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A haplotype is a specific sequence of nucleotides on a single chromosome. The population associations between haplotypes and disease
phenotypes provide critical information about the genetic basis of complex human diseases. Standard genotyping techniques cannot dis-
tinguish the two homologous chromosomes of an individual, so only the unphased genotype (i.e., the combination of the two homologous
haplotypes) is directly observable. Statistical inference about haplotype–phenotype associations based on unphased genotype data presents
an intriguing missing-data problem, especially when the sampling depends on the disease status. The objective of this article is to provide
a systematic and rigorous treatment of this problem. All commonly used study designs, including cross-sectional, case-control, and cohort
studies, are considered. The phenotype can be a disease indicator, a quantitative trait, or a potentially censored time-to-disease variable.
The effects of haplotypes on the phenotype are formulated through flexible regression models, which can accommodate various genetic
mechanisms and gene–environment interactions. Appropriate likelihoods are constructed that may involve high-dimensional parameters.
The identifiability of the parameters and the consistency, asymptotic normality, and efficiency of the maximum likelihood estimators are es-
tablished. Efficient and reliable numerical algorithms are developed. Simulation studies show that the likelihood-based procedures perform
well in practical settings. An application to the Finland–United States Investigation of NIDDM Genetics Study is provided. Areas in need
of further development are discussed.

KEY WORDS: Case-control study; Gene–environment interaction; Hardy–Weinberg equilibrium; Missing data; Single nucleotide poly-
morphism; Unphased genotype.

1. INTRODUCTION

In the early 1900s there was a fierce debate between Gregor
Mendel’s followers and the biometrical school led by Francis
Galton and Karl Pearson as to whether the patterns of inheri-
tance were consistent with Mendel’s law of segregation or with
a “blending”-type theory. Fisher (1918) reconciled the two con-
flicting schools by recognizing the difference in the genetic ba-
sis for the variation in the trait being studied. For the traits that
the Mendelists studied, the observed variation was due to a sim-
ple difference at a single gene; for the traits studied by the bio-
metrical school, individual differences were attributed to many
different genes, with no particular gene having a singly large
effect.

Like the traits studied by Mendel, many genetic disorders,
such as Huntington disease and cystic fibrosis, are caused by
mutations of single genes. The genes underlying a number of
these Mendelian syndromes have been discovered over the last
20 years through linkage analysis and positional cloning (Risch
2000). The same approach, however, is failing to unravel the
genetic basis of complex human diseases (e.g., hypertension,
bipolar disorder, diabetes, schizophrenia), which are influenced
by a variety of genetic and environmental factors, just like
the traits studied by the biometrical school a century ago. It
is widely recognized that genetic dissection of complex hu-
man disorders requires large-scale association studies, which
relate disease phenotypes to genetic variants, especially single
nucleotide polymorphisms (SNPs) (Risch 2000; Botstein and
Risch 2003).

SNPs are DNA sequence variations that occur when a sin-
gle nucleotide in the genome sequence is altered. SNPs make
up about 90% of all human genetic variation and are believed
to have a major impact on disease susceptibility. Aided by
the sequencing of the human genome (International Human
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Genome Sequencing Consortium 2001; Venter et al. 2001),
geneticists have identified several million SNPs (International
SNP Map Working Group 2001). With current technology, it
is economically feasible to genotype thousands of subjects for
thousands of SNPs. These remarkable scientific and techno-
logical advances offer unprecedented opportunities to conduct
SNPs-based association studies aimed at unraveling the genetic
basis of complex diseases.

There is one of three possible genotypes at each SNP site:
homozygous with allele A, homozygous with allele a, or het-
erozygous with one allele A and one allele a. Thus assessing
the association between a SNP and a disease phenotype is a
trivial three-sample problem. It is, however, desirable to deal
with multiple SNPs simultaneously. One appealing approach is
to consider the haplotypes for multiple SNPs within candidate
genes (Hallman, Groenemeijer, Jukema, and Boerwinkle 1999;
International SNP Map Working Group 2001; Patil et al. 2001;
Stephens, Smith, and Donnelly 2001).

The haplotype (i.e., a specific combination of nucleotides
at a series of closely linked SNPs on the same chromosome
of an individual) contains information about the protein prod-
ucts. Because the actual number of haplotypes within a can-
didate gene is much smaller than the number of all possible
haplotypes, haplotyping serves as an effective data-reduction
strategy. Using SNP-based haplotypes may yield more pow-
erful tests of genetic associations than using individual, un-
organized SNPs, especially when the causal variants are not
measured directly or when there are strong interactions of mul-
tiple mutations on the same chromosome (Akey, Jin, and Xiong
2001; Fallin et al. 2001; Li 2001; Morris and Kaplan 2002;
Schaid, Rowland, Tines, Jacobson, and Poland 2002; Zaykin
et al. 2002; Schaid 2004).

Determining haplotype requires the parental origin or ga-
metic phase information, which cannot be easily obtained with
the current genotyping technology. As a result, only the un-
phased genotype (i.e., the combination of the two homologous
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haplotypes) can be determined. Statistically speaking, this is a
missing-data problem in which the variable of interest pertains
to two ordered sequences of 0’s and 1’s but only the summa-
tion of the two sequences is observed. This type of missing-data
problem has not been studied in the statistical literature.

Many authors (e.g., Clark 1990; Excoffier and Slatkin 1995;
Stephens et al. 2001; Zhang, Pakstis, Kidd, and Zhao 2001; Niu,
Qin, Xu, and Liu 2002; Qin, Niu, and Liu 2002) have proposed
methods to infer haplotypes or estimate haplotype frequencies
from unphased genotype data. To make inference about haplo-
type effects, one may then relate the probabilistically inferred
haplotypes to the phenotype through a regression model (e.g.,
Zaykin et al. 2002). This approach does not account for the vari-
ation due to haplotype estimation, and does not yield consistent
estimators of regression parameters.

A growing number of articles have been published in genetic
journals on making proper inference about the effects of haplo-
types on disease phenotypes. Most of these articles have dealt
with case-control studies. Specifically, Zhao, Li, and Khalid
(2003) developed an estimating function that approximates the
expectation of the complete-data prospective-likelihood score
function given the observable data. This method assumes that
the disease is rare and that haplotypes are independent of envi-
ronmental variables, and it is not statistically efficient. Epstein
and Satten (2003) derived a retrospective likelihood for the
relative risk that does not accommodate environmental vari-
ables. Stram et al. (2003) proposed a conditional likelihood
for the odds ratio assuming that cases and controls are cho-
sen randomly with known probabilities from the target popula-
tion, but did not consider environmental variables or investigate
the properties of the estimator. Building on the earlier work of
Schaid et al. (2002), Lake et al. (2003) discussed likelihood-
based inference for cross-sectional studies under generalized
linear models. Seltman, Roeder, and Devlin (2003) provided a
similar discussion based on the cladistic approach. Recently,
Lin (2004) showed how to perform Cox’s (1972) regression
when potentially censored age at onset of the disease observa-
tions are collected in cohort studies. All of the aforementioned
work assumes Hardy–Weinberg equilibrium (Weir 1996, p. 40).
Simulation studies (Epstein and Satten 2003; Lake et al. 2003;
Satten and Epstein 2004) revealed that violation of this assump-
tion can adversely affect the validity of the inference.

The aim of this article is to address statistical issues in esti-
mating haplotype effects in a systematic and rigorous manner.
For case-control studies, we allow environmental variables and
derive efficient inference procedures. For cross-sectional and
cohort studies, we consider more versatile models than those
in the existing literature. For all study designs, we accommo-
date Hardy–Weinberg disequilibrium. We construct appropriate

likelihoods for a variety of models. Under case-control sam-
pling, the likelihood pertains to the distribution of genotypes
and environmental variables conditional on the case-control sta-
tus, which involves infinite-dimensional nuisance parameters if
environmental variables are continuous. In cohort studies, it is
desirable to not parameterize the distribution of time to dis-
ease, so that the likelihood also involves infinite-dimensional
parameters. The presence of infinite-dimensional parameters
entails considerable theoretical and computational challenges.
We establish the theoretical properties of the maximum like-
lihood estimators (MLEs) by appealing to modern asymptotic
techniques, and develop efficient and stable algorithms to im-
plement the corresponding inference procedures. We assess the
performance of the proposed methods through simulation stud-
ies, and provide an application to a major genetic study of type 2
diabetes mellitus.

2. INFERENCE PROCEDURES

2.1 Preliminaries

We consider SNP-based association studies of unrelated
individuals. Suppose that each individual is genotyped at M
biallelic SNPs within a candidate gene. At each SNP site, we in-
dicate the two possible alleles by the values 0 and 1. Thus each
haplotype h is a unique sequence of M numbers from {0,1}.
The total number of possible haplotypes is K ≡ 2M ; the ac-
tual number of haplotypes consistent with the data is usually
much smaller. For k = 1, . . . ,K, let hk denote the kth possi-
ble haplotype. Figure 1 shows the eight possible haplotypes for
three SNPs.

Our human chromosomes come in pairs, one member of
each pair inherited from our mother and the other member
inherited from our father. These pairs are called homologous
chromosomes. Thus each individual has a pair of homologous
haplotypes that may or may not be identical. Routine genotyp-
ing procedures cannot separate the two homologous chromo-
somes, so only the (unphased) genotypes (i.e., the combinations
of the two homologous haplotypes) are directly observable. For
each individual, the multi-SNP genotype is an ordered sequence
of M numbers from {0,1,2}.

Let H and G denote the pair of haplotypes and the geno-
type for an individual. We write H = (hk,hl) if the individual’s
haplotypes are hk and hl, in which case G = hk + hl. The or-
dering of the two homologous haplotypes within an individ-
ual is considered arbitrary. By allowing genotypes to include
missing SNP information, we may assume that G is known for
each individual. Given G, the value of H is unknown if the in-
dividual is heterozygous at more than one SNP or if any SNP
genotype is missing. For the case of M = 3 shown in Figure 1,
if G = (0,2,1), then H = (h3,h4), and if G = (0,1,1), then
H = (h1,h4) or H = (h2,h3).

Figure 1. Possible Haplotype Configurations With Three SNPs.
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The goal of the association studies is to relate the pair of
haplotypes to disease phenotypes or traits. The simplest pheno-
type is the binary indicator for the disease status, which takes
the value 1 if the individual is diseased and 0 otherwise. The
diseased individuals may be further classified into several cat-
egories corresponding to different types of disease or varying
degrees of disease severity. If the age of onset is likely to be
genetically mediated, then it is desirable to use the age of onset
as the phenotype. One may also be interested in disease-related
traits, such as blood pressure.

The data on the disease phenotype may be gathered in various
ways. The simplest approach is to obtain a random sample from
the target population and measure the phenotype of interest on
every individual in the sample. Such studies are referred to as
cross-sectional studies, which are feasible if the disease is rela-
tively frequent or if one is interested only in some readily mea-
sured traits that are related to the disease. If one is interested in
the age at the onset of a disease, however, then it is necessary to
follow a cohort of individuals forward in time, in which case the
phenotype (i.e., time to disease occurrence) may be censored.
When the disease is relatively rare, it is more cost-effective to
use the case-control design, which collects data retrospectively
on a sample of diseased individuals and on a separate sample of
disease-free individuals. It is often desirable to collect data on
environmental variables or covariates so as to investigate gene–
environment interactions.

Let Y be the phenotype of interest, and let X be the covari-
ates. For cross-sectional and case-control studies, the associa-
tion between Y and (X,H) is characterized by the conditional
density of Y = y given H = (hk,hl) and X = x, denoted by
Pα,β,ξ (y|x, (hk,hl)), where α denotes the intercept(s), β de-
notes the regression effects, and ξ denotes the nuisance para-
meters (e.g., variance and overdispersion parameters). There
is considerable flexibility in specifying the regression relation-
ship. Suppose that h∗ is the target haplotype of interest and
that there are no covariates. Then a linear predictor in the
form of α + βI(hk = hl = h∗) pertains to a recessive model,
α + β{I(hk = h∗) + I(hl = h∗) − I(hk = hl = h∗)} pertains to a
dominant model, α + β{I(hk = h∗) + I(hl = h∗)} pertains to an
additive model, and α+β1{I(hk = h∗)+ I(hl = h∗)}+β2I(hk =
hl = h∗) pertains to a codominant model, where I(·) is the in-
dicator function. Clearly, the codominant model contains the
other three models as special cases. A codominant model with
gene–environment interactions has the following linear predic-
tor:

α + β1{I(hk = h∗) + I(hl = h∗)} + β2I(hk = hl = h∗)

+ βT
3 x + βT

4 {I(hk = h∗) + I(hl = h∗)}x
+ βT

5 I(hk = hl = h∗)x. (1)

Additional terms may be included so as to examine the effects
of several haplotype configurations or to investigate the joint
effects of multiple candidate genes.

Although we are interested in the effects of H and X on Y,
we observe G instead of H. As mentioned earlier, G is the
summation of the paired sequences in H. Thus we have a
regression problem with missing data in which the primary
explanatory variable pertains to two ordered sequences of num-
bers from {0,1}, but only the summation of the two sequences

is observed. We assume that X is independent of H conditional
on G and that (1,XT) is linearly independent with positive
probability.

Write πkl = P{H = (hk,hl)} and πk = P(h = hk), k, l =
1, . . . ,K. As we demonstrate in this article, it is sometimes pos-
sible to make inference about haplotype effects without impos-
ing any structures on {πkl}, although estimating {πk} and testing
for no haplotype effects require some restrictions on {πkl}.
Under Hardy–Weinberg equilibrium,

πkl = πkπl, k, l = 1, . . . ,K. (2)

We consider two specific forms of departure from Hardy–
Weinberg equilibrium,

πkl = (1 − ρ)πkπl + δklρπk (3)

and

πkl = (1 − ρ + δklρ)πkπl

1 − ρ + ρ
∑K

j=1 π2
j

, (4)

where 0 ≤ πk ≤ 1,
∑K

k=1 πk = 1, δkk = 1, and δkl = 0 (k �= l).
In (3), ρ is called the inbreeding coefficient or fixation index
(Weir 1996, p. 93) and corresponds to Cohen’s (1960) kappa
measure of agreement. Equation (4) creates disequilibrium by
giving different fitness values to the homozygous and heterozy-
gous pairs (Niu et al. 2002). The denominator is a normalizing
constant. Both (3) and (4) reduce to (2) if ρ = 0. Excess ho-
mozygosity (i.e., πkk > π2

k , k = 1, . . . ,K) arises when ρ > 0,
and excess heterozygosity (i.e., πkk < π2

k , k = 1, . . . ,K) arises
when ρ < 0. Recently, Satten and Epstein (2004) considered (3)
for the control population under the case-control design. We
abuse the notation slightly in that the {πk} in (4) do not pertain
to the marginal distribution of H unless ρ = 0.

Let h̃ denote a haplotype that differs from h at only one SNP.
Write ∇u f (u,v) = ∂f (u,v)/∂u. The following lemma states
that under (3) or (4), {πk} and ρ are identifiable from the data
on G, and the data on G provide positive information about
these parameters.

Lemma 1. Assume that either (3) or (4) holds. The para-
meters {πk} and ρ are uniquely determined by the distribution
of G. For nondegenerate distribution {πk}, if there exist a con-
stant µ and a vector ν = (ν1, . . . , νK)T such that

∑K
k=1 νk = 0

and µ∇ρ log P(G = g) + ∑K
k=1 νk∇πk log P(G = g) = 0 for g =

2h, then µ = 0 and ν = 0.

In the sequel, G denotes the set of all possible genotypes and
S(G) denotes the set of haplotype pairs that are consistent with
genotype G. We suppose that πk > 0 for all k = 1, . . . ,K, where
K is now interpreted as the total number of haplotypes that exist
in the population. For any parameter θ , we use θ0 to denote its
true value if the distinction is necessary. We assume that the true
value of any Euclidean parameter θ belongs to the interior of a
known compact set within the domain of θ . Proofs of Lemma 1
and all of the theorems are provided in the Appendix.
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2.2 Cross-Sectional Studies

There is a random sample of n individuals from the under-
lying population. The observable data consist of (Yi,Xi,Gi),
i = 1, . . . ,n. The trait Y can be discrete or continuous, uni-
variate or multivariate. As stated in Section 2.1, the conditional
density of Y given X and H is given by Pα,β,ξ (Y|X,H). For
a univariate trait, this regression model may take the form of a
generalized linear model (McCullagh and Nelder 1989) with
the linear predictor given in (1). If the trait is measured re-
peatedly in a longitudinal study, then generalized linear mixed
models (Diggle, Heagerty, Liang, and Zeger 2002, chap. 9)
may be used. The following conditions are required for esti-
mating (α,β, ξ).

Condition 1. If Pα,β,ξ (Y|X,H) = Pα̃,β̃ ,̃ξ (Y|X,H) for any

H = (hk,hk) and H = (hk, h̃k), k = 1, . . . ,K, then α = α̃,
β = β̃ , and ξ = ξ̃ .

Condition 2. If there exists a constant vector ν such that
νT∇α,β,ξ log Pα,β,ξ (Y|X,H) = 0 for H = (hk,hk) and H =
(hk, h̃k), then ν = 0.

Remark 1. Condition 1 ensures that the parameters of in-
terest are identifiable from the genotype data. The linear
independence of the score function stated in Condition 2 en-
sures nonsingularity of the information matrix. The reason for
considering H = (hk,hk) and H = (hk, h̃k) is that these haplo-
type pairs can be inferred with certainty because of the unique
decompositions of the corresponding genotypes g = 2hk and
g = hk + h̃k. All of the commonly used regression models, par-
ticularly generalized linear (mixed) models with linear predic-
tors in the form of (1), satisfy Conditions 1 and 2.

We show in Section A.2.1 that it is possible to estimate
the regression parameters without imposing any structure on
the joint distribution of H. But this estimation requires knowl-
edge of whether or not the dominant effects exist. Specifi-
cally, if there are no dominant effects, then only (α,β, ξ) and
P(G = g) are identifiable; otherwise, (α,β, ξ), P(G = g), and
P(H = (h∗,g − h∗)) are identifiable. If either (3) or (4) holds,
then it follows from Lemma 1 and Condition 1 that all of the pa-
rameters are identifiable regardless of the genetic mechanism.
Denote the joint distribution of H by Pγ (H = (hk,hl)), where
γ consists of the identifiable parameters in the distribution of H.
Under (3) or (4), γ = (ρ,π1, . . . , πK)T . When the distribution
of H is unspecified, γ pertains to the aspects of the distribution
of H that are identifiable.

Write θ = (α,β,γ , ξ). The likelihood for θ based on the
cross-sectional data is proportional to

Ln(θ) ≡
n∏

i=1

∏

g∈G
{mg(Yi,Xi; θ)}I(Gi=g), (5)

where

mg(y,x; θ) =
∑

(hk,hl)∈S(g)

Pα,β,ξ

(
y|x, (hk,hl)

)
Pγ (hk,hl).

The MLE θ̂ can be obtained by maximizing (5) via the
Newton–Raphson algorithm or an optimization algorithm. It
is generally more efficient to use the expectation–maximization

(EM) algorithm (Dempster, Laird, and Rubin 1977), especially
when the distribution of H satisfies (3) with ρ ≥ 0; see Sec-
tion A.2.2 for details.

By the classical likelihood theory, we can show that θ̂ is con-
sistent, asymptotically normal, and asymptotically efficient un-
der Conditions 1 and 2 and the following condition.

Condition 3. If there exists a constant vector ν such that
νT∇θ log mg(Y,X; θ0) = 0, then ν = 0.

Remark 2. Condition 3 ensures the nonsingularity of the in-
formation matrix. This condition can be easily verified when the
joint distribution of H is unspecified and is implied by Lemma 1
and Condition 2 when the distribution satisfies (3) or (4).

2.3 Case-Control Studies With Known Population Totals

We consider case-control data supplemented by information
on population totals (Scott and Wild 1997). There is a finite
population of N individuals that is considered a random sam-
ple from the joint distribution of (Y,X,H), where Y is a cat-
egorical response variable. All that is known about this finite
population is the total number of individuals in each category
of Y = y. A sample of size n stratified on the disease status is
drawn from the finite population, and the values of X and G
are recorded for each sampled individual. The supplementary
information on population totals is often available from hospi-
tal records, cancer registries, and official statistics. If a case-
control sample is drawn from a cohort study, then the cohort
serves as the finite population. The observable data consist of
(Yi,Ri,RiXi,RiGi), i = 1, . . . ,N, where Ri indicates, by the
values 1 versus 0, whether or not the ith individual in the fi-
nite population is selected into the case-control sample.

The association between Y and (X,H) is characterized by
Pα,β,ξ (Y|X,H), where α, β , and ξ pertain to the intercept(s),
regression effects, and overdispersion parameters (McCullagh
and Nelder 1989). In the case of a binary response variable, im-
portant examples of Pα,β,ξ (Y|X,H) include the logistic, probit,
and complementary log–log regression models. When there are
more than two categories, examples include the proportional
odds, multivariate probit, and multivariate logistic regression
models. Because the data associated with Ri = 1 yield the same
form of likelihood as that of a cross-sectional study and the
data associated Ri = 0 yield a missing-data likelihood, all of
the identifiability results stated in Section 2.2 apply to the cur-
rent setting. We again write θ = (α,β, ξ ,γ ), where γ consists
of the identifiable parameters in the distribution of H.

Let Fg(·) be the cumulative distribution function of X given
G = g, and let fg(x) be the density of Fg(x) with respect
to a dominating measure µ(x). Note that Fg(·) is infinite-
dimensional if X has continuous components. The joint density
of (Y = y,G = g,X = x) is mg( y,x; θ)fg(x). The likelihood
concerning θ and {Fg} takes the form

Ln(θ , {Fg}) =
N∏

i=1

[∏

g∈G
{mg(Yi,Xi; θ)fg(Xi)}I(Gi=g)

]Ri

×
[∑

g∈G

∫

mg(Yi,x; θ)dFg(x)

]1−Ri

. (6)
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Unlike the likelihood for the cross-sectional design given in (5),
the density functions of X given G cannot be factored out of
the likelihood given in (6) and thus cannot be omitted from the
likelihood.

We maximize (6) to obtain the MLEs θ̂ and {F̂g(·)}. The lat-
ter is an empirical function with point masses at the observed Xi
such that Gi = g and Ri = 1. The maximization can be car-
ried out via the Newton–Raphson, profile-likelihood, or large-
scale optimization methods. An alternative way to calculate the
MLEs is through the EM algorithm described in Section A.3.1.

We impose the following regularity condition, and then state
the asymptotic results in Theorem 1.

Condition 4. For any g ∈ G, fg(x) is positive in its support
and continuously differentiable with respect to a suitable mea-
sure.

Theorem 1. Under Conditions 1–4, θ̂ and {F̂g(·)} are con-
sistent in that |̂θ − θ0| + supx,g |̂Fg(x) − Fg(x)| → 0 almost
surely. In addition, n1/2(̂θ − θ0) converges in distribution to a
mean 0 normal random vector whose covariance matrix attains
the semiparametric efficiency bound.

Let pln(θ) be the profile log-likelihood for θ , that is, pln(θ) =
max{Fg} log Ln(θ , {Fg}). Then the (s, t)th element of the inverse
covariance matrix of θ̂ can be estimated by −ε−2

n {pln(̂θ +
εnes + εnet) − pln(̂θ + εnes − εnet) − pln(̂θ − εnes + εnet) +
pln(̂θ)}, where εn is a constant of the order n−1/2 and es and et
are the sth and tth canonical vectors. The function pln(θ) can be
calculated via the EM algorithm by holding θ constant in both
the E-step and the M-step.

Remark 3. If N is much larger than n or if the population
frequencies rather than the totals are known, then we max-
imize

∏n
i=1

∏
g∈G{mg(Yi,Xi; θ)fg(Xi)}I(Gi=g) subject to the

constraints that
∑

g∈G
∫

mg( y,x; θ)dFg(x) = py, where py is
the population frequency of Y = y. The resultant estimator of θ0
is consistent, asymptotically normal, and asymptotically effi-
cient. The results in this section can be extended straightfor-
wardly to accommodate stratifications on covariates.

2.4 Case-Control Studies With Unknown
Population Totals

We consider the classical case-control design, which mea-
sures X and G on n1 cases (Y = 1) and n0 controls (Y = 0)

and requires no knowledge about the finite population. With
the notation introduced in the previous section, the likelihood
contribution from one individual takes the form

RL(θ , {Fg}) =
∏

g∈G{mg( y,X; θ)fg(X)}I(G=g)

∑
g∈G

∫
mg( y,x; θ)dFg(x)

, (7)

where we use y instead of Y to emphasize that y is not random.
Define

f †
g (x) = mg(0,x; θ)fg(x)

∫
mg(0,x; θ)dFg(x)

,

qg =
∫

mg(0,x; θ)dFg(x)
∑

g̃∈G
∫

mg̃(0,x; θ)dF̃g(x)
.

Clearly, f †
g (x) is the conditional density of X given G = g and

Y = 0, and qg is the conditional probability of G = g given

Y = 0. Let g0 and x0 be some specific values of G and X. Write
F†

g(x) = ∫ x
0 f †

g (s)dµ(s). We can express (7) as

RL(θ , {F†
g}, {qg}) =

∏
g∈G{η( y,X,g; θ)f †

g (x)qg}I(G=g)

∑
g∈G qg{

∫
η( y,x,g; θ)dF†

g(x)} , (8)

where

η( y,x,g; θ) = mg( y,x; θ)mg0(0,x0; θ)

mg(0,x; θ)mg0( y,x0; θ)
.

We call η the generalized odds ratio (Liang and Qin 2000),
which reduces to the ordinary odds ratio when S(g) is a sin-
gleton.

Remark 4. The parameter qg is a functional of f †
g and θ be-

cause
∫

mg(0,x; θ)dFg(x) = {∫ m−1
g (0,x; θ)dF†

g(x)}−1. This
constraint makes it very difficult to study the identifiability of
the parameters. Thus we treat qg as a free parameter in our de-
velopment.

For traditional case-control data, the odds ratio is identifiable
(whereas the intercept is not), and its MLE can be obtained
by maximizing the prospective likelihood (Prentice and Pyke
1979). Similar results hold when the exposure is measured with
error (Roeder, Carroll, and Lindsay 1996); however, the distri-
bution of the measurement error needs to be estimated from a
validation set or an external source. With unphased genotype
data, identifiability is much more delicate. We show in Sec-
tion A.4.1 that the components of θ that are identifiable from
the retrospective likelihood are exactly those that are identi-
fiable from the generalized odds ratio. Thus we assume that
the generalized odds ratio depends only on a set of identifi-
able parameters, still denoted by θ ; otherwise, the inference is
not tractable. For the logistic link function with linear predic-
tor (1), we show in Section A.4.2 that if there are no dominant
effects, then θ consists only of β; if there are no covariate ef-
fects but there exists a dominant main effect, then β is identi-
fiable and P(H = (h∗,g − h∗))/P(G = g) is identifiable up to
a scalar constant; and if the dominant effect depends on a con-
tinuous covariate or if the dominant main effect and the main
effect of a continuous covariate are nonzero, then θ consists
of α, β , and P(H = (h∗,g − h∗))/P(G = g). For the probit
and complementary log–log link functions, we show in Sec-
tion A.4.3 that if there are dominant effects and at least one
continuous covariate has an effect, then θ consists of α, β , and
P(H = (h∗,g − h∗))/P(G = g).

We maximize the product of (8) over the n ≡ n1 +n0 individ-
uals in the case-control sample to produce the MLEs θ̂ , {F̂†

g(·)},
and {̂qg}. Although the {F†

g(·)} are high-dimensional, we show
in Section A.4.4 that θ̂ can be obtained by profiling a likelihood
function over a scalar nuisance parameter.

To state the asymptotic properties of the MLEs, we impose
the following conditions.

Condition 5. If there exists a vector v such that vT∇θ logη(1,

x,g; θ) is a constant with probability 1, then v = 0.

Condition 6. The function f †
g is positive in its support and

continuously differentiable.

Condition 7. The fraction n1/n → � ∈ (0,1).
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Remark 5. Condition 5 implies nonsingularity of the infor-
mation matrix for θ0 and can be shown to hold for the logistic,
probit, and complementary log–log link functions. Condition 7
ensures that there are both cases and controls in the sample.

Theorem 2. Under Conditions 5–7, |̂θ − θ0| + supg |̂qg −
qg| + supx,g |̂F†

g(x) − F†
g(x)| → 0 almost surely. In addition,

n1/2(̂θ − θ0) converges in distribution to a normal random vec-
tor whose covariance matrix attains the semiparametric effi-
ciency bound.

In most case-control studies, the disease is (relatively) rare.
When the disease is rare, considerable simplicity arises be-
cause of the following approximation for the logistic regression
model:

Pα,β(Y|X,H) ≈ exp
{
Y
(
α + βTZ(X,H)

)}
,

where Z(X,H) is a specific function of X and H. We assume
that either (3) or (4) holds. The likelihood based on (Xi,Gi, yi),
i = 1, . . . ,n, can be approximated by

L̃n(θ , {Fg})

=
n∏

i=1

(∏
g∈G [fg(Xi)

∑
(hk ,hl)∈S(g) eβTZ(Xi,hk ,hl)Pγ (hk,hl)]I(Gi=g)

∑
g∈G

∫
x
∑

(hk ,hl)∈S(g) eβTZ(x,hk,hl)Pγ (hk,hl)dFg(x)

)yi

×
[∏

g∈G

{

fg(Xi)
∑

(hk,hl)∈S(g)

Pγ (hk,hl)

}I(Gi=g)]1−yi

.

(9)

We impose the following condition.

Condition 8. If α + βTZ(X,H) = α̃ + β̃TZ(X,H) for H =
(hk,hk) and H = (hk, h̃k), then α = α̃ and β = β̃ .

This condition is similar to Condition 1 stated in Section 2.2,
and it holds for the codominant model. Under this condition,
it follows from Lemma 1 that no two sets of parameters can
give the same likelihood with probability 1. Thus the maximizer
of (9), denoted by (̂θ , {F̂g}), is locally unique. We show in Sec-
tion A.4.5 that θ̂ can be easily obtained by profiling over a small
number of parameters.

To derive the asymptotic properties, we provide a mathemat-
ical definition of rare disease.

Condition 9. For i = 1, . . . ,n, the conditional distribu-
tion of Yi given (Xi,Hi) satisfies that P(Yi = 1|Xi,Hi) =
an exp{βT

0Z(Xi,Hi)}/[1 + an exp{βT
0Z(Xi,Hi)}], where an =

o(n−1/2).

Theorem 3. Under Conditions 6–9, |̂θ −θ0|+supx,g |̂Fg(x)−
Fg(x)| →Pn 0, where Pn is the probability measure given by
Condition 9. Furthermore, n1/2(̂θ − θ0) converges in distri-
bution to a normal random vector whose covariance matrix
achieves the semiparametric efficiency bound.

2.5 Cohort Studies

In a cohort study, Y represents the time to disease occur-
rence, which is subject to right-censorship by C. The data con-
sist of (Ỹi,�i,Xi,Gi), i = 1, . . . ,n, where Ỹi = min(Yi,Ci) and

�i = I(Yi ≤ Ci). We relate Yi to (Xi,Hi) through a class of
semiparametric linear transformation models,

(Yi) = −βTZ(Xi,Hi) + εi, i = 1, . . . ,n, (10)

where  is an unknown increasing function, Z(X,H) is a
known function of X and H, and the εi’s are independent er-
rors with known distribution function F. We may rewrite (10)
as

P(Yi ≤ t|Xi,Hi) = Q
(
�(t)eβTZ(Xi,Hi)

)
,

where �(t) = e(t) and Q(x) = F(log x) (x > 0). The choices
of the extreme-value and standard logistic distributions for F, or
equivalently, Q(x) = 1−e−x and Q(x) = 1−(1+x)−1, yield the
proportional hazards model and the proportional odds model
(Pettitt 1984).

We impose Condition 8. Under this condition, β and �(·)
are identifiable from the observable data. The identifiability of
the distribution of H is the same here as in the case of cross-
sectional studies. Under (3) or (4) and Condition 8, all of the
parameters, including β , �(·), and γ , are identifiable. This is
shown in Section A.5.1.

The following assumption on censoring is required in con-
structing the likelihood.

Condition 10. Conditional on X and G, the censoring time C
is independent of Y and H.

Let θ = (β,γ ). The likelihood concerning θ and � takes the
form

Ln(θ ,�)

=
n∏

i=1

[ ∑

(hk,hl)∈S(Gi)

{
�̇(Ỹi)e

βTZ(Xi,(hk,hl))

× Q̇
(
�(Ỹi)e

βTZ(Xi,(hk,hl))
)}�i

× {
1 − Q

(
�(Ỹi)e

βTZ(Xi,(hk,hl))
)}1−�i Pγ (hk,hl)

]

.

(11)

Here and in the sequel, ḟ (x) = df (x)/dx and f̈ (x) = d2f (x)/
dx2. Like (6), (8), and (9), this likelihood involves infinite-
dimensional parameters. If � is restricted to be absolutely con-
tinuous, then, as in the case of density estimation, there is no
maximizer of this likelihood. Thus we relax � to be right-
continuous and replace �̇(Ỹi) in (11) by the jump size of �

at Ỹi. By the arguments of Zeng, Lin, and Lin (2005), the resul-
tant MLE, denoted by (̂θ , �̂), exists, and �̂ is a step function
with jumps only at the observed Ỹi for which �i = 1. The max-
imization can be carried out through an optimization algorithm.
Furthermore, the covariance matrix of θ̂ can be estimated by the
profile likelihood method, as discussed by Zeng et al. (2005).

Lin (2004) considered the special case of the proportional
hazards model under condition (2) and provided an EM algo-
rithm for obtaining the MLEs. We can modify that algorithm to
accommodate Hardy–Weinberg disequilibrium along the lines
of Section A.2.2. In addition, the EM algorithm can be used to
evaluate the profile likelihood.

We assume the following regularity conditions for the as-
ymptotic results.
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Condition 11. There exists some positive constant δ0 such
that P(Ci ≥ τ |Xi,Gi) = P(Ci = τ |Xi,Gi) ≥ δ0 almost surely,
where τ corresponds to the end of the study.

Condition 12. The true value �0(t) of �(t) is a strictly in-
creasing function in [0, τ ] and is continuously differentiable. In
addition, �0(0) = 0, �0(τ ) < ∞, and �̇0(0) > 0.

Theorem 4. Under Conditions 8 and 10–12, n1/2(̂θ −θ0, �̂−
�0) converges weakly to a Gaussian process in R

d × l∞([0, τ ]),
where d is the dimension of θ0, and l∞([0, τ ]) is the space of
all bounded functions on [0, τ ] equipped with the supremum
norm. Furthermore, θ̂ is asymptotically efficient.

3. SIMULATION STUDIES

We used Monte Carlo simulation to evaluate the proposed
methods in realistic settings. We considered the five SNPs on
chromosome 22 from the Finland–United States Investigation
of NIDDM Genetics (FUSION) Study described in the next
section. We obtained the πk’s from the frequencies shown in
Table 1 by assuming a 7% disease rate, and generated haplo-
types under (3) with ρ = .05. The R2

h in Table 1 is the mea-
sure of haplotype certainty of Stram et al. (2003). We focused
on h∗ = (0,1,1,0,0) and considered case-control and cohort
studies.

For the cohort studies, we generated ages of onset from the
proportional hazards model,

λ{t|x, (hk,hl)} = 2t exp
[
β1{I(hk = h∗) + I(hl = h∗)} + β2x

+ β3{I(hk = h∗) + I(hl = h∗)}x],
where X is a Bernoulli variable with P(X = 1) = .2 that is in-
dependent of H. We generated the censoring times from the
uniform (0, τ ) distribution, where τ was chosen to yield ap-
proximately 250, 500, and 1,000 cases under n = 5,000. We let
β1 = β2 = .25 and varied β3 from −.5 to .5.

As shown in Table 2, the MLE is virtually unbiased, the like-
lihood ratio test has proper type I error, and the confidence in-
terval has reasonable coverage. Additional simulation studies
revealed that the proposed methods also perform well for mak-
ing inference about other parameters and under other genetic
models.

Table 1. Observed Haplotype Frequencies in the FUSION Study

Frequencies

Haplotype Controls Cases R2
h

00011 .0042 .0066 .388
00100 .0035 .0034 .336
00110 .0018 .0007 .377
01011 .1292 .1344 .592
01100 .2514 .3183 .738
01101 .0012 <10−4 .450
01110 <10−4 .0045 .499
01111 .0019 <10−4 .325
10000 .0136 .0114 .456
10010 <10−4 .0012 .500
10011 .3573 .2883 .727
10100 .0521 .0597 .402
10110 .0317 .0318 .554
11011 .1392 .1290 .560
11100 .0109 .0092 .266
11110 <10−4 .0014 <10−4

11111 .0020 <10−4 .338

Table 2. Simulation Results for the Haplotype–Environment
Interactions in Cohort Studies

β3 Cases Bias SE CP Power

0 250 −.010 .232 .949 .051
500 −.005 .157 .953 .047

1,000 −.003 .114 .954 .046

−.25 250 −.014 .256 .950 .190
500 −.008 .172 .949 .334

1,000 −.004 .122 .952 .554

−.5 250 −.022 .281 .950 .505
500 −.011 .190 .950 .806

1,000 −.006 .132 .952 .976

.25 250 −.007 .216 .947 .207
500 −.002 .146 .953 .395

1,000 −.001 .109 .954 .614

.5 250 −.003 .204 .943 .693
500 −.001 .140 .951 .940

1,000 −.001 .105 .952 .998

NOTE: Bias and SE are the bias and standard error of β̂3 . CP is the coverage probability of the
95% confidence interval for β3 . Power pertains to the .05-level likelihood ratio test of H0 :β3 = 0.
Each entry is based on 5,000 replicates.

For the case-control studies, we used the same distributions
of H and X and considered the same h∗ as in the cohort stud-
ies. We generated disease incidence from the logistic regression
model,

logit P{Y = 1|x, (hk,hl)}
= α + β1{I(hk = h∗) + I(hl = h∗)}

+ β2x + β3{I(hk = h∗) + I(hl = h∗)}x. (12)

For making inference on β1, we set β2 = β3 = .25 and var-
ied β1 from −.5 to .5; for making inference on β3, we set
β1 = β2 = .25 and varied β3 from −.5 to .5. We chose α = −3
or −4, yielding disease rates between 1.6% and 7%. We let
n1 = n0 = 500 or 1,000. We considered the situations of known
and unknown population totals, with N being 15 and 30 times
of n under α = −3 and −4. For known population totals, we
used the EM algorithm described in Section A.3.1 and eval-
uated the inference procedures based on the likelihood ratio
statistic. For unknown population totals, we used the profile-
likelihood method for rare diseases described in Section A.4.5
and set the π̂k less than 2/n to 0 to improve numerical stability.
The results for β1 and β3 are displayed in Tables 3 and 4.

For known population totals, the proposed estimators are vir-
tually unbiased, and the likelihood ratio statistics yield proper
tests and confidence intervals. For unknown population totals,
β̂1 has little bias, especially for large n, whereas β̂3 tends to
be slightly biased downward; the variance estimators are fairly
accurate, and the corresponding confidence intervals have rea-
sonable coverage probabilities except for {α = −3, β3 = .5}.
The method with known population totals yields slightly higher
power than the method with unknown population totals.

All the aforementioned results pertain to haplotype 01100,
which has a relatively high frequency and a large value of R2

h;
the covariate is binary, and ρ is .05, which is relatively large.
Additional simulation studies showed that the foregoing con-
clusions continue to hold for other haplotypes, other values
of ρ, and continuous covariates. Table 5 reports some results
for haplotype 10100, which has a frequency of about 5% and
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Table 3. Simulation Results for the Main Effects of the Haplotype in Case-Control Studies

Known totals Unknown totals

n1 = n0 α β1 Bias SE CP Power Bias SE SEE CP Power

500 −3 −.5 −.003 .117 .952 .987 .019 .121 .124 .951 .979
−.25 −.002 .109 .954 .587 .014 .112 .117 .960 .525
0 −.001 .104 .951 .049 .009 .109 .112 .955 .045

.25 −.001 .102 .950 .641 .002 .105 .108 .961 .646

.5 .000 .099 .948 .996 −.005 .103 .106 .958 .998

−4 −.5 .001 .112 .954 .987 .022 .119 .124 .951 .977
−.25 −.002 .104 .955 .574 .013 .114 .117 .952 .529
0 −.002 .100 .953 .047 .004 .109 .112 .953 .047

.25 −.001 .095 .956 .636 −.003 .103 .108 .959 .640

.5 −.000 .094 .950 .999 −.009 .102 .105 .956 .997

1,000 −3 −.5 −.003 .082 .953 1.00 .005 .087 .087 .949 1.00
−.25 −.002 .076 .952 .874 .005 .081 .082 .948 .853
0 −.001 .073 .951 .049 .005 .077 .077 .954 .046

.25 −.001 .071 .953 .898 .004 .075 .076 .948 .920

.5 −.001 .070 .953 1.00 .003 .075 .075 .946 1.00

−4 −.5 .000 .079 .952 1.00 .005 .087 .088 .947 1.00
−.25 −.000 .074 .959 .867 .005 .081 .083 .954 .847
0 −.001 .070 .955 .045 .002 .079 .079 .949 .051

.25 −.001 .067 .956 .904 .000 .074 .076 .955 .909

.5 −.001 .066 .956 1.00 −.002 .073 .074 .954 1.00

NOTE: Bias and SE are the bias and standard error of β̂1 . SEE is the mean of the standard error estimator for β̂1 . CP is the coverage probability of the
95% confidence interval for β1 . Power pertains to the .05-level test of H0 :β1 = 0. Each entry is based on 5,000 replicates.

an R2
h of .4. We generated disease incidence from the logistic

regression model

logit P{Y = 1|X1,X2, (hk,hl)}
= α + βh{I(hk = h∗) + I(hl = h∗)}

+ βx1 X1 + βx2X2 + βhx2{I(hk = h∗) + I(hl = h∗)}X2,

where h∗ = (10100), X1 is Bernoulli with .2 success probabil-
ity, and X2 is uniform(0,1). We set ρ = .01, α = −3.7, βh = 0,
and βx1 = βx2 = −βx2h = .5, yielding an overall disease rate
of 7%. We assumed unknown population totals and used the

profile-likelihood method for rare diseases described in Sec-
tion A.4.5. The method performed remarkably well.

4. APPLICATION TO THE FUSION STUDY

Type 2 diabetes mellitus or non–insulin-dependent diabetes
mellitus is a complex disease characterized by resistance of pe-
ripheral tissues to insulin and a deficiency of insulin secretion.
Approximately 7% of adults in developed countries suffer from
the disease. The FUSION study is a major effort to map and
clone genetic variants that predispose to type 2 diabetes (Valle
et al. 1998). We consider a subset of data from this study.

Table 4. Simulation Results for the Haplotype–Environment Interactions in Case-Control Studies

Known totals Unknown totals

n1 = n0 α β3 Bias SE CP Power Bias SE SEE CP Power

500 −3 −.5 −.008 .205 .949 .729 .030 .187 .195 .953 .692
−.25 −.002 .186 .949 .271 .016 .169 .176 .961 .244
0 −.001 .173 .946 .054 −.006 .155 .162 .963 .037

.25 .002 .165 .949 .334 −.038 .144 .151 .958 .287

.5 .006 .161 .947 .885 −.088 .138 .143 .915 .831

−4 −.5 −.009 .198 .950 .763 .012 .194 .195 .950 .720
−.25 −.005 .181 .949 .309 .006 .172 .176 .953 .264
0 −.002 .168 .945 .055 −.007 .156 .161 .956 .044

.25 −.001 .157 .944 .370 −.022 .146 .149 .948 .333

.5 .001 .148 .945 .926 −.047 .136 .141 .945 .904

1,000 −3 −.5 −.004 .147 .943 .953 .027 .134 .136 .950 .953
−.25 −.003 .133 .946 .493 .013 .122 .123 .949 .477
0 −.001 .123 .951 .049 −.005 .114 .113 .948 .052

.25 .000 .119 .945 .580 −.034 .107 .106 .934 .535

.5 .002 .117 .947 .994 −.080 .102 .101 .870 .986

−4 −.5 −.005 .140 .945 .965 .010 .137 .136 .949 .965
−.25 −.002 .128 .945 .529 .005 .124 .123 .951 .505
0 −.001 .119 .946 .054 −.004 .113 .113 .947 .053

.25 −.000 .110 .947 .633 −.016 .104 .105 .952 .601

.5 .002 .105 .949 .998 −.037 .099 .099 .937 .995

NOTE: Bias and SE are the bias and standard error of β̂3 . SEE is the mean of the standard error estimator for β̂3 . CP is the coverage probability of the
95% confidence interval for β3 . Power pertains to the .05-level test of H0 :β3 = 0. Each entry is based on 5,000 replicates.
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Table 5. Simulation Results for Haplotype 10100 in
Case-Control Studies

n1 = n0 Parameter True value Bias SE SEE CP Power

500 βh 0 −.030 .400 .401 .957 .043
βx1 .5 .002 .151 .152 .951 .917
βx2 .5 .001 .228 .230 .953 .584
βhx2 −.5 .015 .641 .644 .956 .118

1,000 βh 0 −.017 .275 .277 .953 .047
βx1 .5 .002 .107 .107 .954 .997
βx2 .5 .000 .162 .161 .950 .871
βhx2 −.5 .012 .441 .443 .950 .198

NOTE: Bias and SE are the bias and standard error of the parameter estimator. SEE is the
mean of the standard error estimator. CP is the coverage probability of the 95% confidence
interval. Power pertains to the .05-level test of zero parameter value. Each entry is based on
5,000 replicates.

A total of 796 cases and 415 controls were genotyped at
5 SNPs in a putative susceptibility region on chromosome 22,
with 131 cases and 82 controls having missing genotype infor-
mation for at least one SNP. If Gi is missing, then the set S(Gi)

is enlarged accordingly in the analysis. Table 1 displays the es-
timated haplotype frequencies under (3) separated by the cases
and controls, along with the values of R2

h (Stram et al. 2003) for
the controls. We estimated ρ at .000 for controls and .002 for
cases.

We use the method based on (9) to estimate the effects of
the haplotypes whose observed frequencies in the controls are
greater than 2%. As shown in Table 6, the results are signif-
icant for the two most common haplotypes; haplotype 01100
increases the risk of disease, whereas haplotype 10011 is pro-
tective against diabetes. Epstein and Satten (2003) also reported
the estimates for these two haplotypes, which agree with our
numbers. Although they did not report standard error estimates,
their confidence intervals are similar to those based on Table 6.
The results under the codominant model as well as the calcula-
tions of the Akaike information criterion (AIC) (Akaike 1985)
suggest that the additive model fits the data the best for both
haplotypes 01100 and 10011.

The FUSION investigators are currently exploring gene–
environment interactions on chromosome 22, so the covariate
information is confidential at this stage. To illustrate our method
for detecting gene–environment interactions, we artificially cre-
ated a binary covariate X by setting X = 1 for the first 600 in-
dividuals in the dataset. Under the additive genetic model for
haplotype 01100, the estimate of the interaction is .043 with
an estimated standard error of .110. For further illustration, we
generated a binary covariate from the conditional distribution
of X given Y and G under model (12) with α = −3.7, β1 = .32,
and β2 = .25. Based on 5,000 replicates, the power for testing

H0 :β3 = 0 is estimated at .053, .479, or .974 under β3 = 0, .25,
or .5.

5. DISCUSSION

Inferring haplotype–disease associations is an interesting
and difficult statistical problem. The presence of infinite-
dimensional nuisance parameters in the likelihoods for case-
control and cohort studies entails considerable theoretical and
computational challenges. Although we have conducted a sys-
tematic and rigorous investigation, providing powerful new
methods, there remain substantial open problems. Here we dis-
cuss some directions for future research.

Case-Control Studies. It is numerically difficult to maxi-
mize (6) when N is much larger than n, and algorithms for
implementing the constrained maximization mentioned in Re-
mark 3 have yet to be developed. For case-control studies with
unknown population totals, identifiability is a thorny issue. We
have provided a simple and efficient method under the rare dis-
ease assumption, which appears to work well even when the
disease is not rare. But can we do better?

Model Selection and Model Assessment. Because our ap-
proach is built on likelihood, we can apply likelihood-based
model selection criteria, such as the AIC used in Section 4.
Lin (2004) showed that the AIC performs well for the propor-
tional hazards model. It is unclear how to apply the traditional
residual-based methods for assessing model adequacy, because
the haplotypes are not directly observable.

Other Genetic Variants. We have focused on SNPs-based
haplotypes. The proposed inference procedures are potentially
applicable to microsatellite loci and other genotype data, al-
though the identifiability of parameters needs to be verified for
each kind of genotype data.

Other Study Designs. It is sometimes desirable to use the
matched case-control design in which one or more controls are
individually matched to each case. In large cohort studies with
rare diseases, it is cost-effective to adopt the case-cohort design
or nested case-control design, so that only a subset of the cohort
members needs to be genotyped. We are currently developing
efficient inference procedures for such designs.

Population Substructure. The presence of latent population
substructure can cause bias in association studies of unrelated
individuals. There exist several statistical methods to adjust for
the effects of population substructure with the aid of genomic
markers. It should be possible to extend the proposed methods
so as to accommodate potential population substructure.

Table 6. Estimates of Haplotype Effects Under Various Genetic Models for the FUSION Study

Recessive
model

Dominant
model

Additive
model

Codominant model

Haplotype Additive Recessive

01011 .327(.270) −.027(.140) .049(.135) .005(.143) .331(.289)
01100 .316(.146) .274(.109) .355(.099) .334(.114) .063(.167)
10011 −.206(.155) −.323(.112) −.320(.095) −.344(.111) .076(.183)
10100 −1.019(1.020) .196(.219) .116(.213) .169(.217) −1.131(1.029)
10110 .903(.746) −.007(.248) .063(.249) .016(.254) .892(.765)
11011 −.222(.328) −.096(.140) −.127(.133) −.108(.140) −.143(.344)

NOTE: Standard error estimates are shown in parentheses.



98 Journal of the American Statistical Association, March 2006

Studies of Related Individuals. This article is concerned
with studies of unrelated individuals. Many genetic studies in-
volve multiple family members or relatives. Haplotype ambigu-
ity possibly can be reduced by using the genotype information
from related individuals. Inference on haplotype effects needs
to account for the intraclass correlation.

Genotyping Error and DNA Pooling. Laboratory genotyp-
ing is prone to error. It is sometimes necessary to pool DNA
samples rather than genotyping individual samples (Wang,
Kidd, and Zhao 2003). Such data create additional complexity
in haplotype analysis (Zeng and Lin 2005).

Many SNPs. The traditional EM algorithm works well for
a small number of SNPs. When the number of SNPs is large,
the partition–ligation method of Niu et al. (2002) and Qin et al.
(2002) and other modifications potentially can be adapted to re-
duce the computational burden. However, the haplotype analy-
sis may not be very useful if the SNPs are weakly linked.

Many Haplotypes and Rare Haplotypes. The approach
taken in this article assumes that we are interested in a small
number of haplotype configurations that are relatively frequent.
If there are many haplotypes, then we are confronted with
the problem of multiple comparisons and sparse data. Schaid
(2004) discussed some possible solutions.

Large-Scale Studies. There is an increasing interest in
genome-wide association studies. With a large number of SNPs,
one possible approach is to use sliding windows of 5–10 SNPs
and test for the haplotype–disease association in each window.
Because most of the SNPs are common between adjacent win-
dows, the test statistics tend to be highly correlated, so that the
Bonferroni-type correction for multiple comparisons would be
extremely conservative. To properly adjust for multiple com-
parisons, one needs to ascertain the joint distribution of the test
statistics. This can be done by permuting the data or by evaluat-
ing the asymptotic joint normal distribution of the test statistics
(Lin 2005).

We hope that other statisticians will join us in tackling the
foregoing problems and other challenges in genetic association
studies.

APPENDIX: TECHNICAL AND
COMPUTATIONAL DETAILS

A.1 Proof of Lemma 1

We provide a proof under (3); the proof under (4) is simpler and
is omitted here. To prove the first part of the lemma, we suppose
that two sets of parameters, ({πk}, ρ) and ({π̃k}, ρ̃), yield the same
distribution of G. We wish to show that these two sets are iden-
tical. Consider g = 2hk . For such a choice of g, the set S(g) is a
singleton. Clearly, (1 − ρ)π2

k + ρπk = (1 − ρ̃)π̃2
k + ρ̃π̃k . We de-

note this constant by ck . Then 0 ≤ ck ≤ 1 for all k, and 0 < ck < 1
for at least one k. Because πk ≥ 0, we have πk = [−ρ + {ρ2 +
4ck(1 − ρ)}1/2]/2(1 − ρ). Thus (1 − ρ)−1 satisfies the equation∑

k[(1 − x) + {(x − 1)2 + 4ckx}1/2] = 2, and (1 − ρ̃)−1 satisfies the
same equation. It can be shown that the first derivative of (1 − x) +
{(x − 1)2 + 4ckx}1/2 is nonpositive and is strictly negative for at least
one k. Thus the foregoing equation has a unique solution for x > 1,
which implies that ρ = ρ̃. It follows immediately that πk = π̃k for
all k. To prove the second part of the lemma, we choose g = 2hk to
obtain νk{2πk(1 − ρ) + ρ} + µπk(1 − πk) = 0. Because

∑
k νk = 0,

we have
∑

k{µπk(1 − πk)}/{2πk(1 − ρ) + ρ} = 0. Therefore, µ = 0
and ν = 0.

A.2 Cross-Sectional Studies

A.2.1 Identifiability Under Arbitrary Distributions of H. Under
Condition 1, (α,β, ξ) is identifiable. The identifiability of the distribu-
tion of H depends on the structure of Pα,β,ξ . For concreteness, we con-
sider the codominant logistic regression model for a binary trait. We
divide G into three categories: G1 = {g ∈ G : g = h + h or g = h + h̃},
G2 = {g ∈ G − G1 : g is not ≥ h∗}, and G3 = G − G1 − G2. We derive
the expression for mg( y,x; θ) when g belongs to each of the three cat-
egories.

For g ∈ G1, S(g) = {(h,h)} or {(h, h̃)}, so that mg( y,x;
θ) = Pα,β,ξ (Y = y|X = x,H = (h,h))P(H = (h,h)) or mg( y,x;
θ) = Pα,β,ξ (Y = y|X = x,H = (h, h̃))P(H = (h, h̃)). For g ∈ G2,
Pα,β,ξ (Y = y|X = x,H = (hk,hl)) does not depend on (hk,hl) ∈ S(g),
so that mg( y,x; θ) = Pα,β,ξ (Y = y|X = x,H = (hk,hl))P(G = g),
where (hk,hl) ∈ S(g). For g ∈ G3,

mg( y,x; θ) = exp{y(α + β1 + βT
3 x + βT

4 x)}
1 + exp(α + β1 + βT

3 x + βT
4 x)

π1(g)

+ exp{y(α + βT
3 x)}

1 + exp(α + βT
3 x)

π2(g),

where π1(g) = 2P(H = (h∗,g − h∗)) and π2(g) = P(H = (hk,hl) :
hk + hl = g,hk �= h∗,hl �= h∗).

Let θ0 denote the true value of θ , P0(G = g) denote the true
value of P(G = g), and π0j(g) denote the true values πj(g), j = 1,2.
We then can draw the following conclusions: (1) When β01 = 0 and
β04 = 0, mg( y,x; θ) = mg( y,x; θ0) if and only if α = α0, β = β0,
and P(G = g) = P0(G = g) for any g ∈ G; and (2) when either β01
or β04 is nonzero, mg( y,x; θ) = mg( y,x; θ0) if and only if α = α0,
β = β0, P(G = g) = P0(G = g) for g ∈ G1 ∪ G2, and πj(g) = π0j(g)

for g ∈ G3 and j = 1,2. These conclusions hold for any generalized
linear model with the linear predictor given in (1).

A.2.2 EM Algorithm. The complete-data likelihood is propor-
tional to

∏n
i=1{Pα,β,ξ (Yi|Xi,Hi)Pγ (Hi)}. The expectation of the log-

arithm of this function conditional on the observable data (Yi,Xi,Gi),
i = 1, . . . ,n, is

n∑

i=1

∑

(hk,hl)∈S(Gi)

pikl(θ)
{
log Pα,β,ξ

(
Yi|Xi, (hk,hl)

) + log Pγ (hk,hl)
}
,

where

pikl(θ) = Pα,β,ξ (Yi|Xi, (hk,hl))Pγ (hk,hl)
∑

(hk,hl)∈S(Gi)
Pα,β,ξ (Yi|Xi, (hk,hl))Pγ (hk,hl)

.

Thus, in the (m + 1)st iteration of the EM algorithm, we evalu-
ate pikl(θ) at the current estimate θ̂ (m), and obtain θ̂ (m+1) by solving
the following equations through the Newton–Raphson algorithm:

n∑

i=1

∑

(hk,hl)∈S(Gi)

pikl
(
θ̂ (m)

)

× ∇α,β,ξ log Pα,β,ξ

(
Yi|Xi, (hk,hl)

) = 0,

n∑

i=1

∑

(hk,hl)∈S(Gi)

pikl
(
θ̂ (m)

)∇γ log Pγ (hk,hl) = 0. (A.1)

Under (3) with ρ ≥ 0, the estimate of γ ≡ (ρ, {πk}) can be ob-
tained in a closed form rather than by solving (A.1). Let B be a
Bernoulli variable with success probability ρ, let Q1 be a discrete
random variable taking values in H with P(Q1 = (hk,hl)) = δklπk ,
and let Q2 be another discrete random variable taking values in H
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with P(Q2 = (hk,hl)) = πkπl. Then H has the same distribution as
BQ1 + (1−B)Q2. The complete-data likelihood can be represented by

n∏

i=1

{

Pα,β,ξ (Yi|Xi,Hi)
∏

k

π
I(Q1i=(hk,hk))Bi
k

×
∏

k,l

(πkπl)
I(Q2i=(hk,hl))(1−Bi)ρBi(1 − ρ)1−Bi

}

.

The corresponding score equations for {πk} and ρ satisfy

πk = c−1

[ n∑

i=1

BiI
(
Q1i = (hk,hk)

)

+
n∑

i=1

K∑

l=1

(1 − Bi)
{
I
(
Q2i = (hk,hl)

) + I
(
Q2i = (hl,hk)

)}
]

and ρ = n−1 ∑n
i=1 Bi, where c is a normalizing constant such that∑

k πk = 1. Define

E{ω(Bi,Q1i,Q2i)|Yi,Xi,Gi}
=

∑

bq1+(1−b)q2∈S(Gi)

Pα,β,ξ

(
Yi|Xi,bq1 + (1 − b)q2

)

× p(b,q1,q2)ω(b,q1,q2)

×
[ ∑

bq1+(1−b)q2∈S(Gi)

Pα,β,ξ

(
Yi|Xi,bq1 + (1 − b)q2

)

× p(b,q1,q2)

]−1
,

where ω(B,Q1,Q2) = BI(Q1 = (hk,hk)), (1 − B)I(Q2 = (hk,hl))

or B, and

p(b,q1,q2) =
∏

k

π
bI(q1=(hk,hk))
k

×
∏

k,l

(πkπl)
(1−b)I(q2=(hk,hl))ρb(1 − ρ)1−b.

In the (m + 1)st iteration, the estimates of πk and ρ are obtained in
closed form,

π
(m+1)
k = 1

c(m+1)

[ n∑

i=1

E(m)
{
BiI

(
Q1i = (hk,hk)

)}

+ 2
n∑

i=1

K∑

l=1

E(m)
{
(1 − Bi)I

(
Q2i = (hk,hl)

)}
]

,

and ρ(m+1) = n−1 ∑n
i=1 E(m)(Bi), where E(m){ω(Bi,Q1i,Q2i)} is

E{ω(Bi,Q1i,Q2i)|Yi,Xi,Gi} evaluated at θ = θ̂ (m) and c(m+1) is the

constant such that
∑

k π
(m+1)
k = 1.

A.3 Case-Control Studies With Known Population Totals

A.3.1 EM Algorithm. This is similar to the EM algorithm for
cross-sectional studies, except that in addition to unknown H on all
individuals, X is missing for the individuals not selected into the case-
control sample and there are nonparametric components {Fg(·)}. The
complete-data likelihood is

N∏

i=1

Pα,β,ξ (Yi|Xi,Hi)Pγ (Hi)
∏

g
{ fg(Xi)}I(Gi=g).

The M-step solves the following equations for θ :

N∑

i=1

I(Ri = 1)E
{∇α,β,ξ log Pα,β,ξ (Yi|Xi,Hi)|Yi,Xi,Gi

}

+
N∑

i=1

I(Ri = 0)E
{∇α,β,ξ log Pα,β,ξ (Yi|Xi,Hi)|Yi

} = 0,

N∑

i=1

I(Ri = 1)E{∇γ log Pγ (Hi)|Yi,Xi,Gi}

+
N∑

i=1

I(Ri = 0)E{∇γ log Pγ (Hi)|Yi} = 0, (A.2)

and also estimates Fg by an empirical function with the following point
mass at the Xi for which (Gi = g,Ri = 1):

Fg{Xi}

=
[ N∑

j=1

I(Xj = Xi,Gj = g,Rj = 1)

+
N∑

j=1

I(Rj = 0)E{I(Xj = Xi,Gj = g)|Yj}
]

×
[ N∑

j=1

I(Gj = g,Rj = 1) +
N∑

j=1

I(Rj = 0)E{I(Gj = g)|Yj}
]−1

,

where the conditional expectations are evaluated at the current esti-
mates of θ and {Fg} in the E-step. For a random function ω(Yi,Xi,Hi),
the conditional expectation takes the form

∑
(hk,hl)∈S(Gi)

w(Yi,Xi, (hk,hl))Pα,β,ξ (Yi|Xi, (hk,hl))Pγ (hk,hl)
∑

(hk,hl)∈S(Gi)
Pα,β,ξ (Yi|Xi, (hk,hl))Pγ (hk,hl)

for Ri = 1 and
∑

g∈G

∑

x∈{Xi : Gi=g,Ri=1}

∑

(hk,hl)∈S(g)

ω(Yi,x, (hk,hl))

× Pα,β,ξ (Yi|x, (hk,hl))

× Pγ (hk,hl)Fg{x}

×
( ∑

g∈G

∑

x∈{Xi : Gi=g,Ri=1}

∑

(hk,hl)∈S(g)

Pα,β,ξ (Yi|x, (hk,hl))

× Pγ (hk,hl)Fg{x}
)−1

for Ri = 0. Under (3) with ρ ≥ 0, the idea described in Section A.2.2
can be applied to (A.2) to obtain a closed-form estimate of γ .

A.3.2 Proof of Theorem 1. The case-control design with known
population totals is a special case of the two-phase designs studied by
Breslow, McNeney, and Wellner (2003). The likelihood given in (6)
resembles (2.3) of Breslow et al. The key difference is that the for-
mer involves several nonparametric components {Fg(·)}, whereas the
latter involves only a single nonparametric function. Despite this dif-
ference, the arguments of Breslow et al. can be used to prove Theo-
rem 1 with minor modifications. Specifically, the regularity conditions
of Breslow et al. hold under our Conditions 1–4. Thus, the consistency
of (̂θ , {F̂g(·)}) follows from the results of van der Vaart and Wellner
(2001), whereas the weak convergence and asymptotic efficiency can
be established by applying the results of Murphy and van der Vaart
(2000) through a least favorable submodel, which can be constructed
as done by Breslow et al. (2003, sec. 3).
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A.4 Case-Control Studies With Unknown Population Totals

A.4.1 Equivalence Class. Suppose that two sets of parameters,
(θ , {F†

g}, {qg}) and (̃θ, {F̃†
g}, {̃qg}), yield the same likelihood,

RL(θ , {F†
g}, {qg}) = RL(̃θ , {F̃†

g}, {̃qg}). (A.3)

Because η(0,x,g; θ) = 1, (A.3) with y = 0 implies that f †
g (x)qg/

∑
g̃∈G q̃g = f̃ †

g (x)̃qg/
∑

g̃∈G q̃̃g. Thus f †
g (x) = f̃ †

g (x) and qg = q̃g. It
then follows from (A.3) that

η( y,x,g; θ) = C( y)η( y,x,g; θ̃), (A.4)

where C( y) depends only on y. By setting x = x0 and g = g0 in (A.4)
and noting that η( y,x0,g0; θ) = 1, we conclude that C( y) = 1. Hence
the equivalence class for (θ , {F†

g}, {qg}) is {(̃θ , {F†
g}, {qg}) :η( y,x,

g; θ̃) = η( y,x,g; θ)}.
A.4.2 Identifiability for the Logistic Link Function. Suppose that

η( y,x,g; θ̃) = η( y,x,g; θ) (A.5)

for two sets of parameters θ̃ and θ . Let g0 = 0. As in Section A.2.1,
we partition G into (G1,G2,G3). For g ∈ G1, S(g) is a singleton, so the
generalized odds ratio reduces to the ordinary odds ratio of Y given
X and H. Thus (A.5) is equivalent to β = β̃ under Condition 8. For
g ∈ G2, P(Y = 0|X = x,H = (hk,hl)) = {1 + exp(α + βT

3 x)}−1. Thus

(A.5) holds if and only if β̃3 = β3. For g ∈ G3, both π1(g) and π2(g)

are nonzero. Then (A.5) becomes

π̃1(g)(1 + eα̃+ψ2(x))/π̃2(g)(1 + eα̃+ψ1(x)) + eψ2(x)−ψ1(x)

π̃1(g)(1 + eα̃+ψ2(x))/π̃2(g)(1 + eα̃+ψ1(x)) + 1

= π1(g)(1 + eα+ψ2(x))/π2(g)(1 + eα+ψ1(x)) + eψ2(x)−ψ1(x)

π1(g)(1 + eα+ψ2(x))/π2(g)(1 + eα+ψ1(x)) + 1
,

(A.6)

where ψ1(x) = β1 + βT
3 x + βT

4 x and ψ2(x) = βT
3 x.

Without loss of generality, assume that 0 is in the support of X. We
then have the following results:

1. β1 = 0 and β4 = 0. Then (A.6) holds naturally.
2. β1 �= 0,β4 = 0, and β3 = 0. Then, because the function

(λ + c)/(λ + 1) is strictly monotone in λ for c �= 1, (A.6) yields

π̃1(g)

π̃2(g)

1 + eα̃

1 + eα̃+β1
= π1(g)

π2(g)

1 + eα

1 + eα+β1
.

Thus (A.6) is equivalent to

π̃1(g)/π̃2(g)

π̃1(̃g)/π̃2(̃g)
= π1(g)/π2(g)

π1(̃g)/π2(̃g)
for all g, g̃ ∈ G3.

3. β1 �= 0,β4 = 0, and β3,z �= 0, where β3,z is the component
of β3 associated with a continuous covariate Z. For x such that
β3,zz �= 0, (A.6) yields

π̃1(g)

π̃2(g)

1 + eα̃+β3,zz

1 + eα̃+β1+β3,zz
= π1(g)

π2(g)

1 + eα+β3,zz

1 + eα+β1+β3,zz
.

The foregoing equation holds for any z ∈ (−∞,∞) because
the functions on the two sides are analytic in z and z is con-
tinuous. Without loss of generality, assume that β3,z > 0. By
letting z = −∞, we have π̃1(g)/π̃2(g) = π1(g)/π2(g). Then
by letting z = 0, we have α̃ = α. Thus (A.6) is equivalent to
{̃α = α, π̃1(g)/π̃2(g) = π1(g)/π2(g)}.

4. β4,z �= 0, where β4,z is the component of β4 pertaining to z.
Then (A.6) is equivalent to

π̃1(g)

π̃2(g)

1 + eα̃+ψ2(x)

1 + eα̃+ψ1(x)
= π1(g)

π2(g)

1 + eα+ψ2(x)

1 + eα+ψ1(x)
(A.7)

for any x such that β1 + βT
4 x �= 0. We set x except the compo-

nent z to 0. By letting z → −β1/β4,z, we have π̃1(g)/π̃2(g) =
π1(g)/π2(g). Then by differentiating both sides of (A.7) with
respect to z and letting z → −β1/β4,z, we obtain α = α̃. Thus
(A.6) is equivalent to {̃α = α, π̃1(g)/π̃2(g) = π1(g)/π2(g)}.

A.4.3 Identifiability for Probit and Complementary Log–Log Link
Functions. Assume that |β1| + |β4| �= 0. Also assume that there ex-
ists a continuous covariate in X, denoted by Z, such that the corre-
sponding regression parameter βz is nonzero. Let x0 = 0 and g0 = 0.
We claim that under the probit and complementary log–log regres-
sion models, η(1,x,g; θ) = η(1,x,g; θ̃) for two sets of parameters
θ and θ̃ if and only if α = α̃, β = β̃ , and π1(g)/π2(g) = π̃1(g)/π̃2(g)

for g ∈ G3.
We first prove the foregoing claim for the probit model. Suppose

that η(1,x,g; θ) = η(1,x,g; θ̃). Without loss of generality, assume
that h∗ is a nonzero sequence. Let g = 2h∗,h∗ + h̃∗, and 0 in turn.
Because S(g) has a single element for such g, we obtain

�(α)

1 − �(α)

{
1

�(α + 2β1 + β2 + βT
3 x + 2βT

4 x + βT
5 x)

− 1

}

= �(̃α)

1 − �(̃α)

{
1

�(̃α + 2β̃1 + β̃2 + β̃
T
3 x + 2β̃

T
4 x + β̃

T
5 x)

− 1

}

,

(A.8)

�(α)

1 − �(α)

{
1

�(α + β1 + βT
3 x + βT

4 x)
− 1

}

= �(̃α)

1 − �(̃α)

{
1

�(̃α + β̃1 + β̃
T
3 x + β̃

T
4 x)

− 1

}

, (A.9)

and

�(α)

1 − �(α)

{
1

�(α + βT
3 x)

− 1

}

= �(̃α)

1 − �(̃α)

{
1

�(̃α + β̃
T
3 x)

− 1

}

, (A.10)

where � is the standard normal distribution function. In (A.10), we let
x except the component z be 0. Then

�(α)

1 − �(α)

{
1

�(α + βzz)
− 1

}

= �(̃α)

1 − �(̃α)

{
1

�(̃α + β̃zz)
− 1

}

.

By letting z → ∞ or −∞, we conclude that βz and β̃z must have the
same sign. Without loss of generality, assume that βz > β̃z > 0. Then
the left side divided by the right side goes to 0 as z → ∞. This is a
contradiction. Therefore, βz = β̃z. We differentiate both sides to obtain

�(α)

1 − �(α)

φ(α + βzz)

�(α + βzz)2
= �(̃α)

1 − �(̃α)

φ(̃α + βzz)

�(̃α + βzz)2
.

By taking the ratio of the two sides and letting z → sgn(βz)∞, we im-
mediately conclude that α = α̃. Applying this result to (A.8)–(A.10),

we obtain 2β1 +β2 +βT
3 x+2βT

4 x+βT
5 x = 2β̃1 + β̃2 + β̃

T
3 x+2β̃

T
4 x+

β̃
T
5 x, β1 +βT

3 x+βT
4 x = β̃1 + β̃

T
3 x+ β̃

T
4 x, and βT

3 x = β̃
T
3 x. Therefore,

β = β̃ . For g ∈ G3,

η(1,x,g; θ)

= 1 − �(α)

�(α)

{
�(α + β1 + βT

3 x + βT
4 x)π1(g)/π2(g)

+ �(α + βT
3 x)

}

× [{1 − �(α + β1 + βT
3 x + βT

4 x)}π1(g)/π2(g)

+ 1 − �(α + βT
3 x)

]−1
. (A.11)
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It follows that π1(g)/π2(g) = π̃1(g)/π̃2(g). The other direction of the
claim is obvious in view of (A.11) and the expressions of η(1,x,g) for
g ∈ G1 and g ∈ G2.

For the complementary log–log model, we obtain the same equa-
tions as (A.8)–(A.11) with �(x) replaced by 1 − exp(−ex). In partic-

ular, e−eα
(eeα+βzz − 1)/(1 − e−eα

) = e−eα̃
(eeα̃+β̃zz − 1)/(1 − e−eα̃

).
Taking the first and second derivatives of the two sides with respect
to z and forming the ratio of them, we obtain βz(eα+βzz + 1) =
β̃z(eα̃+β̃zz + 1). Thus α = α̃ and βz = β̃z. The rest of the proof is the
same as that of the probit model.

A.4.4 Profile Likelihood of θ Based on (8). Suppose that there
are J distinct observed values of (X,G), denoted by (x1,g1), . . . ,

(xJ,gJ). Let n1j and n0j be the number of times that (xj,gj) is observed
in the cases and controls, and let δj be the jump size of the estimated
distribution of (X,G) at (xj,gj). Then the log-likelihood based on (8)
can be written as

ln(θ , {δj}) =
J∑

j=1

n1j logη(1,xj,gj; θ)

− n1 log

{ J∑

j=1

η(1,xj,gj; θ)δj

}

+
J∑

j=1

n+j log δj,

where n+j = n0j + n1j. Following Scott and Wild (1997), we intro-
duce a Lagrange multiplier λ for the constraint

∑
j δj = 1 and set the

derivative with respect to δj to 0. We then obtain

n+j

δj
− n1η(1,xj,gj; θ)

∑J
j=1 η(1,xj,gj; θ)δj

+ λ = 0.

Multiplying both sides by δj and summing over j, we see that
λ = n1 − n. Thus

δj = n+j

n − n1 + n1η(1,xj,gj; θ)/µ
, (A.12)

where µ = ∑J
j=1 η(1,xj,gj; θ)δj. Plugging (A.12) into ln(θ , {δj}), we

see that the objective function to be maximized is, up to a constant Cn,
equal to

l∗n(θ ,µ) =
J∑

j=1

n1j logη(1,xj,gj; θ)

−
J∑

j=1

n+j log

{
n1

n
η(1,xj,gj; θ) +

(

1 − n1

n

)

µ

}

+ (n − n1) logµ.

Thus max{δj} ln(θ , {δj}) ≤ maxµ l∗n(θ ,µ) + Cn. If µ maximizes
l∗n(θ ,µ), then ∂l∗n(θ ,µ)/∂µ = 0, and the δj given in (A.12) satisfy
∑J

j=1 δj = 1. Thus maxµ l∗n(θ,µ) + Cn ≤ max{δj} ln(θ , {δj}). There-
fore, the profile log-likelihood function for θ based on ln(θ , {δj})
equals the profile function based on l∗n(θ,µ), up to a constant Cn.
We maximize l∗n(θ ,µ) via Newton–Raphson to yield θ̂ and µ̂, where
θ̂ is the MLE of θ . It can be shown that up to a constant, l∗n(θ ,µ) is the
log-likelihood based on a random sample of size n from a conditional
distribution of Y given X and G. Hence the covariance matrix of (̂θ , µ̂)

can be estimated by the inverse information matrix of l∗n(θ ,µ).

A.4.5 Profile Likelihood of θ Based on (9). Suppose that (3) holds.
Write θ = (β, {πk}, ρ). Also define

ζ1(x,g; θ) =
∑

(hk,hl)∈S(g)

eβTZ(x,hk,hl){ρπkδkl + (1 − ρ)πkπl},

ζ0(g; θ) =
∑

(hk,hl)∈S(g)

{ρπkδkl + (1 − ρ)πkπl}.

By a derivation similar to that of Section A.4.4, profiling (9) over
{Fg(·)} is equivalent to profiling the following function over {µg}:

l̃∗n(θ , {µg})

=
n∑

i=1

{
yi log ζ1(Xi,Gi; θ) + (1 − yi) log ζ0(Gi; θ)

}

−
n∑

i=1

∑

g
I(Gi = g) log

{

ζ1(Xi,Gi; θ) + n−1
1 ñg

∑

g̃

µg̃ − µg

}

+
n∑

i=1

(1 − yi) log

{∑

g
µg

}

,

where ñg is the number of times G = g in the sample. The covariance
matrix of θ̂ can be estimated by the sandwich estimator or the profile
likelihood method.

If X is independent of G, then we obtain the MLE θ̂ by maximizing
the following function:

l̃∗n(θ ,µ) =
n∑

i=1

yi log ζ1(Xi,Gi; θ) +
n∑

i=1

(1 − yi) log ζ0(Gi; θ)

+
n∑

i=1

(1 − yi) logµ

−
n∑

i=1

log

{

(1 − r)µ + r
∑

g
ζ1(Xi,g; θ)

}

,

where r = n1/n. Let H = BQ1 + (1 − B)Q2, where B is a Bernoulli
variable, Q1 takes values in {(hk,hk); k = 1, . . . ,K}, and Q2 takes val-
ues in {(hk,hl); k, l = 1, . . . ,K}. Suppose that Y is a binary variable
and that the conditional distribution of (B,Q1,Q2,Y) given X is char-
acterized by

P(B,Q1,Q2,Y|X) = exp{ϑTW(B,Q1,Q2,Y,X)}
∑

B,Q1,Q2,Y exp{ϑTW(B,Q1,Q2,Y,X)} ,

where ϑ = (− logµ + log r/(1 − r),βT , logπ1 − logρ/(1 − ρ), . . . ,

logπK − logρ/(1 − ρ))T and W(B,Q1,Q2,Y,X) = (Y,YZT (X,H),
BI(Q1 = (h1,h1))+ (1 − B)

∑
l{I(Q2 = (h1,hl))+ I(Q2 = (hl,h1))},

. . . ,BI(Q1 = (hK ,hK)) + (1 − B)
∑

l{I(Q2 = (hK ,hl)) + I(Q2 =
(hl,hK))}T . We can show that l̃∗n(θ ,µ) is equivalent to the log-
likelihood

l̃∗n(ϑ) =
n∑

i=1

log

[ ∑

BQ1+(1−B)Q2∈S(Gi)

eϑTW(B,Q1,Q2,Yi,Xi)

∑
b,q1,q2,y eϑTW(b,q1,q2,y,Xi)

]

.

We maximize l̃∗n(ϑ) through the EM algorithm, in which (B,Q1,Q2) is
treated as missing. The estimation of the covariance matrix of θ̂ is
based on the information matrix of l̃∗n(ϑ).

The complete-data score function is
n∑

i=1

[

W(Bi,Q1i,Q2i,Yi,Xi)

−
∑

b,q1,q2,y W(b,q1,q2, y,Xi) exp{ϑTW(b,q1,q2, y,Xi)}
∑

b,q1,q2,y exp{ϑTW(b,q1,q2, y,Xi)}

]

.

Thus in the E-step we calculate the conditional expectation of
W(Bi,Q1i,Q2i,Yi,Xi) given (Yi,Xi,Gi) and the current parameter
estimates,

E[W(Bi,Q1i,Q2i,Yi,Xi)|Yi,Xi,Gi]

=
∑

b,q1,q2
I(bq1+(1−b)q2∈S(Gi))eϑTW(b,q1,q2,Yi,Xi)W(b,q1,q2,Yi,Xi)
∑

b,q1,q2
I(bq1+(1−b)q2∈S(Gi))eϑTW(b,q1,q2,Yi,Xi)

.
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In the M-step we use the one-step Newton–Raphson iteration to update
the parameter estimates,

ϑ(k+1)

= ϑ(k) − �−1 ×
n∑

i=1

[

E[W(B,Q1,Q2,Yi,Xi)|Yi,Xi,Gi]

−
∑

b,q1,q2,y W(b,q1,q2, y,Xi) exp{ϑTW(b,q1,q2, y,Xi)}
∑

b,q1,q2,y exp{ϑTW(b,q1,q2, y,Xi)}
]

,

where

� = −
[ n∑

i=1

∑
b,q1,q2,y W

⊗2(b,q1,q2, y,Xi)eϑTW(b,q1,q2,y,Xi)

∑
b,q1,q2,y eϑTW(b,q1,q2,y,Xi)

]

+
n∑

i=1

[ {∑b,q1,q2,y W(b,q1,q2, y,Xi)eϑTW(b,q1,q2,y,Xi)}⊗2

{∑b,q1,q2,y eϑTW(b,q1,q2,y,Xi)}2

]

and a⊗2 = aaT .

A.4.6 Proof of Theorem 2. Write Fx,g(x,g) = F†
g(x)qg and

F̂x,g(x,g) = F̂†
g(x)̂qg. Because θ̂ is bounded and F̂x,g is a probabil-

ity distribution, we can choose a subsequence such that θ̂ → θ∗ and
F̂x,g(x,g) → F∗

x,g(x,g) ≡ F∗
g(x)q∗

g , where q∗
g > 0 for any g.

Because F̂†
g maximizes the likelihood, there exists some Lagrange

multiplier λ̂g such that

I(Gi = g)

F̂†
g{Xi}

− n1η(1,Xi,g; θ̂ )̂qg
∫

x,̃g η(1,x, g̃; θ̂)dF̂x,g(x, g̃)
− n̂λg = 0,

where F̂†
g{Xi} denotes the point mass of F̂†

g at Xi and the integral
is interpreted as integration over x and summation over g. Because
∑n

i=1 F̂†
g{Xi} = 1, λ̂g satisfies the equation

n−1
n∑

i=1

I(Gi = g)

λ̂g + n1η(1,Xi,g; θ̂ )̂qg{n ∫
x,̃g η(1,x, g̃; θ̂)dF̂x,g(x, g̃)}−1

= 1 (A.13)

and

min
1≤i≤n

{

λ̂g + n1η(1,Xi,g; θ̂ )̂qg

n
∫

x,̃g η(1,x, g̃; θ̂)dF̂x,g(x, g̃)

}

> 0.

Clearly, λ̂g must be bounded asymptotically. Thus, by choosing a sub-
sequence, we assume that λ̂g → λ∗

g .
By (A.13) and the Lipschitz continuity of η(1,x,g; θ∗) in the con-

tinuous components of x, we can show that there exists a positive con-
stant δ such that

min
g,x

{∣
∣
∣
∣λ

∗
g + �η(1,x,g; θ∗)q∗

g∫
x,̃g η(1,x, g̃; θ∗)dF∗

x,g(x, g̃)

∣
∣
∣
∣

}

> δ.

Consequently, when n is sufficiently large,

F̂†
g(x) = n−1

n∑

i=1

I(Gi = g,Xi ≤ x)

×
(

max

[∣
∣
∣
∣λ̂g + η(1,Xi,g; θ̂ )̂qgn1

×
{

n
∫

x,̃g
η(1,x, g̃; θ̂)dF̂x,g(x, g̃)

}−1∣
∣
∣
∣, δ

])−1
.

We define an empirical function F̃†
g whose jump size at Xi is propor-

tional to

n−1I(Gi = g)

(

P(G = g,Y = 0) + η(1,Xi,g; θ0)qg�

×
{∫

x,̃g
η(1,x, g̃; θ0)dFx,g(x, g̃)

}−1)−1
.

Then it can be verified that F̃†
g converges uniformly to F†

g . In ad-

dition, F̂†
g is absolutely continuous with respect to F̃†

g , and the

Radon–Nikodym derivative dF̂†
g(x)/dF̃†

g(x) is bounded and con-

verges uniformly to dF∗
g(x)/dF†

g(x). Let F̃x,g(x,g) = F̃†
g(x)qg, and let

ln(θ , {F†
g}, {qg}) be the log-likelihood based on (8). By the definition

of the MLE, n−1ln (̂θ, {F̂†
g}, {̂qg}) − n−1ln(θ0, {F̃†

g}, {qg}) ≥ 0. The
limit of this difference is the negative Kullback–Leibler information
of the distribution for (θ∗, {F∗

g}, {q∗
g}) with respect to (θ0, {F†

g}, {qg})
under P(Y = 1) = �. The identifiability conditions then yield θ∗ = θ0,
F∗

g = F†
g and q∗

g = qg. Thus the consistency of θ̂ is established. Be-

cause Fx,g is continuous, supx,g |̂Fx,g(x,g) − Fx,g(x,g)| → 0 almost
surely.

The derivation of the asymptotic distribution is similar to the proof
of theorem 1.2 of Murphy and van der Vaart (2001). We first obtain
a score function by differentiating ln(θ, {F†

g}, {qg}) with respect to θ̂

along the direction v and with respect to F̂x,g along the path F̂ε =
F̂x,g + ε

∫
ψ(x,g)dF̂x,g, where v has a unit norm and ψ(·,g) is any

function whose total variation is bounded by 1. The linearization of the
score function around the true parameter value yields

n1/2
{

(vT	11 + 	21[ψ]T )(̂θ − θ0)

+
∫

(vT	12 + �22[ψ])d(F̂x,g − Fx,g)

}

= n−1/2
n∑

i=1

yi

{

vT lθ (1,Xi,Gi; θ0,Fx,g)

+ lF(1,Xi,Gi; θ0,Fx,g)

[∫

ψ dFx,g

]}

+ n−1/2
n∑

i=1

(1 − yi)

{

vT lθ (0,Xi,Gi; θ0,Fx,g)

+ lF(0,Xi,Gi; θ0,Fx,g)

[∫

ψ dFx,g

]}

+ op(1),

where 	11 is a constant matrix, 	12 is a vector function of x, 	21[ψ]
and �22[ψ] are linear operators of ψ , and lθ and lF are the scores
with respect to θ and Fx,g. The right side of the foregoing equa-
tion converges weakly to a Gaussian process, which depends on
( y1, y2, . . . ) only through �. We can show that the operator B[v,ψ] ≡
{vT	11 +	21[ψ]T ,vT	12 +�22[ψ]}T is invertible along the lines of
Murphy and van der Vaart (2001). It then follows from theorem 3.3.1
of van der Vaart and Wellner (1996) that n1/2(̂θ − θ0, F̂x,g − Fx,g)

converges weakly to a Gaussian process.
Because the asymptotic distribution depends on ( y1, y2, . . . ) only

via �, we assume that ( y1, y2, . . . ) are independent realizations from
a Bernoulli distribution with mean �. By choosing some ψ such that
B[v,ψ] = (vT ,0)T for all v, we see that θ̂ is an asymptotically linear
estimator for θ0 with the influence function in the score space. It fol-
lows from proposition 3.3.1 of Bickel, Klaassen, Ritov, and Wellner
(1993) that the limiting covariance matrix of n1/2(̂θ − θ0) attains the
semiparametric efficiency bound.
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A.4.7 Proof of Theorem 3. We call the probability distribu-
tion induced by (9) the pseudoprobability law, denoted by P̃n. Let
f ( y,x,g; θ , {Fg},an) be the density function under the true probabil-
ity law Pn. Because an = o(n−1/2),

dPn

dP̃n
= exp

{

an

n∑

i=1

∂ log f ( yi,Xi,Gi; θ , {Fg},a)

∂a

∣
∣
∣
∣
a=0

+o(1)

}

→P̃n 1.

Thus any weak convergence under P̃n also holds for Pn. In addition,
by the arguments in the proof of Theorem 2, we can easily verify the
results of Theorem 3 when the data are generated from P̃n. Thus The-
orem 3 holds when the data are generated from Pn.

A.5 Cohort Studies

A.5.1 Identifiability. We show that if two sets of parameters (θ ,�)

and (̃θ , �̃) yield the same joint distribution, then θ = θ̃ and � = �̃.
First, it follows from Lemma 1 that γ = γ̃ . Suppose that

∑

H∈S(G)

{˜̇�(Ỹ)eβ̃TZ(X,H)Q̇
(
�̃(Ỹ)eβ̃TZ(X,H)

)}�

× {
1 − Q

(
�̃(Ỹ)eβ̃TZ(X,H)

)}1−�Pγ (H)

=
∑

H∈S(G)

{
�̇(Ỹ)eβTZ(X,H)Q̇

(
�(Ỹ)eβTZ(X,H)

)}�

× {
1 − Q

(
�(Ỹ)eβTZ(X,H)

)}1−�Pγ (H).

By choosing � = 1 and integrating Y from 0 to τ on both sides, we
obtain

∑

H∈S(G)

Q
(
�̃(τ )eβ̃TZ(X,H)

)
Pγ (H)

=
∑

H∈S(G)

Q
(
�(τ)eβTZ(X,H)

)
Pγ (H).

Because Q(·) is strictly increasing, the foregoing equation implies that

�̃(Ỹ)eβ̃TZ(X,H) = �(Ỹ)eβTZ(X,H) for H = (h,h) and H = (h, h̃). It
then follows from Condition 8 that β̃ = β and �̃ = �.

A.5.2 Proof of Theorem 4. Our problem is the same as that of
Zeng et al. (2005), except replacing the integration over random ef-
fects in that article by the sum over H ∈ S(G). The asymptotic prop-
erties stated in the theorem follow from the identifiability shown in
Section A.5.1 and the proofs of Zeng et al. (2005), provided that we
can verify the following result: If there exist a vector µ = (µT

β ,µT
γ )T

and a function ψ(t) such that

µT lθ (θ0,�0) + l�(θ0,�0)

[∫

ψ d�0

]

= 0, (A.14)

where lθ is the score function for θ and l�[∫ ψ d�0] is the score func-
tion for � along the submodel �0 +ε

∫
ψ d�0, then µ = 0 and ψ = 0.

To prove the desired result, we write out (A.14). We then let � = 1
and integrate Y from 0 to τ to obtain

∑

H∈S(G)

{
Q

(
�0(τ )eβT

0Z(X,H)
)}

Pγ (H)

×
{ Q̇(�0(τ )eβT

0Z(X,H))�0(τ )eβT
0Z(X,H)µT

βZ(X,H)

Q(�0(τ )eβT
0Z(X,H))

+ Q̇(�0(τ )eβT
0Z(X,H))

∫ τ
0 ψ(t)d�0(t) eβT

0Z(X,H)

Q(�0(τ )eβT
0Z(X,H))

+ µT
γ ∇γ log Pγ (H)

}

= 0. (A.15)

In contrast, by letting � = 0 and Y = τ in (A.14), we have
∑

H∈S(G)

{
1 − Q

(
�0(τ )eβT

0Z(X,H)
)}

Pγ (H)

×
{

−
Q̇(�0(τ )eβT

0Z(X,H))�0(τ )eβT
0Z(X,H)µT

βZ(X,H)

1 − Q(�0(τ )eβT
0Z(X,H))

− Q̇(�0(τ )eβT
0Z(X,H))

∫ τ
0 ψ(t)d�0(t) eβT

0Z(X,H)

1 − Q(�0(τ )eβT
0Z(X,H))

+ µT
γ ∇γ log Pγ (H)

}

= 0. (A.16)

The summation of (A.15) and (A.16) entails µT
γ ∇γ log Pγ (H) = 0.

From the proof of Lemma 1, µγ = 0. We choose G = 2h or h + h̃ and

let � = 1 and Y = 0 in (A.14) to obtain µT
βZ(X,H) + ψ(0) = 0 for

H = (h,h) and (h, h̃). Thus, µβ = 0 and ψ(0) = 0 under Condition 8.
Finally, (A.14) with � = 1 implies that

ψ(Ỹ) + Q̈(�0(Ỹ)eβT
0Z(X,H))

∫ Ỹ
0 ψ(t)d�0(t) eβT

0Z(X,H)

Q̇(�0(Ỹ)eβT
0Z(X,H))

= 0

for H = (h,h). Therefore, ψ = 0.

[Received September 2004. Revised February 2005.]
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Comment
Chiara SABATTI

The detailed and careful article by Lin and Zeng deals with
the estimation of haplotype effects. It is perhaps useful to give
a little more genetical background on the problem at hand.
Through epidemiological studies (where, e.g., one compares
risk of siblings or twins of affected individuals with popula-
tion prevalence) we can identify that some diseases have a clear
genetic component. That is, there are modifications in the DNA
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sequence that predispose carriers to develop the disease. These
modifications have varied nature; there may be mutations, inser-
tions, or deletions in the gene sequence that lead to the synthesis
of a different protein, or these variations may take place in non-
coding portions of DNA, affecting slicing patterns or expres-
sion levels. Understanding the nature of these mutations and
their functional effects is of considerable importance; it leads to

© 2006 American Statistical Association
Journal of the American Statistical Association

March 2006, Vol. 101, No. 473, Theory and Methods
DOI 10.1198/016214505000000817

http://www.ingentaconnect.com/content/external-references?article=0001-5652()55L.56[aid=7131338]
http://www.ingentaconnect.com/content/external-references?article=0001-5652()55L.56[aid=7131338]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()409L.928[aid=5137106]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()26L.255[aid=7131336]
http://www.ingentaconnect.com/content/external-references?article=1367-4803()21L.781[aid=7131335]
http://www.ingentaconnect.com/content/external-references?article=0047-259X()79L.1[aid=6803419]
http://www.ingentaconnect.com/content/external-references?article=0047-259X()79L.1[aid=6803419]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()23L.221[aid=7131334]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()23L.221[aid=7131334]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()70L.157[aid=5137160]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()70L.157[aid=5137160]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()294L.1719[aid=4710132]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()71L.1242[aid=7131332]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()405L.847[aid=2285793]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()27L.192[aid=7131331]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()27L.192[aid=7131331]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()27L.348[aid=7131330]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()70L.425[aid=6917491]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()70L.425[aid=6917491]
http://www.ingentaconnect.com/content/external-references?article=0006-3444()84L.57[aid=1802684]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()25L.48[aid=7131329]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()68L.978[aid=1498773]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()68L.978[aid=1498773]
http://www.ingentaconnect.com/content/external-references?article=0001-5652()53L.79[aid=5298662]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()24L.74[aid=7131325]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()291L.1304[aid=1510651]
http://www.ingentaconnect.com/content/external-references?article=0001-5652()55L.179[aid=7131328]
http://www.ingentaconnect.com/content/external-references?article=0001-5652()55L.179[aid=7131328]
http://www.ingentaconnect.com/content/external-references?article=0149-5992()21L.949[aid=7131327]
http://www.ingentaconnect.com/content/external-references?article=0149-5992()21L.949[aid=7131327]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()69L.906[aid=7131323]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()69L.906[aid=7131323]
http://www.ingentaconnect.com/content/external-references?article=0741-0395()28L.70[aid=7131324]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()72L.1231[aid=7131322]
http://www.ingentaconnect.com/content/external-references?article=0002-9297()72L.1231[aid=7131322]
http://dx.doi.org/10.1198/016214505000000817

