ̂ is the corresponding standard deviation. In
practice, annualised Sharpe ratio is typically reported.
For monthly return data, the annualised Sharpe ratio is
given by

√
12SR1.

... Turnover
The turnover provides an indication of the trading vol-
ume for a particular strategy, as well as an upper bound
for the transactions costs that such a strategy would
entail. Following DeMiguel et al. (2009b) and Chevrier
and McCulloch (2008), we let turnover be the sum of
the absolute value of the rebalancing trades across the p
available assets and over theT trading dates, normalised
by the total number of trading dates T, that is,

1
T

T∑
t=1

p∑
i=1

|wi
t − wi

t−|, (4.2)

where wi
t is the weight invested in asset i at time t, and

wi
t− is the weight invested in asset i just prior to rebal-

ancing, which can be calculated as

wi
t− = wi

t (1 + Ri
t )∑

j w
j
t (1 + Rj

t )
.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table . Annualised Sharpe ratio.

Portfolios Ind Ind Ind Ind Size Size

MeanVar . . . . . .
/N . . . . . .
EMP . . –* . . .
cRHB 89.82 83.94 73.47 74.34 90.33 81.03

∗Not included in Chevrier and McCulloch ().

Table . Average monthly turnover.

Portfolios Ind Ind Ind Ind Size Size

MeanVar . . . . . .
/N . . . . . .
EMP . . –* . . .
cRHB . . . . . .

∗Not included in Chevrier and McCulloch ().

Therefore, the turnover (4.2) can be interpreted as the
average percentage of wealth traded at each time when
we rebalance the portfolio.

4.3. Findings

Tables 1 and 2 summarise the Sharpe ratios and the
turnovers of the five competing strategies, respectively.
We highlight the highest Sharpe ratio for each data-set
by boldface. It is easy to see that the cRHB model con-
sistently has the highest Sharpe ratio, the Bayesian port-
folio EMP usually has the second highest Sharpe ratio,
and not surprisingly, the traditional mean-variance
plug-in portfolio usually has the lowest Sharpe ratio.
On average, the cRHB strategy overperforms the EMP
strategy by 19%. For all the data-sets that we consider
here, EMP overperforms the ‘1/N’ strategy, which is
consistent with the results in Chevrier and McCulloch

(2008). The cRHB strategy overperforms the ‘1/N’ strat-
egy by as high as 53%. As for turnover, the cRHB strat-
egy has turnovers only slightly larger than those of the
‘1/N’ strategy, and comparable to those of the EMP
strategy. The traditional mean-variance plug-in portfo-
lio has extremely large turnovers, and thus could yield
high transaction costs.

It is worth noting that across the data-sets of vari-
ous sizes that we consider, the advantages of the cRHB
strategy in Sharpe ratio remain quite stable. One of the
claims in DeMiguel et al. (2009b) is that as the number
of available assets increases, the ‘1/N’ strategy should
perform increasingly better relative to other methods
as its portfolio weight has no estimation error. How-
ever, for the data-sets that we examine, the Sharpe ratio
improvements of the cRHB strategy over the ‘1/N’ strat-
egy are between 42% and 55% with no obvious pat-
terns. This shows that this restricted Bayesian strategy is
robust and performs well even when the data are scarce.
To better understand the properties of the cRHB strat-
egy relative to those of the ‘1/N’ strategy, we demon-
strate the means of the standard deviations of their out-
of-sample excess returns in Table 3 (we do not include
the EMP strategy here, because it is computationally
very expensive to run the MCMC for their Bayesian
model. All the numbers of the EMP strategy are based
on the reports in Chevrier and McCulloch (2008)). It
is clear to see that the ‘1/N’ strategy has the highest
returns. However, it also has the highest standard devia-
tions. The cRHB strategy is relativelymore conservative
with lower standard deviations at small prices of sac-
rificing a little bit return. Combining these two factors
together, the cRHB strategy has higher overall Sharpe
ratios.

Table . Annualised portfolio excess return and standard deviation.

Portfolios Ind Ind Ind Ind Size Size

MeanVar . (.) . (.) . (.) . (.) . (.) . (.)
/N . (.) . (.) . (.) . (.) . (.) . (.)
cRHB . (.) . (.) . (.) . (.) . (.) . (.)

Table . Annualized Sharpe ratios in five-year periods between  and .

Time periods Portfolios Ind Ind Ind Ind Size Size

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .

/–/ cRHB . . . . . .
/N . . . . . .
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Figure . SP monthly closing price (a) and return (b) from August  to July .

Furthermore, it is easy to see from Definition (4.2.1)
that the Sharpe ratio of a portfolio may fluctuate
through time. Tomake sure that the cRHB strategy con-
sistently has superior performance through time and
to further examine its properties in different market
environments, we follow the approach of Brodie et al.
(2009) to calculate the Sharpe ratios by five-year peri-
ods (and four years for the last period). The results
are shown in Table 4. It can be seen that the cRHB
strategy overperforms the ‘1/N’ strategy in all these
five-year periods and has the biggest advantages during
three periods: August 1973–July 1978, August 1983–
July 1988 and August 1998–July 2003 with the latter
two covering the Black Monday in 1987 as well as the
burst of dot-com bubble. The August 1973–July 1978
period seems relatively stable in comparisonwith recent
decades, but we can see an increase in volatility in the
return series (Figure 1(b)) which represents the 1973–
1974 stock market crash. The ‘1/N’ strategy, due to
the large standard deviations of its excess returns, is
highly risky and could yield large negative returns dur-
ing recessions and financial crises. On the other hand,
the proposed cRHB strategy provides great balances
between the excess returns and their standard devia-
tions, and thus has outstanding performance over all the
time periods.

5. Discussion

In this paper, we propose an innovative restricted
Bayesian model, the cRHB model, which combines
the advantages of the Bayesian approach and the

constrained optimisation approach. This model is
robust and automatic in the sense that it allows subject
inputs only through the choice of the prior center. We
show through empirical studies that thismodel on aver-
age outperformsChevrier andMcCulloch’s (2008) EMP
strategy by over 15% and outperforms the ‘1/N’ strategy
by over 50%.

Note that in the cRHB model, the investor’s view of
the mean asset returns μ0 can be elicited from experts’
opinions or historical information. However, Tu and
Zhou (2010) argued that before observing any data or
does any formal statistical analysis, investorsmight have
much better ideas about the optimal portfolio weight
w rather than the values of μ. For example, the Black–
Littlerman model suggests using the value-weighted
market portfolio weights, and the ‘1/N’ strategy sug-
gests using equal portfolioweights for investment diver-
sity. Therefore, an alternative approach could be to sim-
ply replaces the prior mean of w by w0 = (1/p,… ,
1/p)′, which leads to the following restricted Weight-
based Hierarchical Bayes (cWHB) model

R1, . . . ,RT |w, �
iid∼ Np(γ�w, �)

w|τ, � ∼ Np

(
w0,

1
γ 2 τ�−1

)
I(w ∈ [0, ∞)p)

p(τ |α) ∝ (1 + τT )−α

p(α) ∝ e−α

p(�) ∝ |�|− p+1
2 , (5.1)

where investors can choose either of the cRHB or
cWHB models based on their knowledge of the mean
asset returns or of the optimal portfolio weight.
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Moreover, although both of our models use the no-
short-sale constraint, the general methodology can be
easily extended to accommodate other L1-/L2-norm
constraints in DeMiguel et al. (2009a). Also, in addition
to the hyper-g prior (2.3) that we place on the shrinkage
parameter τ , there exists a class of global / local shrink-
age prior, such as the inverse gamma prior, the dou-
ble exponential prior, the Strawderman–Berger prior,
the horseshoe prior, etc. (see Carvalho, Polson, & Scott,
2010, for an insightful discussion). Some of these pri-
ors could lead to sparse strategies as the one in Brodie
et al. (2009). It will be interesting to investigate the
properties of the portfolio choices under these different
priors.

Our experiences based on the empirical studies
suggest that the performance of investment strategies
depend on the investment period and the market envi-
ronment. Therefore, instead of trying to find a single
best optimisation strategy that works for all time peri-
ods, amore reasonable approach seems to be looking for
different optimal solutions under variousmarket condi-
tions. Furthermore, the Bayesian framework allows us
to incorporate the uncertainty of both the parameters
and the models through Bayesian model averaging. It
would be promising to construct optimal portfolios by
taking weight averages of the portfolio weights from a
collection of models, where the weights are determined
by the posterior model probabilities.
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