The final 865 project report is to consist of an in-class presentation and a 5-10 page written report. The in-class presentations will be 20 minutes long with 2 minutes for questions; they will be given on Tuesday June 5, 2007 from 9:30AM-11:18AM in EA295 during the final exam period. The order of presentation is

Hwang, Beom Seuk 9:30AM-9:50AM
Liang, Chin-Yuan 9:52AM-10:12AM
Park, Sung-Hoon 10:14AM-10:34AM
Yang, Jingyuan 10:36AM-10:56AM
Yu, Li 10:58AM-11:18AM

Your written report should be 5-10 pages long. Your written project must explain any methodology that you are illustrating by means of your software output. A project consisting of 5 pages of computer output will not be accepted, but one that includes a software demonstration or data analysis must include both the input commands and output. You must annotate all statistical handouts (points will be deducted for statistical printouts that don’t explain output).

The final written project is due no later than 12:00PM on June 6 at 5:00PM. Please hand it in at my office or at the main desk of the Department of Statistics office (404 Cockins Hall) and ask that it be placed in my mailbox. You are not required to type your report, but if your project is handwritten, please make it neat. Put a table of contents and an abstract describing the content of the report at the beginning of your report.

Please feel free to propose any other ideas that you may have for final projects; I may be able to help make concrete ideas you may have. I would like each person to make a final decision on your topic by Thursday May 24 and let me know in writing.

Have Fun Learning About Something New!

Some Project Ideas

1. Report on the comparison of large-sample p confidence intervals reviewed in Brown et al. (2001). Compare these intervals with those of Blaker (2000) (I have an R program to produce the latter.)

2. Describe the greedy-heuristic algorithm of Coe and Tamhane (1993) for determining confidence intervals for $p_1 - p_2$ in the two-sample binomial model. Compare these intervals with the Wald large-sample approximate intervals.

Coe and Tamhane (1993) Small sample confidence intervals for the difference, ratio and odds ratio of two success probabilities *Communications in Statistics, Part B–Simulation and Computation*.)
3. Report on the method of Bechhofer and Elmagraby and Morse (1959) and Kesten and Morse (1959) for designing an experiment to select the multinomial cell with the largest cell probability.

4. Describe methods for measuring association in \(R \times C \) contingency tables (Bishop, Feinberg and Holland, 1974: Chapter 11; Agresti, 1984: Section 2.5 and Chapter 10).

5. Report on two models used to analyze discrete *ordinal* responses (Agresti, 1984, Chapter 5).

7. Report on the Stukel (1988) binary regression model (I have R software to implement her method that you can use to demonstrate it.)

8. Describe dynamical linear models which are used to fit discrete response time-series.

9. Report on the use of the use of the logistic model to fit case-control data (Lemeshow and Hosmer, 2000: Chapters 6 and 7; or Breslow and Day, 1975: Chapter 6)