
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper 

 Hum Hered 2011;71:148–160 
 DOI: 10.1159/000324841 

 A Bayesian Hierarchical Model for Detecting 
Haplotype-Haplotype and Haplotype-Environment
Interactions in Genetic Association Studies 

 Jun Li    Kui Zhang    Nengjun Yi  

 Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham,
 Birmingham, Ala. , USA 

sparseness in the fitted model and facilitates computation. 
We develop a fast expectation-maximization algorithm to fit 
models by estimating posterior modes of coefficients. We 
incorporate our algorithm into the iteratively weighted least 
squares for classical generalized linear models as imple-
mented in the R package glm. We evaluate the proposed 
method and compare its performance to existing methods 
on extensive simulated data.  Conclusion:  The results show 
that the proposed method performs well under all situations 
and is more powerful than existing approaches. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Genome-wide and candidate gene association studies 
based on linkage disequilibrium (LD) are cost effective 
and statistically efficient tools to unravel the genetic ar-
chitecture of complex human diseases  [1, 2] . Although 
methods based on individual single nucleotide polymor-
phisms (SNPs) may lead to significant findings  [2, 3] , hap-
lotypes comprising multiple SNPs on the same inherited 
chromosomal region have long been of great interest and 
have attracted much attention in recent years  [4–7] . First, 
haplotypes are biologically relevant. There is strong evi-

 Key Words 
 Bayesian methods  �  Generalized linear models  �  Genetic 
associations  �  Hierarchical models  �  Haplotype  �  
Haplotype-haplotype interactions  �  Haplotype-environment 
interactions 

 Abstract 
  Objective:  Genetic association studies based on haplotypes 
are powerful in the discovery and characterization of the ge-
netic basis of complex human diseases. However, statistical 
methods for detecting haplotype-haplotype and haplo-
type-environment interactions have not yet been fully de-
veloped owing to the difficulties encountered: large num-
bers of potential haplotypes and unknown haplotype pairs. 
Furthermore, methods for detecting the association be-
tween rare haplotypes and disease have not kept pace with 
their counterpart of common haplotypes.  Methods/Results:  
We herein propose an efficient and robust method to tackle 
these problems based on a Bayesian hierarchical generalized 
linear model. Our model simultaneously fits environmental 
effects, main effects of numerous common and rare haplo-
types, and haplotype-haplotype and haplotype-environ-
ment interactions. The key to the approach is the use of a 
continuous prior distribution on coefficients that favors 
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dence that several mutations within a gene may interact 
( cis -interaction) to cause a disease  [8] . Haplotype-based 
methods provide a natural way to capture such  cis -inter-
actions  [9] . Second, the power of single-marker-based 
methods in association studies depends on LD between 
the tested marker and the disease susceptibility locus. LD 
information contained in flanking markers is generally 
not incorporated, which can result in a reduction in pow-
er  [10] . Therefore, haplotype-based association methods 
can be more powerful than those based on single markers 
since the former fully exploits LD information from mul-
tiple markers  [9, 11] . Both simulation and empirical stud-
ies also support this conclusion  [11, 12] . In addition, hap-
lotype-based methods can be more powerful when mul-
tiple disease susceptibility alleles occur within a single 
gene  [9] .

  A number of statistical methods have been proposed 
to examine the association between haplotypes and hu-
man complex diseases  [7, 12, 13] . Although many of these 
 approaches have been widely used in association studies, 
the majority of them only focus on the estimation of mar-
ginal effects of haplotypes and the detection of the asso-
ciation between common haplotypes and diseases, while 
little  attention has been paid so far to developing statisti-
cal methods for investigating the interacting effects be-
tween haplotypes and environmental factors, especially 
those between haplotypes in different haplotype blocks, 
and exploring disease associations with rare haplotypes
 [14, 15] .

  Increasing evidence suggests that gene-gene and gene-
environment interactions play an important role in sus-
ceptibility to complex human diseases  [16–20] . The inves-
tigation of such interactions may provide more insight 
into disease etiology and ultimately result in new strate-
gies for the treatment and prevention of a disease. As an 
earlier attempt to explore the interaction between haplo-
types and environmental factors, Lake et al.  [21]  pro-
posed a likelihood-based method in the generalized lin-
ear model framework, which has been commonly em-
ployed in haplotype-based association studies, because it 
is publicly available and easy to implement with its R 
package. This approach, however, is limited by ignoring 
the interacting effects between haplotype blocks. Subse-
quently, several methods have been developed to study 
haplotype-related interactions, but these methods do not 
consider all potential haplotypes and interactions simul-
taneously  [22–27] . Recently, Guo and Lin  [15]  proposed a 
generalized linear model with regularization to detect in-
teracting haplotype effects. However, their method ap-
plies an omnibus test and consequently does not provide 

inference on the effects of specific haplotypes and their 
interactions. Another concern for haplotype-based meth-
ods is that large numbers of haplotypes inferred from 
genotype data  [28–30]  often lead to high degrees of free-
dom for corresponding statistical tests and thus reduce 
power  [14, 15, 31–34] . If interacting effects are considered, 
such problems become severer. Unfortunately, few statis-
tical methods have been developed to tackle these far-
reaching problems in the study of haplotype interactions.

  One challenge in haplotype-based association studies 
is that for haplotypes comprising multiple markers, there 
might be many rare haplotypes. Because of their low fre-
quencies, the parameter estimates related to rare haplo-
types will have large variances, leading to unstable mod-
els. Schaid  [6]  described several approaches to handle rare 
haplotypes. One approach is to combine all rare haplo-
types into one group or rare haplotypes with common 
ancestral haplotypes, and another is to exclude them 
from the model, which is equivalent to including them in 
the baseline group. However, both approaches yield re-
sults that may be difficult to interpret. In addition, it has 
been argued that rare haplotypes may account for a sub-
stantial fraction of the multifactorial inheritance of com-
mon diseases  [35–39] , thus the aforementioned approach-
es may miss the rare haplotypes having true effects. An-
other approach is to include the effects of each rare 
haplotype in the model but shrink their effects towards 
the common mean or towards the effect of a similar hap-
lotype  [6, 15, 40] . Recently, Guo and Lin  [15]  adopted a 
lasso penalty in their generalized linear model to allow 
assessment of the effects of rare haplotypes by decreasing 
the coefficients of unassociated haplotypes to zero so that 
the associated ones, especially those that are rare, can be 
estimated.

  In this article, we propose a new approach to investi-
gate the association between haplotypes and human dis-
eases based on the hierarchical generalized linear model. 
The proposed method is built upon a Bayesian frame-
work with weakly informative priors on the coefficients. 
It can deal with various types of phenotypes in popula-
tion-based association studies, and can simultaneously 
fit a large number of effects, including main effects of 
 numerous common and rare haplotypes, environmen-
tal  effects, haplotype-haplotype interactions, and haplo-
type-environment interactions. We fit our Bayesian gen-
eralized linear models by incorporating an expectation-
maximization (EM) algorithm into the usual iteratively 
weighted least squares as implemented in the R package 
glm. This strategy leads to stable and flexible computa-
tional tools and allows us to apply any generalized linear 
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model to haplotype-based association studies. We inves-
tigated the statistical properties and performance of the 
proposed method and compared it with three existing 
methods, the classical generalized linear model, the 
method of Lake et al.  [21] , and the method of Guo and Lin 
 [15] , through extensive simulation studies. The results 
show that the proposed method performs well under all 
situations and is more powerful than the existing ap-
proaches.

  Methods 

 Generalized Linear Models of Interacting Haplotypes 
 Suppose that a population-based association study consists of 

 n  unrelated individuals, phenotyped for a disease trait, and geno-
typed for multiple genetic variants (e.g. SNPs) in multiple genom-
ic regions or haplotype blocks. Although our method can deal 
with various phenotypes, we demonstrate its performance with a 
binary disease trait as in case-control studies. We use generalized 
linear models to relate disease status to haplotypes and environ-
mental factors. We simultaneously fit environmental ( E ) effects, 
main effects of haplotypes ( H ), and haplotype-haplotype ( H  !  H ), 
and haplotype-environment ( H  !  E ) interactions. The general-
ized linear model is expressed as

h(Pr(yi = 1)) = �0 + XE�E + XH�H + XHH�HH + XHE�HE)i = Xi�    (1)

  where  h  is a link function or transformation which relates the lin-
ear predictor  X  i  �  to the disease probability Pr( y  i  = 1);  �  0  is the 
intercept,  �  E  and  �  H  are the vectors of environmental effects and 
all possible haplotype main effects, respectively;  �  HH  is the vector 
of all possible haplotype-haplotype interactions between differ-
ent regions;  �  HE  is the vector of haplotype-environment interac-
tions, and  X  E ,  X  H ,  X  HH , and  X  HE  are the corresponding design 
matrices of effect predictors. Various link functions are provided 
in generalized linear models  [41] , all of which can be adapted in 
our Bayesian framework. For case-control studies, we can use the 
logit or probit link function. 

 Construction of the Design Matrices 
 Since haplotypes are usually not directly measured, the poste-

rior probabilities of haplotype pairs are first computed from the 
observed genotype data for each subject to account for this ambi-
guity using existing methods of haplotype inference  [12, 28–30] . 
These posterior probabilities are then used to compute the esti-
mates of haplotype dosage  [42] .

  The estimate of haplotype dosage is the estimate of the num-
ber of copies of a specific haplotype for a subject. For the haplo-
types that can be unambiguously resolved based on the observed 
genotype data, the values of haplotype dosage of a haplotype for 
a subject can be 0, 1, or 2. But for the haplotypes that cannot be 
unambiguously resolved, the values of haplotype dosage of a hap-
lotype for a subject would be non-integer, ranging from zero to 
two, reflecting the possibility that haplotypes are based on the 
subject’s genotypes. For each subject, the sum of haplotype dosage 
across all haplotypes is equal to two. After obtaining the estimates 
of haplotype dosage, they can be used to construct the design ma-
trix   X   H .

  Suppose there are  W  q  possible haplotypes in the  q -th haplo-
type block in the population,  q  = 1, 2, ...,  Q , and let  d  iqw ,  w  = 1,
2, ...,  W  q , denote the estimate of haplotype dosage of the  w -th hap-
lotype in the  q -th haplotype block for subject  i . Therefore, we can 
set (  X   H ) i  = ( d  i  12 , ...,  d  i  1  W , ...,  d  iQ  2 , ...,  d  iQW Q  ).

  For the environmental factors, the raw values are transformed 
to have   a mean of 0 and a standard deviation of 0.5  [43, 44] . This 
transformation standardizes all the environmental effects to have 
a common scale. The matrices of interacting variables,   X   HE  and 
  X   HH , are set up by simply multiplying two corresponding realiza-
tions of   X   E  and   X   H .

  Prior Distributions 
 The above model can include a large number of highly corre-

lated predictors, leading to the problems of high dimensionality 
and collinearity that preclude the use of classical maximum like-
lihood methods. We handle these problems using a Bayesian ap-
proach that places appropriate prior distributions on coefficients 
to obtain stable estimates. We assume independent Student t pri-
ors  t   �    j   (0,  s  2  j  ) on coefficients  �  j , with  �  j  and  s  j  predetermined. We 
are motivated to use the t distribution because it allows for flexible 
modeling, robust inference, and easy and stable computation  [43–
45] . The distribution t  �    j   (0,  s  2  j  ) can be expressed as a mixture of 
normal distributions with mean 0 and variance distributed as 
scaled inverse- �  2 :

  �  j   �  �   2  j    �   N (0,�  2  j  ), �  2  j    � Inv- �  2  ( �  j , s  2  j  ),  j  = 0, 1, ...,  J ,                   (2)

 where  J  is the total number of effects in the model, and the hyper-
parameters  �  j   1  0 and  s  j   1  0 represent the degrees of freedom and 
the scale of the distribution, respectively. 

 The hyperparameters  �  j  and  s  j  control the global amount of 
shrinkage in the effect estimation; larger  �  j  and smaller  s  2  j     induce 
stronger shrinkage and force more effects to be near zero. The 
method of Yi et al.  [45]  is used to choose  �  j  and  s  j . For   �   0 ,   �   E  and 
  �   H , we employ the weakly informative priors recommended
by Gelman et al.  [43] , i.e. ( �  0 ,  s  0 ) = (1, 10) for  �  0 , and ( �  j ,  s  j ) =
(1, 2.5) for   �   E  and   �   H . For haplotype-environment interactions 
  �   HE , we set ( �  j ,  s  j ) = (1, 2.5  k  H / k  HE ), where  k  H  and  k  HE  are the total 
numbers of main effects of haplotypes and haplotype-environ-
ment interactions, respectively. For haplotype-haplotype interac-
tions   �   HH , we set ( �  j ,  s  j ) = (1, 2.5  k  H / k  HH ), where  k  HH  is the total 
number of haplotype-haplotype interactions. Because there are 
many more interactions than main effects, these priors apply 
more stringent restrictions on interactions and allow reliable es-
timates of main effects and interactions  [45] .

EM Algorithm for Model Fit
The EM algorithm is used to fit the hierarchical haplotype 

models with the Student t priors by estimating the marginal pos-
terior modes of the coefficients   �   j  [44, 45]. We incorporate our 
algorithm into the iteratively weighted least squares for classical 
generalized linear models as implemented in the R package glm. 
The standard iteratively weighted least squares algorithm approx-
imates a generalized linear model by a normal linear model [43, 
46]. Specifically, at each iteration, pseudo-data zi and pseudo-
variances σ  2i  are calculated for each subject i based on the cur-
rent estimates of parameters, then the generalized linear model 
like lihood p(yi � Xi�,ϕ) is approximated by a normal likeli-
hood N(zi � Xi�, σ  2i ), and finally the parameters �j are updated by 
a weighted linear regression.   
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  Our EM algorithm uses the two-level expression of the  t  prior 
distribution and treats the unknown variances �  2  j  as missing data. 
In each E-step, we replaced the unknown variances �  2  j  by their 
posterior expectations, 
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ˆ
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  Given the variances �  2  j  , the priors  �  j   �  �  2  j    �   N (0, �  2  j  ) are treated as 
additional ‘data points’, added to the weighted normal regression 
 N ( z  i   �   X  i  � , σ  2i ). In each M-step, the standard iteratively weighted 
least squares algorithm is applied to the augmented weighted nor-
mal regression to update the coefficients  �  j . We implement these 
computations by altering the glm function in R for fitting gener-
alized linear models, inserting the steps for calculating the aug-
mented data and updating the variances into the iterative proce-
dure. 

 The EM algorithm is initialized by setting each  �  j  to a small 
value (say  �  j  = 0.1) and  �  j  to the starting value provided by the stan-
dard iteratively weighted least squares for the classical generalized 
linear model as implemented in the R function glm. We repeat the 
E-step and the M-step until convergence. At convergence of the 
algorithm, we obtain all outputs from the R function glm, includ-
ing the estimates  �  ̂   j , standard errors, and p values (for testing  �  j  = 
0). The standard errors are calculated from the inverse second de-
rivative matrix of the log posterior density evaluated at  �  ̂   j ,  [43] . The 
p values are then determined by the estimates  �  ̂   j , and their stan-
dard errors as in the classical framework.

  Simulation Study 

 We used extensive simulation studies to evaluate the statistical 
properties and performance of the proposed method. Our simula-
tion utilized real haplotype data, the TGFBR1 haplotype-tagging 
SNP (htSNP) data reported in a genetic case-control association 
study of TGFBR1 haplotypes and risk of non-cell lung cancer  [47] . 
The six htSNPs were partitioned into two blocks, one forming 
2-SNP haplotypes and the other forming 4-SNP haplotypes, 
based on the estimation of Lewontin ( D �  ) and squared correlation 
coefficients ( r  2 ). The haplotype frequencies were estimated for the 
2-SNP and 4-SNP haplotypes, respectively, and are presented in 
 table 1 . Given these haplotype frequencies, we generated case and 
control subjects, assuming Hardy-Weinberg equilibrium for the 
haplotype pair of each individual and a logistic regression model 
for the disease risk. The baseline penetrance of disease (the pro-
portion of affected subjects with a pair of non-disease-associated 
haplotypes) was set at 10%. A binary variable, smoking status with 
a proportion of 49% as in Lei et al.  [47] , was included in the mod-
el as a covariate and was considered in haplotype-environment 
interactions. The results from the proposed method (referred to 
as BayesGLM) were compared with those from the classical gen-
eralized linear model (referred to as GLM), the method of Lake et 
al.  [21]  (referred to as ScoreGLM), and the method of Guo and Lin 
 [15]  (referred to as rGLM). The method of Lake et al.  [21]  uses a 
generalized linear model with a two-step iteration process: the 
posterior probabilities of haplotype pairs per subject are used as 
weights to update the regression coefficients, and the regression 

coefficients are then used to update the posterior probabilities. 
The method of Lake et al.  [21]  has been implemented in the freely 
available software R/haplo.stats (http://mayoresearch.mayo.edu/
mayo/research/schaid_lab/software.cfm). Guo and Lin  [15]  also 
created an R package to carry out their method and it is available 
free at the website: http://www.stat.osu.edu/ � statgen/SOFT-
WARE/rGLM/.

  Simulation Settings 
 Five scenarios were posed to carry out our evaluation processes. 

To examine whether the proposed method can be applied to both 
common and rare haplotypes, we considered a rare haplotype, 
 haplo4.3 , two moderately rare haplotypes,  haplo4.2  and  haplo4.4 , 
and a common haplotype,  haplo4.1 , in the 4-SNP haplotype block, 
and a moderately rare haplotype,  haplo2.3 , in the 2-SNP haplotype 
block to be associated with the disease in the five scenarios.

  In the first two scenarios, we considered only the main effects 
of haplotypes arising from the 4-SNP haplotype block. Specifi-
cally, in the first scenario, we assumed that  haplo4.1  and  hap-
lo4.3  increased the odds of getting disease 2- and 3-fold, respec-
tively, and  haplo4.2  and  haplo4.4  were not associated with the 
disease. In the second scenario, we assumed that  haplo4.1 ,  hap-
lo4.2 ,  haplo4.3 , and  haplo4.4  increased the odds of getting dis-
ease 2-, 3-, 4-, and 3-fold, respectively, and none of the other 8 
haplotypes in the 4-SNP haplotype block were associated with 
the disease ( table 2 ).

  In the third to fifth scenarios, we considered both the main 
and interacting effects arising between haplotypes in the two hap-
lotype blocks, and between the haplotypes and smoking status. 
We assumed the effects in a similar way as we did in the first two 
scenarios ( table 2 ). Of note, in the last scenario, we considered all 
the main effects of haplotypes and smoking status, and all pos-
sible interacting effects between the two haplotype blocks and 
between the haplotypes and smoking status. In this scenario, 
there are a total of 81 terms, including 17 marginal and 64 inter-
acting terms ( table 2 ).

  Each of these five scenarios had three different sample sizes: 
250, 500, and 1,000, with equal numbers of cases and controls. A 

Table 1. H aplotype patterns and their frequencies

4-SNP haplotype 2 -SNP haplotype

haplotype pattern frequency hapl otype pattern frequency

haplo4.1 1111 3.27!10–1 haplo2.1 11 4.28!10–1

haplo4.2 1112 2.71!10–2 haplo2.2 12 3.03!10–1

haplo4.3 1121 7.04!10–3 haplo2.3 21 3.33!10–2

haplo4.4 1211 6.64!10–2 haplo2.4 22 2.36!10–1

haplo4.5 1212 9.50!10–9

haplo4.6 1221 1.35!10–1

haplo4.7 1222 2.06!10–9

haplo4.8 2111 2.78!10–3

haplo4.9 2121 4.82!10–3

haplo4.10 2211 1.22!10–2

haplo4.11 2212 4.14!10–1

haplo4.12 2222 3.27!10–3
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total of 1,000 replicates were generated under each of these 15 set-
tings. All of the generated data were analyzed using ScoreGLM, 
GLM, rGLM, and BayesGLM, respectively.

  In summary, the following procedure of data generation, sta-
tistical analysis, and comparison of results was applied:
  (1)  Genotype Data Generation.  Randomly drew 2 haplotypes 

(phased haplotype pairs) for each subject from the observed 
haplotypes ( table 1 ). 

 (2)  Covariate Data Generation.  Smoking status for each subject 
was determined from a Bernoulli distribution with the ob-
served proportion of smoking. 

 (3)  Case/Control Data Generation.  Set up the ‘true’ values of pa-
rameters as described in the simulation settings. Using these 
‘true’ values as well as the generated phased haplotypes and 
smoking status, an individual was assigned to be a case or con-
trol according to the probabilities derived from a classical lo-
gistic regression model. 

 (4)  Model Fit.  The generated phased haplotypes and smoking sta-
tus were used as predictors to fit four kinds of models based 
on ScoreGLM, GLM, rGLM, and BayesGLM, respectively. 

 (5)  Replication.  Steps 1–4 were repeated 1,000 times. 
 (6)  Statistics Calculation.  (1) Calculated 68 and 95% intervals that 

covered the ‘true’ values for each parameter in the model:
 �  b  j  – b̂  j   �   !   z   �    se  j , where  b  j  is the ‘true’ value of the  j  -th parameter, 
 j  = 1, 2, ...,  J ,  b̂   j     is an estimated coefficient of the  j -th parame-
ter,  z   �   is an upper critical value of the standard normal dis-
trib ution for a desired significance level  � , and  se  is the

standard error of the estimated coefficients. (2) Calculated 
empirical powers for each parameter in the model:  power  = 
1/ R  �  R  r   = 1  I  (  p rj   ̂    � ) , where  R  is the number of replicates required, 
 p  rj  is the p value of the  j -th parameter in the  r -th replicate,
and  �  is the significance level taking three values of 0.05,
0.01, or 0.001. 

 Results 

 Nonidentifiability of Parameters in Model Fit 
 There was one main problem, the nonidentifiability 

of parameters, which was encountered in the model fit 
using the classical methods. This problem is first point-
ed out here because it frequently occurred and resulted 
in serious problems. Specifically, we found that the stan-
dard errors of some predictors in the models were large 
and hence the coefficients were essentially infinite when 
using haplo.glm in R/haplo.stats based on ScoreGLM or 
using glm in R based on GLM, whereas there was no 
such problem when using the proposed method, Bayes-
GLM (data not shown). We could not evaluate the non-
identifiability of parameters when using rGLM because, 

Table 2. M arginal and interacting terms and their effects in the five simulation scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 S cenario 5

term OR term OR term OR term OR te rm OR

haplo4.3 3 haplo4.3 4 haplo2.3:haplo4.1 4 haplo2.3:haplo4.3 5 haplo2.3:haplo4.3 5
smoke:haplo4.3 smoke:haplo4.3

haplo4.1 2 haplo4.2 3 haplo4.3 3 haplo4.3 4 haplo4.3 4
haplo4.4 smoke:haplo4.1 haplo2.3:haplo4.1 haplo2.3:haplo4.1

smoke:haplo2.3 smoke:haplo2.3

haplo4.2 1 haplo4.1 2 haplo2.3 2 haplo2.3, haplo4.2
haplo4.4 
smoke:haplo4.1

3 haplo2.3, haplo4.2, 
haplo4.4
smoke:haplo4.1

3
haplo4.4 haplo4.1

smoke

haplo4.5, haplo4.6 1 haplo4.2 1 haplo4.1 2 haplo4.1 2
haplo4.7, haplo4.8 haplo4.4 smoke smoke
haplo4.9, haplo4.10
haplo4.11, haplo4.12

haplo2.1, haplo2.2 1 other 70
effects

1
haplo2.4, haplo4.5
haplo4.6, haplo4.7
haplo4.8, haplo4.9
haplo4.10, haplo4.11
haplo4.12

‘:’ Stands for an interaction between two terms (before and after ‘:’).
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as mentioned earlier, rGLM can only perform an overall 
test based on permutation and consequently does not 
provide standard errors for each predictor in the model 
fit.

  The further question that might be asked is how often 
and how serious the problem is. To this end, we summa-
rized the results regarding the nonidentifiability of pa-
rameters in the model fit for all of the simulation settings 
in  table 3 . We can see that with increasing sample size, 
the proportions of nonidentifiability of parameters de-
creased in each of the first four scenarios of ScoreGLM 
and GLM. Under a fixed sample size, the proportions of 
nonidentifiability of parameters followed the order: sce-
nario 5  1  scenario 4  1  scenario 2  1  scenario 3  1  scenario 
1 for both ScoreGLM and GLM. In scenarios 2, 4, and 5 
of ScoreGLM and GLM, all of the proportions exceeded 
50% except that in scenario 2 of ScoreGLM with a sample 
size of 1,000 (39%). In contrast, in scenarios 1 and 3, only 
the proportion in scenario 3 of GLM with a sample size 
of 250 barely exceeded 50% (51%). For BayesGLM, there 
was no problem observed with the nonidentifiability of 
parameters in all of the simulation settings. Obviously, 
the larger the proportions of nonidentifiability of param-
eters, the less stable the estimated coefficients  [48, 49] . 
Therefore, our results involving comparisons of the three 
methods were derived only from the replicates without 
the nonidentifiability of parameters in scenarios 1 and 3, 
unless otherwise specified.

  Main Effect Model 
 In scenario 1, only 4 haplotypes in the 4-SNP haplo-

type block were modeled as main effects for the disease 
( table 2 ). The ‘true’ values prespecified for these 4 haplo-
types were first compared to their corresponding esti-
mated coefficients based on the four methods (left col-
umn of  fig. 1 ). Under the sample size of 250, wider esti-
mated 68 and 95% intervals that covered the ‘true’ values 
calculated based on BayesGLM were observed for each of 
4 haplotypes compared to those calculated based on the 
other three methods, with the only exception that rGLM 
had little wider estimated intervals than BayesGLM for 
 haplo4.1  (top left corner of  fig. 1 ). With the increase in 
sample sizes, however, the superiority of reliability of 
BayesGLM   faded for all of the haplotypes except  haplo4.3  
(middle left and bottom left corner of  fig. 1 ), although its 
two coverage rates maintained a low growth rate. For all 
of the four methods,  haplo4.3  had lower coverage than 
the other haplotypes, no matter what sample sizes were 
considered.

  In this and the following subsections, we did not con-
sider rGLM in the evaluation of empirical power as well 
as type I errors because, as mentioned before, its omnibus 
test does not produce p values for individual effects. 
Therefore, the empirical powers were calculated based 
only on ScoreGLM, GLM, and BayesGLM for  haplo4.1  
and  haplo4.3 , from which we tried to evaluate the ability 
of these methods to detect any disease-predisposing hap-
lotypes. Under the sample size of 250, BayesGLM dem-
onstrated higher probabilities for detecting genetic ef-
fects compared to both ScoreGLM and GLM (top right 
corner of  fig. 1 ). Although the advantage of BayesGLM in 
the statistical validity was diminishing with the increase 
in sample size, it still persisted, especially for the rare hap-
lotype,  haplo4.3 , and for the powers under  �  = 0.001 and 
0.01 (middle right and bottom right corner of  fig. 1 ). For 
all of the three methods, a sample size of 500 was suffi-
cient to detect a common haplotype with a power of 90% 
approximately, and a sample size of 1,000 was sufficient 
to identify a rare haplotype with a power of 85% approx-
imately.

  The empirical type I error rates were also calculated 
for  haplo4.2  and  haplo4.4  based on ScoreGLM, GLM, and 
BayesGLM. For the sample sizes of 250 and 500, type I 
error rates under  �  = 0.05 were a little lower with Bayes-
GLM  than with both ScoreGLM and GLM. As the sam-
ple size went up to 1,000, all type I error rates decreased 
to zero.

Table 3. P roportions of nonidentifiability of parameters for all of 
the simulation settings

Sample size Scenario ScoreGLM GLM BayesGLM

250 1 0.34 0.47 0.00
2 0.69 0.78 0.00
3 0.42 0.51 0.00
4 0.79 0.88 0.00
5 1.00 1.00 0.00

500 1 0.22 0.33 0.00
2 0.58 0.67 0.00
3 0.30 0.38 0.00
4 0.68 0.73 0.00
5 1.00 1.00 0.00

1,000 1 0.09 0.16 0.00
2 0.39 0.54 0.00
3 0.16 0.21 0.00
4 0.56 0.61 0.00
5 1.00 1.00 0.00
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  Main and Interacting Effect Model 
 In scenario 3, both the main and interacting effects 

arising between the two haplotype blocks and between 
the haplotypes and the environmental factor were joint-
ly considered in the model fit for the four methods ( ta-
ble 2 ). However, since  H   !   E  interactions cannot be fit-
ted using the current version of the rGLM, interaction 
between  smoke  and  haplo4.1  was set only for ScoreGLM, 
GLM, and BayesGLM, and since  H   !   H  interactions 
cannot be fitted using haplo.glm based on ScoreGLM, 
the interaction between  haplo2.3  and  haplo4.1  was set 
only for GLM, rGLM, and BayesGLM. So there were a 
total of 8 terms as predictors included in the model with 
6 of them assumed to be disease-associated ( fig. 2 ). Un-

der the sample size of 250, wider estimated 68 and 95% 
intervals that covered the ‘true’ values calculated based 
on BayesGLM were found for each of the 8 predictors 
compared to those calculated based on the other three 
methods, with the only exception that rGLM had little 
wider estimated intervals than BayesGLM regarding 
smoking status ( smoke ) and  haplo4.1  (top left corner of 
 fig. 2 ). Although the lead of BayesGLM in the statistical 
reliability was narrowed with the increase in sample siz-
es, it continued to exist, especially for the rare haplotype 
 haplo4.3  and the interacting terms  smoke : haplo4.1  and 
 haplo2.3 : haplo4.1  (middle left and bottom left corner of 
 fig. 2 ). For all of the four methods, the rare haplotype 
and the interacting terms had quite lower coverages 
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  Fig. 1.  Main effect model: estimated 68
and 95% coverages of the ‘true’ values (in-
dicated by bold and thin horizontal lines 
in the left column, respectively) and em-
pirical powers or type I error rates [empir-
ical powers or type I error rates for  �    = 
0.001 (  !  ),   �  = 0.01 (o), and  �  = 0.05 (+)] 
for each of 4 haplotypes based on the four 
methods with sample sizes of 250 (top), 
500 (middle), and 1,000 (bottom). B = 
BayesGLM; C = GLM; R = rGLM; S = 
ScoreGLM. 
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  Fig. 2.  Main and interacting effect model: estimated 68 and 95% 
coverages of the ‘true’ values (indicated by bold and thin horizon-
tal lines in the left column, respectively) and empirical powers or 
type I error rates [empirical powers or type I error rates for  �    = 

0.001 (  !  ),  �  = 0.01 (o), and  �  = 0.05 (+)] for each of 8 predictors 
based on the four methods with sample sizes of 250 (top), 500 
(middle), and 1,000 (bottom). B = BayesGLM; C = GLM; R = 
rGLM; S = ScoreGLM. 
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than the other predictors in the model, no matter what 
sample sizes were considered, which was in agreement 
with the finding in the foregoing analysis of main ef-
fects.

  The empirical powers were calculated for  smoke ,  hap-
lo2.3 ,  haplo4.1 ,  haplo4.3 ,  smoke : haplo4.1 , and  haplo2.3 :
 haplo4.1  based on ScoreGLM, GLM, and BayesGLM. 
For  smoke , the powers were comparable for ScoreGLM, 
GLM, and BayesGLM, no matter what sample sizes were 
considered (top three lines in each of three right panels 
of  fig. 2 ). This is reasonable because, for a common en-
vironmental factor with a decent frequency, any statisti-
cal test can achieve similar power for detecting it and 
the possible difference of powers among some tests can 
be explained by the random variability. For the predic-
tors  haplo2.3 ,  haplo4.1 , and  haplo4.3 , the results were 
almost the same as those in the preceding subsection of 
main effects. For  smoke : haplo4.1 ,   under the sample size 
of 250, BayesGLM had higher power only for  �  = 0.05 
compared to ScoreGLM (top right corner of  fig. 2 ). With 
the increase in sample sizes, however, the situation was 
soon improved and eventually turned around (middle 
right and bottom right corner of  fig. 2 ). For  haplo2.3 : 
haplo4.1 , BayesGLM demonstrated a higher probability 
for correctly detecting genetically interacting effects 
under each of three fixed type I error rates and each of 
three sample sizes compared to both ScoreGLM and 
GLM (bottom two lines in each of the three right panels 
of  fig. 2 ).

  The empirical type I error rates were also calculated 
for  haplo4.2  and  haplo4.4  based on ScoreGLM, GLM, and 
BayesGLM, as in the preceding subsection of main ef-
fects, and similar results were observed.

  Full Model 
 In scenario 5, a total of 81 marginal and interacting 

terms arising between the two haplotype blocks and be-
tween the haplotypes and the environmental factor were 
simultaneously considered ( table 2 ). As can be seen from 
 table 3 , however, all the proportions of nonidentifiabil-
ity of parameters jumped to 1 for both ScoreGLM and 
GLM in scenario 5. Consequently, the statistical estima-
tions under this situation should be quite unstable and 
any comparison to them does not make sense. Since the 
current version of rGLM cannot fit  H   !   E  interactions, 
rGLM cannot be used to fit the full mode. Therefore, a 
single model based on BayesGLM was fitted to demon-
strate its performance in a case where the number of 
predictors in a model is huge. As in the analyses of main 
and interacting effect models in the foregone subsec-

tions, the ‘true’ values prespecified for all predictors in 
the model were first compared to their corresponding 
estimated coefficients for each of three sample sizes, re-
spectively (1st, 3rd, and 5th columns of  fig. 3 ). From the 
graph it can be seen that, along with the increase in sam-
ple sizes, the estimated 68 and 95% intervals increased 
that covered the ‘true’ values for each of the 81 predic-
tors. We also found that the rare haplotypes ( haplo4.3  
and  haplo2.3 ) and the interactions ( smoke :  haplo2.3 , 
 smoke : haplo4.1 ,  smoke : haplo4.3 ,  haplo2.3 : hap-lo4.1 , 
and  haplo2.3 : haplo4.3 ) had quite lower coverages than 
the other predictors in the model, no matter what sam-
ple sizes were considered. All these findings were con-
sistent with those observed in the foregoing sub sections.

  The empirical powers were calculated for a total of 11 
disease-associated predictors in the model under each 
of 3 fixed type I error rates ( �  = 0.001, 0.01, and 0.05; 
2nd, 4th, and 6th columns of  fig. 3 ). From the graph it 
can be seen that although the power increased along 
with the increase in sample sizes, they started at quite 
low levels and maintained low growth rates. Under the 
sample size of 1,000, 8 predictors ( smoke ,  haplo2.3 ,  hap-
lo4.1 ,  haplo4.3 ,  smoke : haplo4.1 ,  smoke : haplo4.3 ,  haplo-
2.3 : haplo4.1 , and  haplo2.3 : haplo4.3 ) had an 80% chance 
or more of being identified under  �  = 0.05, while 3 pre-
dictors ( haplo4.2 ,  haplo4.4 , and  smoke : haplo2.3 ) had
a 60% chance or more of being identified under  �  =
0.05.

  The empirical type I error rates were also calculated 
for a total of 70 non-disease-associated predictors in the 
model. As the sample size went up to 500, almost all of 
the type I error rates shrank to zero.

  Discussion 

 Complex human diseases are believed to be influ-
enced by genetic and environmental factors, and their 
interactions. However, identifying interacting effects is 
challenging. In general, the identification and character-
ization of interactions are limited due to the lack of pow-
erful statistical methods and/or large sample sizes. When 
numerous interactions are fitted explicitly in a model, 
the degrees of freedom for the corresponding test statis-
tics would grow rapidly, and, as a result, sufficient power 
cannot be guaranteed to detect possibly significant ef-
fects in the model, especially in a relatively small sample 
size  [50–54] . This issue is also confronted in haplotype-
based association studies by classical methods, which 
usually have insufficient power and are not flexible 
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  Fig. 3.  Full model: estimated 68 and 95% coverages of the ‘true’ 
values (indicated by bold and thin horizontal lines in the 1st, 3rd, 
and 5th columns, respectively) and empirical powers or type I er-
ror rates [empirical powers or type I error rates for  �    = 0.001 (  !  ), 
 �  = 0.01 (o), and  �  = 0.05 (+)] for each of 81 predictors based on 

BayesGLM with sample sizes of 250 (first 2 columns), 500 (3rd and 
4th columns), and 1,000 (last 2 columns). The black labels on the 
vertical axis stand for the disease-associated predictors, while the 
gray labels stand for the non-disease-associated predictors. 
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enough to handle a large number of interactions  [14, 21, 
26, 55] .

  The challenges might be further aggravated when rare 
haplotypes are present. Rare haplotypes can be frequent 
in genetic association studies and might be produced by 
common SNPs  [15, 56] . As already noted, rare haplo-
types, just like other rare genetic variants, could be im-
portant disease-predisposing variants and should not be 
ignored in exploring the genetic susceptibility to com-
mon diseases. Regarding statistical modeling, however, 
rare haplotypes can result in nonidentifiability of param-
eters, which means the coefficients of predictors cannot 
be identified or estimated uniquely because of huge, even 
infinite standard errors  [46] . A commonly used approach 
to this issue in the literature is to pool all rare haplotypes 
into one single group  [7, 13]  or pool rare haplotypes with 
common ancestral haplotypes  [33, 57, 58] . These ap-
proaches ignore rare haplotypes by lumping them to-
gether, and consequently any rare haplotype that might 
contribute to the risk of disease cannot be identified dis-
tinctly.

  Statistical methods that can detect the haplotype-re-
lated interactions and handle the nonidentifiability of pa-
rameters are much needed in research. In the present 
study, we propose a Bayesian hierarchical generalized lin-
ear model with weakly informative priors to simultane-
ously analyze a large number of effects, including main 
effects of common and rare haplotypes, environmental 
effects, and their possible interactions. Our model fitting 
algorithm takes advantage of the classical generalized 
linear model procedure, leading to a computationally sta-
ble tool. An extensive simulation study was conducted to 
evaluate the statistical properties and performance of the 
proposed method, and the results were compared with 
the classical generalized linear model, the method of 
Lake et al.  [21] , and the method of Guo and Lin  [15] . The 
main reason for considering these three methods as refer-
ence is that the classical generalized linear model is a flex-
ible and basic approach to analyze case-control data, the 
method of Lake et al.  [21]  is the commonly used method 
for haplotype-based analysis in association studies, and 
the method of Guo and Lin  [15]  takes both rare haplo-
types and the haplotype interactions between two haplo-
type blocks into account.

  In our simulation study, the identifiability of param-
eters in model fit was first assessed because it is a com-
mon problem in conventional methods. The results show 
that for ScoreGLM and GLM the estimates of coefficients 
were substantially nonidentifiable in most of the simula-
tion settings, while for BayesGLM the nonidentifiability 

of parameters was not observed. This demonstrates the 
appealing features of the proposed method in terms of 
robustness of parameter estimation and efficiency of sta-
tistical computation over the existing methods, especial-
ly if a large number of interactions and some rare haplo-
types are included in the model.

  With respect to the statistical properties of the pro-
posed method, statistical power is our primary interest 
in the evaluation processes. The results indicate that the 
proposed method outperforms ScoreGLM and GLM in 
terms of statistical power for detecting associations, es-
pecially for rare haplotypes and interactions with mod-
erate sample sizes. However, with the increase in the 
number of predictors fitted in the model, the proposed 
method had a relative loss of power, but was still accept-
able ( fig.  3 ). This is reasonable because, as we already 
know, the high dimensionality is traded with loss of pow-
er in model fit.

  The reliability of the proposed method concerning pa-
rameter estimation was examined by comparing the 
‘true’ values prespecified for the predictors in the models 
to their corresponding estimated coefficients. The pro-
posed method can yield better coverage of confidence in-
tervals, especially for the interactions and the rare haplo-
types, than ScoreGLM and GLM ( fig.  1 ,  2 ). However, 
most of the time, the proposed method unsurprisingly 
has similar results to rGLM ( fig. 1 ,  2 ). However, the pro-
posed method provides more features than rGLM in its 
current implementation. Moreover, although the pro-
posed method is not yet available to practitioners, an R 
package is currently being developed and will be released 
soon.
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