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Efficient Bayesian joint models for group
randomized trials with multiple
observation times and multiple outcomes
Xinyi Xu,a Michael L. Pennell,b*† Bo Lub and David M. Murrayc

In this paper, we propose a Bayesian method for group randomized trials with multiple observation times and
multiple outcomes of different types. We jointly model these outcomes using latent multivariate normal linear
regression, which allows treatment effects to change with time and accounts for (i) intraclass correlation within
groups; (ii) the correlation between different outcomes measured on the same subject; and (iii) the over-time
correlation of each outcome. Moreover, we develop a set of innovative priors for the variance components, which
yield direct inference on the correlations, avoid undesirable constraints, and allow utilization of information
from previous studies. We illustrate through simulations that our model can improve estimation efficiency
(lower posterior standard deviations) of intraclass correlations and treatment effects relative to single outcome
models and models with diffuse priors on the variance components. We also demonstrate the methodology
using body composition data collected in the Trial of Activity in Adolescent Girls. Copyright © 2012 John Wiley
& Sons, Ltd.

Keywords: Bayesian methodology; group randomized trial (GRT); intraclass correlation (ICC); joint modeling;
prior elicitation

1. Introduction

In many public health studies, the goal is to evaluate interventions intended to improve the health of
communities through education and promotion of healthy behaviors. For example, some studies have
examined interventions to increase physical activity levels in a school [1] or a workplace [2], and some
have aimed to increase cancer screening rates in underserved populations [3]. The cluster or group
randomized trial (GRT) is regarded as the gold standard for evaluating interventions delivered to commu-
nities [4, 5]. Groups, rather than individuals, are randomized to each treatment arm with randomization
potentially stratified by factors believed to affect the outcome variable. In community-based research,
GRTs are usually the only way to test an intervention without risk of bias owing to contamination, which
occurs when important components of the intervention find their way into the control condition. GRTs
are also common in primary care research in which the goal is to change physician behavior and patient
management in hopes of improving patient outcomes, such as secondary prevention of coronary heart
disease [6].

The statistical implications of GRTs were first brought to light by Cornfield [7]. He identified two
important penalties of this experimental design. First, members within the same group often have
physical, social, or geographical connections with each other, so their responses are likely correlated.
This correlation is called the intraclass correlation (ICC), and it is positive in most situations. Failure to
account for the ICC in analysis can result in inflated type-I error [8–10], and failure to account for the ICC
in sample size calculations can result in an underpowered trial [4, 5, 11]. The second penalty identified
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by Cornfield was limited degrees of freedom; the number of groups randomized to each condition is
usually small, which limits the degrees of freedom available for hypothesis testing and for estimating
between-group variation. For example, Varnell, Murray, and Baker [12] pointed out that, in GRTs pub-
lished between 1998 and 2002, 47% had fewer than 10 groups per condition. Thus, in a single study, there
is usually little information about the between-group variation and, hence, the ICC. In addition to these
two penalties, nowadays, studies collect data on multiple outcomes at several observation times. Such
studies need a statistical model that can account for all these correlations: correlation caused by cluster-
ing (the ICC), correlation between different outcomes measured on the same individual, and over-time
correlation (OTC) of each outcome while allowing treatment effects to change with time.

Our work is motivated by the Trial of Activity in Adolescent Girls (TAAG), which was a school-based
GRT that had all the preceding characteristics. The goal of TAAG was to promote physical activity
among middle school girls. In the study, three different cross-sectional samples were obtained from each
participating school: a sample of sixth grade girls was drawn at baseline and samples of eighth grade
girls were drawn 2 and 3 years after the intervention was introduced. At each time point, multiple out-
comes were measured on consented girls including per cent body fat, activity level, BMI, and attitudes
about PE class, as determined by questionnaire. A more detailed description of the design of the TAAG
study is provided by Stevens et al. [1].

Most of the analyses of GRTs in the literature focus on single outcome models. Murray [4], Donner,
and Klar [5], and Hayes and Moulton [11] provided comprehensive reviews of frequentist approaches,
which use random effect models to account for ICC in cross-sectional and longitudinal analyses [4,5,11].
Bayesian hierarchical models have also been proposed for continuous [13] and binary [14,15] outcomes,
although these papers only address cross-sectional data. When multiple highly correlated outcomes are
collected on each subject, joint modeling seems more sensible than fitting separate single outcome
models. Studies in the field of reproductive and developmental toxicology have confirmed the advan-
tages of joint modeling. Gueorguieva and Agresti [16] showed that joint modeling of multiple outcomes
(birth weight and presence of malformations in rat pups) can provide significant efficiency gains when
the outcomes are highly correlated and the sample size is not too large. General models for mixtures
of discrete and continuous outcomes have been studied by Catalano and Ryan [17] and Rochon [18]
from a generalized estimating equation perspective, by Dunson [19] from a Bayesian perspective, and
by Regan and Catalano [20] and Gueorguieva and Agresti [16] from a maximum likelihood perspective.
Very recently, Daniels and Normand [21] and Dunson [22] proposed correlated probit models for joint
modeling of longitudinal data with multiple outcomes.

The joint models mentioned earlier are useful tools for analyzing complex cross-time multiple-
outcome data structures; however, their priors do not reflect the nature of within-group correlations in
community intervention trials and do not address Cornfield’s second penalty: limited degrees of freedom.
In particular, the Bayesian models in these papers utilized diffuse or noninformative priors on the vari-
ance components, which can lead to U-shaped priors placing high prior probability on small and large
ICCs [13]. In GRTs, ICCs are usually small (e.g.,6 0:05) and, hence, a prior that places high probability
on large values may be inappropriate. In recent years, researchers have been encouraged to publish ICC
estimates from GRTs, and as a result, a substantial number and variety of ICCs have become publicly
available [23]. It is thus desirable to incorporate ICC estimates from previous studies using Bayesian
[24] or meta-analytic methods [25], thereby addressing the small degree of freedom problem of GRTs.

In this paper, we propose a Bayesian method for joint modeling continuous and binary outcomes col-
lected at multiple time points in a GRT. Similar to Daniels and Normand [21], we model the outcomes
through a latent multivariate normal regression model with shared random effects between the different
outcomes. The model allows treatment effects to vary with time and accounts for three types of correla-
tions: (i) ICC; (ii) the correlation between different outcomes measured on the same subject; and (iii) the
OTC of each outcome. Moreover, we extend the method of Turner, Thompson, and Spiegelhalter [24]
and propose an innovative prior structure for the variance components that directly places priors on the
correlations; the priors reflect our knowledge about these correlations and allows the users to incorpo-
rate information from previous studies when they are available. In addition, our priors avoid undesirable
constraints on the variance components that are imposed by some common methods and therefore yield
unbiased estimates of the ICC, between outcome correlation, and OTC. We demonstrate through simu-
lations the performance of our method under different ICCs and between outcome correlations. We also
apply our method to obesity and body fat data from the TAAG study. To construct an informative prior
for the ICC, we draw information from 10 previous studies on relevant outcomes in similar populations,
and use a hierarchical approach to group these ICCs by outcome rather than by study.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 2858–2871
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Our paper is organized as follows: In Section 2, we describe the latent multivariate normal regres-
sion model for longitudinal multiple outcome data from GRTs. In Section 3, we describe our proposed
prior structure, in particular, our new strategies for modeling the marginal variances in the latent normal
model and for eliciting informative priors on the ICC based on information from previous studies. We
next apply our method to simulated (Section 4) and TAAG data (Section 5), and we discuss the results
and future work in Section 6.

2. Latent multilevel multidimensional normal regression model

We assume a GRT with a nested cross-sectional design as described by Murray [4]. Nested cross-
sectional designs are used to examine the effect of an intervention on a large group of people. For
example, the TAAG study used a nested cross-sectional design to determine if an educational program
effectively increased physical activity levels within schools. In the basic nested cross-sectional design,
independent random samples of subjects are drawn at baseline and follow-up. In this paper, we will
assume that each subject is only sampled once (at baseline or follow-up), which is often the case.

Let there be two observation times (t=1 for baseline, t=2 for follow-up) and two outcomes collected
for each individual at each time point. Without loss of generality, we assume that the first outcome
(k=1) is continuous and the second outcome (k=2) is binary. Suppose that there are two treatment con-
ditions (control versus intervention). Let there be G groups and assume that at time t .t D 1; 2/, mit
members are randomly sampled from group i (i D 1; � � � ; G). Let yijkt be the kth outcome of the j th
subject in group i measured at time t . We relate each outcome to an underlying normal random variable
´ijkt � N.�ijkt ; �

2
k
/ through a generalized link function: yijkt D gk.´ijkt / where g1.�/ is the identity

link for the continuous outcome and, as in Albert and Chib [26],

g2.´ij2t /D I.´ij2t > 0/

for the binary outcome, where I.�/ is the indicator function.
Our model for the mean of each underlying normal random variable is the following:

�ijkt D ˇ0kt C ˇ1kt trti C bikt C cijt ; (2.1)

where ˇ0kt is a fixed intercept for the kth outcome at time t , trti is an indicator variable that equals 1
if group i is assigned the intervention, and ˇ1kt is the fixed treatment effect at time t . Potentially, the
model could be extended to include fixed effects of a set of covariates xijkt D .xijkt1; : : : ; xijktp/

0,
which may vary with time and outcome. However, to simplify our presentation, we will assume no fixed
effects in our model other than treatment. The remaining two terms in �ijkt are random effects. Similar
to Daniels and Normand [21], we assume that the time-dependent group effects bik1 and bik2 follow a
first-order Markov model, that is,

bik1 �N
�
0; �2bk

�
;

and bik2jbik1 �N
�
�kbik1; .1� �

2
k/�

2
bk

�
; (2.2)

where �2
bk

measures between-group variability in the kth outcome and Corr(bik1; bik2) =�k . The condi-
tional variance of bik2jbik1 was selected so that Var.bik1/D Var.bik2/D �2bk . We also include random
subject-specific effects (cijt ) to accommodate correlations between different outcomes measured on the
same subject and assume

cijt �N
�
0; �2c

�
: (2.3)

This implies that the correlation coefficient between ´ij1t and ´ij2t (the two latent outcomes measured
on the same subject at the same time) equals

�D
�2cq�

�2
b1
C �2c C �

2
1

� �
�2
b2
C �2c C �

2
2

� : (2.4)
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3. Prior elicitation and model inference

Inferences are made from our model by using a Bayesian approach. Bayesian methods have many
well-known advantages over frequentist methods including the ability to perform exact inferences using
Markov chain Monte Carlo (MCMC) and the ability to incorporate information from previous studies
through informative priors. The latter feature is especially pertinent to our research as we are interested
in using published ICCs to address the small degrees of freedom problem in GRTs.

3.1. Prior for the fixed effects

We place a conventional diffuse prior on the fixed effects .ˇ0kt ; ˇ1kt /0, that is,

.ˇ0kt ; ˇ1kt /
0 �N2.�ˇkt ;†ˇkt / .k D 1; 2/; (3.1)

where �ˇkt is usually a vector of zeros and †ˇkt is usually a diagonal matrix with large variances (e.g.,
both equal to 10; 000). This prior is conjugate, so it greatly facilitates the posterior computation.

3.2. Priors for variance components

3.2.1. Priors for the residual error variance. We next consider modeling the variance of the latent
´ijkt conditional on the random effects, namely �21 and �22 . In generalized linear regression models,
when g1.�/ is the identity link and g2.�/D I.�> 0/, a common prior is

��21 �Ga.a1=2; b1=2/;

where Ga.a; b/ denotes the Gamma distribution with mean a=b and variance a=b2, and �22 is fixed at 1
for identifiability considerations. This approach is perfectly valid when the two outcomes are modeled
separately, because setting �22 to any positive constant �20 only rescales every term in the regression
function for the binary outcome (�ij2t ) by �0. However, when the two outcomes are modeled jointly,
this approach places undesirable constraints on the variance components. Suppose that we set �22 to a
positive constant �20 ¤ 1; consequently, the regression function for the binary outcome is rescaled to
�0�ij2t and the subject-specific random effect is rescaled to �0cijt , which has variance �20�

2
c . Because

cijt is present in both regression models (�ij1t and �ij2t ), this rescaling also affects the model for the
continuous outcome. However, ´ij1t , the variable underlying the continuous outcome is observed; thus,
unlike the binary outcome, its variance cannot be arbitrarily rescaled, which results in biased estimates
of the variance components. Under certain conditions, this prior also places a severe restriction on the
between-outcome correlation (�). To see this, note that

�D
�2cq�

�2
b1
C �2c C �

2
1

� �
�2
b2
C �2c C �

2
2

�

6min

0
B@ �2

b1
C �2c C �

2
1q�

�2
b1
C �2c C �

2
1

� �
�2
b2
C �2c C �

2
2

� ; �2
b2
C �2c C �

2
2q�

�2
b1
C �2c C �

2
1

� �
�2
b2
C �2c C �

2
2

�
1
CA

Dmin

0
B@
q
�2
b1
C �2c C �

2
1q

�2
b2
C �2c C �

2
2

;

q
�2
b2
C �2c C �

2
2q

�2
b1
C �2c C �

2
1

1
CA : (3.2)

Therefore, when the two marginal variances �2
b1
C �2c C �

2
1 and �2

b2
C �2c C �

2
2 are very different, this

prior specification restricts the between-outcome correlation � to be a small value. In situations where
the outcomes are highly correlated, this restriction will make the estimate of � significantly biased.

To solve this problem, we propose a new method for specifying priors for the error variances. We
first standardize the continuous outcome by using ´�ij1t D ´ij1t=std1, where std1 is the sample standard
deviation of the continuous variable. Assuming that ´�ij1t satisfies the latent normal regression model
(2.1), we then let

�
�2b1C �

2
c C �

2
1

��1
�Ga.ac1=2; bc1=2/; (3.3)
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and fix �2
b2
C�2c C�

2
2 at 1. Because we standardize ´ij1t prior to analysis, �2

b1
C�2c C�

2
1 should be close

to 1, and so is the upper bound of �. Thus, our new prior reduces the constraint imposed on the range
of � and, in most cases, should allow it to be supported on nearly the full range Œ0; 1�. It also provides
unbiased estimates of the variance components, which leads to unbiased estimates of the ICC.

3.2.2. Priors for the ICC and the overtime correlation. When analyzing GRTs, it is crucial to accu-
rately estimate the ICC. Under our latent normal regression model (2.1), the ICC for outcome k at each
time point is

ICCk D Corr.yijkt ; yij 0kt / .j ¤ j 0/

D
�2
bk

�2
bk
C �2c C �

2
k

: (3.4)

The traditional prior structure is to put independent inverse-gamma priors on �2
bk

, �2c , and �2
k

. As
Spiegelhalter [13] pointed out, this structure implies a U-shaped prior on the ICC, with high prior prob-
abilities assigned to ICCs close to zero and close to 1. However, in GRTs, the ICCs are typically small
(e.g., ICC 6 0:05 ) and, hence, priors that assign high weight to near perfect correlations do not make
sense. Spiegelhalter proposed some more realistic priors for the ICC including a Unif .0; 1/ prior, a
shrinkage prior, and an informative beta prior whose hyperparameters are estimated from data collected
in previous studies.

More recently, Turner, Thompson, and Spiegelhalter [24] proposed more structured methods of con-
structing informative priors for the ICC. They weighted the ICC estimates from previous studies by their
relevance to the outcome in the current study and then incorporated the information across several stud-
ies using a hierarchical structure. Turner et al.’s prior provides a very flexible structure for incorporating
multiple relevant ICC estimates from several previous studies and increases the precision of the antici-
pated ICC. However, their model assumes that different outcomes from the same study are most related;
we have found that among studies targeting the same type of group (e.g., school, worksite), the ICCs
for the same outcome estimated in different studies tend to be more related than the ICCs for different
outcomes from the same study. Also, in most cases, the relevance weights used in Turner et al.’s priors
will be difficult to choose and, hence, are bound to be arbitrary. Therefore, we modify the Turner et al.
approach to group the ICC estimates by outcome rather than by study. We only include the most relevant
outcome from each study and assign equal weights to each ICC estimate.

Our development of the prior for the ICC begins by specifying a hierarchical model for the ICC esti-
mates from previous studies. Let bICCks denote the estimated ICC for outcome k (k D 1; 2) from the sth
study (s D 1; : : : ; Sk). Donner and Wells [27] showed that under large sample sizes

bICCks �N.ICCks; V .ICCks;Ms; Gs//; (3.5)

where the variance, V.ICCks;Ms; Gs/, is approximated by Swiger’s formula [28] using only the total
number of subjects (Ms) and clusters (Gs), that is,

V .ICCks;Ms; Gs/D
2.Ms � 1/.1� ICC2ks/Œ1C .Ms=Gs � 1/ICCks�

.Ms=Gs/2.Ms �Gs/.Gs � 1/
: (3.6)

We then assign a normal prior to the logit of the true ICC from each study:

logit.ICCks/�N
�
�ICCk ; �

2
ICCk

�
(3.7)

where �ICCk � N
�
m�k; s

2
�k

�
and ��2ICCk

� Ga.aICCk ; bICCk /. Finally, we assume that the ICC of out-

come k in the current study (ICCk) is drawn from the same distribution as ICCk1; : : : ; ICCkSk , which
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results in the following conditional prior for ICCk :

�
�
logit.ICCk/j1ICCk

�
(3.8)

/

Z Z Z
N
�
logit.ICCk/I�ICCk ; �

2
ICCk

�

�

SkY
sD1

n
N
�
logit.ICCks/I�ICCk ; �

2
ICCk

�
N.bICCksI ICCks; V .ICCks;Ms; Gs//

o

�N.�ICCk Im�k; s
2
�k/Ga.�

�2
ICCk
I aICCk ; bICCk /@�ICCk@�

�2
ICCk

@ICC�k

where 1ICCk D .bICCk1; : : : ;bICCkSk /
0, ICC�k D .ICCk1; : : : ; ICCkSk /

0, N.xIm; v/ denotes the pdf of
the normal distribution with meanm and variance v evaluated at x, and G.xI a; b/ denotes the pdf of the
gamma distribution with mean a=b evaluated at x. To implement our prior, the values ofm�k; s2�k; aICCk ,

and bICCk in the hyperpriors of�ICCk and �2ICCk
must be chosen a priori. We recommend choosing a large

value for s2
�k

and small values for aICCk and bICCk , placing diffuse priors on �ICCk and �2ICCk
.

A similar method could be used to construct informative priors for the OTC. As noted earlier, TAAG
used a nested cross-sectional design with an independent sample measured in each group at baseline and
at follow-up. In this design, the OTC is the correlation between measurements from members from the
same group measured at different time points. In terms of our model, the OTC for outcome k is

OTCk D Corr.yijk1; yij 0k2/

D �k �
�2
bk

�2
bk
C �2c C �

2
k

.j D 1; : : : ; mi1I j
0 D 1; : : : ; mi2/: (3.9)

Unfortunately, we are unaware of any estimates of group-specific OTCs and, hence, instead of using
informative priors on the OTCs, we assign noninformative Unif .0; 1/ priors to �1 and �2, the
autocorrelations between the random group effects.

3.2.3. Prior for the between outcome correlation. Lastly, we put a noninformative prior on the between-
outcome correlation, �, that is � � Unif .0; 1/. Of course, if previous data on � are available, one could
replace the Unif .0; 1/ prior with an informative beta prior. Compared with the conventional method
that places an inverse gamma prior on �2c , our prior is much easier to interpret and provides more direct
estimates of the between outcome correlation.

3.2.4. Complete joint prior on the variance components. To summarize, the joint prior on our variance
components is as follows:

�
�
�21 C �

2
b1C �

2
1 ; ICC1; ICC2; �; �1; �2

�
DGa

�
.�21 C �

2
b1C �

2
1 /
�1I ac1=2; bc1=2

�
� �

�
logit.ICC1/j1ICC1

�
�
�
logit.ICC2/j1ICC2

�

� I.06 �; �1; �2 6 1/; (3.10)

where �
�
logit.ICCk/j1ICCk

�
is our informative prior given in Equation 3.8, and I.�/ denotes the

indicator function. As mentioned in Section 3.2.1, �22 C �
2
b2
C �2c is fixed at 1.

3.3. Methods for posterior inference

Under the preceding model specification, we design an MCMC algorithm to draw samples from the
posterior distribution of the parameters. Our algorithm consists of both Gibbs and Metropolis–Hastings
steps. The detailed conditional distributions may be found in Appendix A of the Supplementary
Materials.‡ Under mild regularity conditions, samples from this MCMC algorithm converge to a
stationary distribution that is the joint posterior. We can then obtain parameter estimates using the
posterior summaries of these samples. Sample R code for implementing our method is available upon
request from the corresponding author.

‡Supporting information may be found in the online version of this article
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4. Simulation study of potential efficiency gains

4.1. Methods

We performed a simulation study to investigate the efficiency gains provided by our method. We simu-
lated data with the same structure as TAAG – nested cross-sectional design, two treatment groups, two
time points (baseline and follow-up). The underlying normal random variables for the continuous and
binary outcomes were generated from normal distributions with variance 1 and mean

�ijk1 D�1C t rti C bik1C cij1

�ijk2 D 2t rti C bik2C cij2;

which means that the true effect of the intervention on the change in each outcome was 1. Random group
effects (bikt ) were generated assuming that �k (the autocorrelation between the group effects) was 0:5
(roughly equal to the posterior means when we applied our method to the TAAG data) and ICC values
were generated from (3.7) with �ICCk D logit.0:01/ or logit.0:1/ and �2ICCk D 0:0001. We also let
� (between-outcome correlation) = 0.5 (medium correlation) or 0.8 (high correlation). Data were gener-
ated assuming six groups per treatment arm and 100 subjects per time point per group, and a total of 50
samples were generated for each of the four scenarios (two levels of ICC, two levels of �).

Each dataset was analyzed using three methods:

(1) Latent multilevel multidimensional normal regression model (LMMNRM) with informative priors
on the ICCs (our method).

(2) LMMNRM with Unif .0; 1/ priors on the ICCs.
(3) Separate latent multilevel normal regression models for each outcome with informative priors on

the ICCs. Note that this method is synonymous with implementing Method 1 fixing all cijt D 0.

To construct informative priors on the ICC in Methods 1 and 3, we simulated ICCs from 10 previous
studies (ICC1; : : : ; ICC10) using (3.7) and their sample estimates (bICC1; : : : ;bICC10) from (3.5) with
each study consisting of 20 groups and 50 subjects per group. These sample estimates were then used to
construct the informative priors for the ICC of the binary and continuous outcomes (Equation (3.8)). In
each method, the following diffuse priors were specified for the hyperparameters �ICCk and ��2ICCk

:

�ICCk �N.0; 10; 000/

��2ICCk
�Ga.0:001; 0:001/:

We ran our MCMC for a total of 80,000 iterations following a burn-in of 20,000 and saved every fifth
value to thin the chain.

4.2. Results

Table I summarizes the results from our simulation study. The treatment effect referred to in the table
is the difference in the pre–post change in the continuous and binary outcome across treatment arms,
which is equivalent to the difference in the time-dependent intervention effects in our model, namely
ˇ112 � ˇ111 for the continuous outcome and ˇ122 � ˇ121 for the binary outcome. In each simulation
scenario, the biases of the treatment effect estimates were small and similar across methods. This result
was expected; because of the identity link for the mean, the marginal effects of treatment provided by
Method 3 are identical to the effects provided by Methods 1 and 2 conditional on cijt (the subject-
specific effect). Also, because the historical ICC estimates used in our informative prior were drawn
from a distribution centered on the true ICC (i.e., the prior is consistent with the data), we do not expect
our informative prior to introduce bias in any of the parameter estimates.

Our method (Method 1) consistently provided the most efficient treatment effect estimates, although
the effects on the binary outcome were more pronounced. The effects of joint modeling on efficiency
were greatest when the two outcomes were strongly correlated; in Scenarios 1 and 3 (� D 0:8), the
average posterior standard deviation of the treatment effect on the binary outcome was between 7–12%
lower for our method compared with modeling the outcomes separately (Method 3) but only 2% lower
in Scenarios 2 and 4 (�D 0:5). The finding that the benefits of joint modeling on efficiency (i) is greatest
for the binary outcome; and (ii) increases with the between-outcome correlation is consistent with the
results reported by Gueorguieva and Agresti [16].
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Table I. Results from simulation study (estimates are averages across 50 datasets).

Treatment effecta ICC

Continuous Binary Continuous Binary
Scenario Methodb outcome outcome outcome outcome �

1. ICC = 0.1 1. Mean 1.013 0.962 0.099 0.101 0.819
� = 0.8 S.D. 0.189 0.215 0.011 0.011 0.036

2. Mean 1.003 0.976 0.114 0.139 0.813
S.D. 0.196 0.247 0.048 0.065 0.045

3. Mean 1.005 0.969 0.099 0.101 0
S.D. 0.199 0.243 0.011 0.011 0

2. ICC = 0.1 1. Mean 1.023 1.027 0.101 0.098 0.542
� = 0.5 S.D. 0.191 0.242 0.011 0.011 0.048

2. Mean 1.024 1.036 0.129 0.115 0.581
S.D. 0.203 0.253 0.057 0.058 0.074

3. Mean 1.022 1.025 0.101 0.099 0
S.D. 0.192 0.247 0.011 0.011 0

3. ICC = 0.01 1. Mean 0.974 0.976 0.010 0.009 0.802
� = 0.8 S.D. 0.099 0.147 0.004 0.004 0.015

2. Mean 0.974 0.974 0.013 0.013 0.814
S.D. 0.104 0.150 0.008 0.011 0.020

3. Mean 0.974 0.972 0.010 0.009 0
S.D. 0.100 0.158 0.004 0.004 0

4. ICC = 0.01 1. Mean 0.990 1.013 0.009 0.009 0.494
� = 0.5 S.D. 0.098 0.158 0.004 0.004 0.025

2. Mean 0.990 1.013 0.013 0.017 0.499
S.D. 0.102 0.166 0.009 0.014 0.026

3. Mean 0.990 1.017 0.009 0.009 0
S.D. 0.098 0.160 0.004 0.005 0

a
Effect on change in outcome; i.e., ˇ1k2 � ˇ1k1.

b
1. Joint model, informative prior on ICC; 2. Joint model, ICC � Unif .0; 1/; 3. Separate models, informative prior

on ICC.

The informative prior on the ICC improved the efficiency of both the ICC and treatment effect esti-
mates. In the case of the ICC, the improvement was dramatic. When Method 1 was implemented, the
informative prior reduced the posterior standard deviation of the ICC of the binary outcome by approx-
imately 80% in Scenarios 1 and 2 and approximately 70% in Scenarios 3 and 4 relative to Method 2,
where a uniform prior was placed on the ICC. Similar results were observed for the ICC of the con-
tinuous outcome. The informative prior also improved the efficiencies of the treatment effect estimates,
especially for the binary outcome. The greatest effect was observed in Scenario 1 (ICCD 0:1; � D 0:8)
where our method exhibited a 13% reduction in the average posterior standard deviation of the treatment
effect on the binary outcome relative to the joint model with a Unif .0; 1/ prior on the ICC (Method 2).
In contrast, in Scenarios 2–4, the reduction in the posterior standard deviation of the effect on the binary
outcome was only 2–5%. The differences in effect of the informative prior on efficiency of treatment
effect estimates make sense when one thinks about the magnitude of the between group variance (�2

bk
)

relative to

Var.´ijkt jcijt /D �
2
bk C �

2
k I
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the residual variance after accounting for the between-outcome correlation (�). Because our method
fixes Var.´ij2t / D �2

b2
C �2c C �

2
2 at 1 and rescales ´ij1t to ´ij1t=

p
Var.´ij1t /, we have �2

b2
D ICC2,

�2c D �, and

Var.´ij2t jcijt /D 1� �:

In Scenario 1, the between group variability explains half of the residual variance and thus the informa-
tive prior results in a considerable reduction in the posterior standard deviation of the treatment effect.
On the other hand, in Scenarios 2, 3, and 4, the between group variability only accounts for 20, 5, and
2% of the residual variance, respectively, and thus the informative prior has a negligible effect on the
efficiency of the treatment effect.

As mentioned in Section 3.2.1, part of the novelty of our method is our priors for the residual error
variances. The common practice of placing independent inverse gamma priors on the variance compo-
nents imposes undesirable restrictions in joint models and may lead to biased estimates of the ICCs and
the between-outcome correlation �. To illustrate this deficiency, we took the 50 datasets simulated under
Scenario 3 (�D 0:8, ICC = 0.01), divided the continuous outcome by 10 (to make the variances of ´ij1t
and ´ij2t different), and analyzed the data using a joint model with informative priors but set �22 to 1 and
placed Ga(0.001, 0.001) priors on ��2c and ��21 ; that is, the common approach used for latent normal
regression models. Under these new priors, the treatment effect estimates remained the same (the aver-
age posterior means were within 3% of the true value), but the ICCs were considerably biased (average
posterior means of ICC1 and ICC2 were 0.007 and 0.006, respectively) as was � (average posterior mean
= 0.095). The bias of � is understandable because according to Equation 3.2, this method constrains �
to be less than or equal to 0.1. As seen in the results for Methods 1 and 2 (Table I), our prior structure
for the variance components successfully fixed this problem, yielding unbiased estimates for both the
ICCs and �.

5. Analysis of the Trial of Activity in Adolescent Girls data

5.1. Description of the trial of activity in adolescent girls study and data

TAAG was a multicenter GRT, which examined a 2-year intervention targeting schools, community
agencies, and girls intended to increase physical activity levels. A total of 36 schools were enrolled; 18
schools were randomly assigned to the intervention and 18 were assigned control. Random samples of
sixth grade girls were drawn at baseline (average of 48 per school) and random samples of eighth grade
girls were drawn 2 (average of 97 per school) and 3 years (average of 115 per school) later.

We illustrated our methodology through application to data collected at baseline and 3-year follow-up.
We chose the 3-year follow-up instead of the 2-year follow-up for our analysis because the TAAG study
found an effect of intervention on activity levels (the primary outcome) at the second follow-up but not
the first [29]. Two groups (one per arm) were lost after the first follow-up leaving 34 groups for the anal-
ysis. The intervention effects of interest were those on change in average per cent body fat and obesity
rate over this time interval. The latter outcome was measured by a binary variable, which equaled 1 if a
girl’s BMI was greater than the 95th percentile for her age and 0 otherwise. No covariates were included
in our analysis.

5.2. Our models and prior elicitation

As in the simulation study, the TAAG data were analyzed using the following methods: (i) the
LMMNRM with informative priors on the ICCs; (ii) the LMMNRM with Unif(0, 1) priors on the ICCs;
and (iii) separate latent multilevel normal regression models fit to each outcome. In Methods 1 and 3,
informative priors for the ICCs were constructed using ICC estimates from previous studies. Ideally, the
historical estimates used in constructing the prior should be from the same type of group as the applica-
tion, but estimates from schools were unavailable for the outcomes we considered. Among the available
ICC estimates, we selected those from groups similar to schools with respect to size and diversity of
group members; this left us with estimates from 10 previous studies, among which three used worksite
as the group of interest whereas the remaining seven reported clinic or physician as the group of interest.
From each study, we chose the ICC corresponding to the outcome most relevant to obesity or per cent
body fat, such as the ICCs for BMI, body fatness, weight, whether or not a subject had a BMI greater
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than 30, and whether or not a subject was overweight. The ICC estimates and their references are pro-
vided in Table II. It turned out that, in each study, the ICC estimate most relevant to per cent body fat
was also the ICC estimate most relevant to obesity and, hence, we used the same informative prior for
the ICC of each outcome. The resulting prior distribution for the ICC was right-skewed with mean 0.03
and median 0.02 (Figure 1). The remaining priors were identical to those used in our simulations. For
each method, we ran the MCMC for 100,000 iterations following a burn-in of 20,000, and we saved the
results from every fifth iteration to thin the chain. We also repeated our analysis using a subset of 12
schools from California and Minnesota (six schools/state) to determine if improvements in efficiency
were more evident in this smaller sample.

Table II. ICC estimates used to construct the informative prior in the TAAG analysis.

Reference Outcome Group # Groups # Subjects ICC
(G) (M )

Donner [30] Body fatness1 Clinic/physician 20 5540 0.0130

Elley et al. [31] BMI Clinic/physician 42 861 0.0810

Jacobs et al. [32] Weight Worksite 7 2191 0.0177

Kelder et al. [33] BMI Worksite 32 5632 0.0190

Kinmonth et al. [34] BMI Clinic/physician 38 240 0.0450

Littenberg and MacLean [35] BMI > 30 Clinic/physician 73 1044 0.0100

Martinson et al. [36] Overweight2 Worksite 24 10,067 0.0152

Parker et al. [37] BMI Clinic/physician 15 1175 0.0306

Smeeth and Ng [38] BMI Clinic/physician 53 13,785 0.0221

Turner et al. [24] BMI Clinic/physician 67 461 0.0210
1

Ponderal index [height (in)/weight1=3 (lbs)] is below 12.5.
2

BMI between 27.8 and 31.1 for men and BMI between 27.3 and 32.3 for women.
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Figure 1. Informative prior on the ICC used in the TAAG analysis. Distribution was estimated by first drawing
values of �ICCk and �2ICCk

from their full conditional posteriors at each iteration of the MCMC and then drawing

values of logit(ICCk) from a N.�ICCk ; �
2
ICCk

/ distribution.
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Table III. Results from TAAG analysis.

Treatment effecta ICC

Methodb % Body fat Obesity % Body fat Obesity �

1. Mean 0.032 0.044 0.025 0.047 0.954
S.D. 0.079 0.079 0.006 0.013 0.010

95% C.I. (-0.127, 0.177) (-0.113, 0.204) (0.015, 0.040) (0.027, 0.077) (0.928, 0.967)

2. Mean 0.052 0.054 0.028 0.059 0.954
S.D. 0.073 0.082 0.007 0.017 0.007

95% C.I. (-0.089, 0.213) (-0.102, 0.227) (0.016, 0.045) (0.033, 0.100) (0.938, 0.964)

3. Mean 0.037 0.061 0.030 0.075 0
S.D. 0.081 0.101 0.008 0.021 0

95% C.I. (-0.123, 0.198) (-0.138, 0.261) (0.018, 0.049) (0.043 0.125)
a
Effect on change in outcome; i.e., ˇ1k2 � ˇ1k1.

b
1. Joint model, informative prior on ICC; 2. Joint model, ICC � Unif .0; 1/; 3. Separate models, informative prior

on ICC.

5.3. Results

Table III provides the posterior means, standard deviations, and 95% credible intervals of the treatment
effects for Methods 1–3. As in the simulation study, the term treatment effect refers to the difference
in pre–post change in each outcome across treatment arms. Whereas there were some differences in
the posterior means across methods, the overall conclusions were the same; the intervention caused an
increase in both average per cent body fat and obesity rate although the 95% credible intervals all con-
tain zero, which is suggestive of an insignificant treatment effect. These results are consistent with those
in Webber et al. [29]. They analyzed the complete TAAG dataset using an ANCOVA model applied to
group-level means and found that per cent body fat and BMI were slightly higher in the intervention arm
at the 3-year follow-up, although these differences were insignificant.

Although the conclusions about the intervention effect did not differ with method, their efficiencies
differed considerably for the binary outcome. The posterior standard deviation for the treatment effect
on obesity rate was smallest when the two outcomes were jointly modeled and when there was an infor-
mative prior on the ICC (Method 1) and largest when the outcomes were modeled separately (Method 3).
For this dataset, joint modeling provided a greater benefit than informative priors: the posterior standard
deviation of the treatment effect on obesity obtained from Method 1 (joint model, informative prior on
ICC) was 22% smaller than the posterior standard deviation from Method 3 (separate models, infor-
mative prior on ICC) but only 4% smaller than the posterior standard deviation from Method 2 (joint
model, uniform prior on ICC). This is because the correlation between outcomes was large (posterior
mean of � � 0:95 as seen in Table I) and the informative prior had a relatively modest effect on the
posterior standard deviation of the ICC of the binary variable (24% difference in the standard deviation
between Methods 1 and 2). The modest impact of the informative prior on the standard deviation of
the ICC was caused in part by the large sample size. Hence, to investigate the influence of sample size
more thoroughly, we repeated our analysis using a subsample of 12 TAAG schools from California and
Minnesota. As seen in Table B-1 in the Appendix, the posterior standard deviations of the ICC obtained
from Method 1 were approximately half the posterior standard deviations from Method 2, that is, our
informative priors on the ICC improved the estimation efficiency (defined in terms of the ratio of
variances) by approximately 300%. As a result, the informative prior caused a greater reduction in the
posterior standard deviation of the treatment effect on obesity; the posterior standard deviation under
Method 1 was 7% lower than the value from Method 2.

Another interesting finding from our analysis of the TAAG data was that the ICC estimates var-
ied with method. Whereas the posterior means of the per cent body fat ICC were similar across the
three methods, the posterior mean of the obesity ICC was considerably higher when the outcomes
were modeled separately. It is well known that regression adjustment for covariates can often reduce
between-group variability, thereby decreasing the ICC [4]. Thus, it could be that the reason why joint
modeling decreased the obesity ICC is that the subject-specific random effects (cijt ) accounted for
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missing covariates, which varied considerably by group. Joint modeling did not impact the ICC in
the simulations because the only between group covariate was treatment arm, which was included in
the model.

As in the simulation study, we also analyzed the TAAG data (34 groups) using a joint model with an
informative prior on the ICC and the common approach of setting �22 D 1 and assigning diffuse inverse
gamma priors on �2c and �21 . We did not standardize per cent body fat prior to this additional analysis.
As in the simulation study, the treatment effect estimates (0.031 for per cent body fat and 0.055 for
obesity) were similar to the estimates from Methods 1–3, but the ICC estimates (posterior mean = 0.001
and 0.002 for per cent body fat and obesity, respectively) were very different. However, unlike the
simulation study, the posterior mean of � (0.948) was similar to the values in Methods 1 and 2; this
was because the total variances of ´ij1t and ´ij2t were similar (posterior means = 76.235 and 72.923,
respectively) and, hence, according to Equation 3.2, the upper bound of � was close to 1. It is interesting
to note that even though the between outcome correlation was unaffected, the ICCs were deflated relative
to Methods 1–3 because, as explained in Section 3.2.1, fixing �22 at 1 imposes undesirable restrictions
on the variance components of both the continuous and binary outcome.

6. Discussion

In this paper, we developed a joint model for binary and continuous outcomes collected in GRTs. We
have also extended previous work by Turner et al. [24] to place an informative prior on the ICC of each
outcome, which, in combination with joint modeling, improves efficiency, particularly in the case of the
binary outcome. Whereas the work presented was limited by one data example and a simulation study
consisting of a limited number of scenarios, the gains in efficiency that we observed are consistent with
previous work. In a simulation study, Gueorguieva and Agresti [16] reported that joint modeling resulted
in a 17% reduction in the standard error of the treatment effect on the binary outcome when the true
correlation between the continuous and binary outcome was 0.8; similarly, we found that when � D 0:8
in our simulations, joint modeling caused a 7–12% reduction in the posterior standard deviation of the
effect of treatment on the binary outcome. In an analysis of data from a previous GRT, Turner et al. [24]
found that placing an informative prior on the ICC caused a 10% reduction in the posterior standard
deviation of the intervention effect; in our simulations, we found that the informative prior reduced the
average posterior standard deviation of the treatment effect on the binary outcome by a maximum of
13% across the scenarios considered. Whereas a 12–13% reduction in the standard deviation may sound
modest, it could be very beneficial in a GRT. For example, when designing a study, if we know that we
will be using an analysis method that decreases the standard deviation of the treatment effect by 12%
relative to a univariate mixed model, this could mean a reduction in sample size of one group per arm,
which would significantly reduce study costs in many GRTs, particularly those targeting large groups of
people (e.g., counties).

Our simulation studies demonstrated the behavior of our method under different levels of ICC and
between outcome correlation. As in Gueorguieva and Agresti [16], we found that joint modeling causes
the greatest improvement in efficiency when the two outcomes are strongly correlated. In the case of the
binary outcome, we found that the informative prior causes the greatest improvement in efficiency when
a substantial proportion of the residual variance is caused by between-group variability (or ICC); to the
best of our knowledge, we are the first to present such a finding. Thus, our recommendations for future
use are as follows: when the between-outcome correlation between a continuous and binary outcome
is strong, we recommend joint modeling. If the ICC is large (particularly for the binary variable), we
recommend extending the approach to include an informative prior on the ICC, otherwise, a uniform
prior on the ICC is probably sufficient if all one cares about is improving the efficiency of the treatment
effect estimates. Weakly correlated outcomes could be analyzed using our method, but the results would
probably be similar to univariate models for each outcome, and, hence, the benefit is probably too small
relative to the added computational complexity.

Evaluation of model fit is an important part of any modeling exercise. Unfortunately, we are unaware
of a formal method for evaluating the fit of a joint model for a binary and continuous response. Future
research should consider developing a method for measuring goodness of fit of our model, which allows
direct comparison to competing models including univariate models for each outcome and models with
noninformative priors.
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In this paper, we focused our efforts on nested cross-sectional GRTs. Another design commonly used
is the nested cohort design where members in each group are followed over time. Potentially, our method-
ology could be extended to handle these designs with the major modification being that the model for
the mean must include random subject-specific effects for each outcome in addition to shared random
effects across outcomes. We also focused on joint modeling of binary and continuous outcomes; whereas
these are probably the two most common types of outcomes in GRTs, ordinal, count, and survival out-
comes are also collected and, hence, joint modeling of these outcomes presents an interesting area of
future research.

Finally, our model examined the effects of treatment on change in each outcome (post–pre), which is a
common approach in GRTs, but not the only option. For example, Webber et al. [29] analyzed the TAAG
data using a two-stage approach; in the first stage, a mixed model was used to regress each outcome
on fixed time and ethnicity effects and random school and school-by-time interaction effects. This model
was used to generate ethnically adjusted pre-test and post-test means for each group, which were inserted
into a second-stage ANCOVA model in which the adjusted post-test mean was regressed on the adjusted
pre-test mean and treatment group. Future research should examine the potential of joint modeling and
informative priors within two-stage and other group-level analyses.
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