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SUMMARY

We study generalized linear models for time series of counts, where serial dependence is
introduced through a dependent latent process in the link function. Conditional on the covariates
and the latent process, the observation is modelled by a negative binomial distribution. To estimate
the regression coefficients, we maximize the pseudolikelihood that is based on a generalized linear
model with the latent process suppressed. We show the consistency and asymptotic normality of
the generalized linear model estimator when the latent process is a stationary strongly mixing
process. We extend the asymptotic results to generalized linear models for time series, where
the observation variable, conditional on covariates and a latent process, is assumed to have a
distribution from a one-parameter exponential family. Thus, we unify in a common framework
the results for Poisson log-linear regression models of Davis et al. (2000), negative binomial logit
regression models and other similarly specified generalized linear models.

Some key words: Generalized linear model; Latent process; Negative binomial distribution; Time series of counts.

1. INTRODUCTION

The analysis of time series of counts, motivated by applications in various fields, is one of
the rapidly developing areas in time series modelling. Such applications include monthly polio
counts in the USA (Zeger, 1988; Davis et al., 2000), daily asthma presentation at a hospital
in Sydney, Australia (Davis et al., 2000), and traffic accidents in the county of Västerbotten,
Sweden (Brännäs & Johansson, 1994). In addition, Campbell (1994) investigated the relationship
between sudden infant death syndrome and environmental temperature; Johansson (1996) used
time series of counts to assess the effect of lowered speed limits on the number of road casualties;
Jørgensen et al. (1996) studied the relationship between respiratory morbidity and air pollution;
and Cameron & Trivedi (1996) discussed discrete models for financial data.

For time series consisting of counts, classical Gaussian models are inappropriate and it is
necessary to consider nonlinear models. Generalized linear models (McCullagh & Nelder, 1989)
are widely used for analyzing counts and other types of discrete data, and thus provide a good
starting point. Count data are nonnegative, integer-valued and often overdispersed; the vari-
ance is larger than the mean. To accommodate overdispersion, many researchers have turned to
overdispersed Poisson and binomial regression models. As a natural extension of the Poisson
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distribution, the negative binomial distribution is more flexible and allows for overdispersion.
In this paper, we propose a negative binomial regression model for time series of counts; the
model can be classified as a parameter-driven generalized linear model (Cox, 1981), which in
turn can be viewed as a special type of state space model. Specifically, let Yt and αt denote the
observation and unobservable state, or latent, variables at time t , respectively. The observation
equation specifies p(Yt | xt , αt ), where xt is a vector of covariates. The state comes into the model
via f (ut ) = xT

t β + αt , where f (·) is a link function of the standard generalized linear model and
ut = E(Yt | xt , αt ). On the other hand, the state equation specifies the serial dependence structure
of {αt }, which evolves independently of the observed data.

The inclusion of a time-dependent latent process provides a more realistic modelling frame-
work. The latent process not only adds serial dependence to the model, but also can be viewed
as a proxy for unknown or unavailable covariates. Without adjusting the noise terms, inferences
about the covariates included in the model may be misleading. This point is illustrated with
the polio data described in § 5. Even if a time series model is specified for the latent process,
the likelihood cannot be expressed in a closed form, which can make the theory for maximum
likelihood estimation more difficult. Typically, one needs to resort to simulation-based or other
approximation-based techniques for computing the likelihood; see Durbin & Koopman (1997)
and Davis & Rodriguez-Yam (2005). Often, it is not feasible to even consider a family of time
series models for the latent process until the form of the regression function has been established.
So, in many situations, it makes sense to consider estimating parameters in the regression function
by maximizing the likelihood that excludes the presence of the latent process. This is akin to
using ordinary least squares in linear time series models, which in all but some special cases
share the same asymptotic efficiency as the maximum likelihood estimator.

An overview of parameter-driven models for time series of counts can be found in Davis et al.
(1999). Zeger (1988) studied Poisson log-linear regression models for a time series of counts.
An estimating equation approach was used for parameter estimation, and asymptotic results
of the quasilikelihood estimator were established. Harvey & Fernandes (1989) studied a struc-
tural model for time series of counts and qualitative data using natural conjugate distributions.
Jørgensen et al. (1999) proposed a nonstationary state space model for multivariate longitudinal
count data driven by a latent gamma Markov process. Blais et al. (2000) extended Zeger’s results
to the case where each observation, conditional on a stationary and strongly mixing latent process,
is assumed to have an exponential family distribution. Davis et al. (2000) developed a practical
approach to diagnosing the existence of a latent process in Poisson log-linear regression models
and derived the asymptotic properties of the generalized linear model estimator when an auto-
correlated latent process is present. In this paper, we extend the asymptotic results of Davis et al.
(2000) first to the negative binomial logit regression model and then to a general set-up, assuming
that the conditional distribution of the observed variable is from a one-parameter exponential
family. A simulation study is presented that illustrates our asymptotic results, and the developed
techniques are applied to the polio data.

2. LARGE SAMPLE PROPERTIES OF GENERALIZED LINEAR MODEL ESTIMATORS

2·1. Set-up

Let {Yt } be a time series of counts and suppose that for each t , xt is an observed l-dimensional
covariate, which is assumed to be nonrandom and whose first component is one. In some cases,
xt may depend on the sample size n and form a triangular array xnt . We assume that, conditional
on a latent process {αt }, the random variables Y1, . . . , Yn are independent, and the conditional
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distribution of Yt depends only on αt and is specified by a negative binomial distribution. To be
specific, we consider the following parameter-driven model:

Yt |αt ∼ NegBin(r, pt ), (1)

where r is a positive number and pt satisfies the logit model

− log
(

pt

1 − pt

)
= xT

ntβ + αt . (2)

Here, β = (β1, . . . , βl)T is the vector of regression coefficients of primary interest. The conditional
density function of Yt is

p(Yt = yt | αt ) =
(

yt + r − 1

r − 1

)
pr

t (1 − pt )
yt

for yt = 0, 1, . . .. Instead of dealing with {αt } in the derivation, it is more convenient to use the
process {εt = eαt }, which is a strictly stationary nonnegative time series when {αt } is strictly
stationary. Furthermore, we centre {αt } such that {εt } has mean one. The conditional mean of Yt

can be written in terms of εt ,

E(Yt | αt ) = r (1 − pt )

pt
= r exp

(
xT

ntβ + αt
) = r exp

(
xT

ntβ
)
εt .

With E(εt ) = 1, we have E(Yt ) = r exp(xT
ntβ), the form for a pure generalized linear model in

the negative binomial case.
We assume that {εt } is a stationary strongly mixing process in the sense that

α(m) = sup
A∈F0−∞,B∈F∞

m

|pr(AB) − pr(A)pr(B)| → 0

as m → ∞, where F0−∞ and F∞
m are σ -fields generated by {εt , t � 0} and {εt , t � m}, respec-

tively. In addition, we assume that {εt } satisfies the following two assumptions:

Assumption 1. There exists a positive constant λ such that E(|εt |λ+4) < ∞.

Assumption 2. The mixing coefficient α(m) satisfies
∑∞

m=1 α(m)(λ+2)/λ < ∞.

2·2. Asymptotic properties when {εt } is strongly mixing

The generalized linear model estimator β̂n of β is obtained by ignoring the latent process in
the model and maximizing the loglikelihood function of the misspecified model. Before deriving
the asymptotic properties of β̂n , we evaluate the first two moments of the observed process {Yt }.
The mean μt is given as r exp(xT

ntβ). Moreover, it follows from the logit model (2) that

pt = 1

1 + exT
nt βεt

, qt = 1 − pt = exT
nt βεt

1 + exT
nt βεt

.

Then the variance of Yt is

var(Yt ) = E{var(Yt | αt )} + var{E(Yt | αt )}
= E

{
rexT

ntβεt
(
1 + exT

nt βεt
)} + r2e2xT

nt βvar(εt )

= rexT
ntβ + re2xT

ntβ{γε(0) + 1} + r2e2xT
nt βγε(0)

= μt + μ2
t

r
+ μ2

t γε(0)

r
+ μ2

t γε(0),
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and the autocovariance function is, for k � 0,

cov(Yt+k, Yt ) = cov{E(Yt+k | αt+k), E(Yt | αt )} + 0 = r2e
(

xT
n,t+k+xT

nt

)
βγε(k) = μt+kμtγε(k).

Let Y1, . . . , Yn be observations from the model (1)–(2) with true parameter β0. The estimator
β̂n maximizes

�n(β) = r
n∑

t=1

log pt +
n∑

t=1

Yt log(1 − pt ) + log
n∏

t=1

(
Yt + r − 1

r − 1

)

= −r
n∑

t=1

log
(
1 + exT

nt β
) −

n∑
t=1

Yt log
(
1 + e−xT

nt β
) + log

n∏
t=1

(
Yt + r − 1

r − 1

)
. (3)

Assumptions on the covariates xnt are needed in order to establish the consistency and asymptotic
normality of β̂n . We assume that there exists a sequence of nonsingular matrices Mn such that
xnt satisfy the following conditions:

MT
n

{
n∑

t=1

xnt xT
ntrexT

ntβ0(
1 + exT

nt β0
)2

}
Mn → 	11, (4)

MT
n

{
n∑

t=1

xnt xT
ntre2xT

ntβ0(
1 + exT

nt β0
)2

}
Mn → 	12, (5)

and

MT
n

⎧⎨
⎩

n∑
t=1

xnt xT
n,t+kr2e

(
xT

nt +xT
n,t+k

)
β0

(1 + exT
nt β0 )

(
1 + exT

n,t+kβ0
)
⎫⎬
⎭ Mn → Wk (6)

uniformly in |k| < n as n → ∞. Furthermore,

MT
n

⎧⎨
⎩γε(k)

−k∑
t=1

xnt xT
n,t+ke

(
xT

nt+xT
n,t+k

)
β0(

1 + exT
nt β0

)(
1 + exT

n,t+kβ0
)
⎫⎬
⎭ Mn → 0 (7)

for each k < 0 and the left-hand side is uniformly bounded in k ∈ (−n, 0) as n → ∞; and
similarly,

MT
n

⎧⎨
⎩γε(k)

n∑
t=n−k+1

xnt xT
n,t+ke

(
xT

nt+xT
n,t+k

)
β0(

1 + exT
nt β0

)(
1 + exT

n,t+kβ0
)
⎫⎬
⎭ Mn → 0 (8)

for each k > 0 and the left-hand side is again uniformly bounded in k ∈ (0, n) as n → ∞.

Remark 1. Conditions (4)–(8) guarantee that the asymptotic variance of β̂n is well defined. We
require in the proof of Theorem 1 the existence of

lim
n→∞ MT

n

⎧⎨
⎩

n∑
t=1

n∑
s=1

xnt xT
nsr

2e
(

xT
nt +xT

ns

)
β0(

1 + exT
nt β0

)(
1 + exT

nsβ0
)γε(s − t)

⎫⎬
⎭ Mn .
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Making a change of variables, k = s − t , we have that

MT
n

⎧⎨
⎩

n∑
t=1

n∑
s=1

xnt xT
nsr

2e
(

xT
nt+xT

ns

)
β0(

1 + exT
nt β0

)(
1 + exT

nsβ0
)γε

(
s − t

)⎫⎬⎭ Mn

= MT
n

⎧⎨
⎩

n−1∑
k=−n+1

γε(k)
n∑

t=1

xnt xT
n,t+kr2e

(
xT

nt +xT
n,t+k

)
β0(

1 + exT
nt β0

)(
1 + exT

n,t+kβ0
)
⎫⎬
⎭ Mn

− MT
n

⎧⎨
⎩

−1∑
k=−n+1

γε(k)
−k∑
t=1

xnt xT
n,t+kr2e

(
xT

nt+xT
n,t+k

)
β0(

1 + exT
nt β0

)(
1 + exT

n,t+kβ0
)
⎫⎬
⎭ Mn

− MT
n

⎧⎨
⎩

n−1∑
k=1

γε(k)
n∑

t=n−k+1

xnt xT
n,t+kr2e

(
xT

nt +xT
n,t+k

)
β0(

1 + exT
nt β0

)(
1 + exT

n,t+kβ0
)
⎫⎬
⎭ Mn .

By the dominated convergence theorem, it follows from conditions (7) and (8) that the last two
terms on the right-hand side go to zero, respectively, while it follows from condition (6) that the
first term converges to

∑∞
k=−∞ Wkγε(k).

Conditions (4)–(8) hold for a wide range of covariates; for example, a trend function
xnt = f (t/n), where f (·) is a continuous vector-valued function on [0, 1]. In this case, take
Mn = n−1/2 Il , where Il is an l × l identity matrix. Then, approximating sums by integrals, we
obtain

	11 =
∫ 1

0

f (x) f T(x)re f T(x)β0(
1 + e f T(x)β0

)2 dx, 	12 =
∫ 1

0

f (x) f T(x)re2 f T(x)β0(
1 + e f T(x)β0

)2 dx,

Wk =
∫ 1

0

f (x) f T(x)re2 f T(x)β0(
1 + e f T(x)β0

)2 dx (k = 0,±1, . . .).

Other functions satisfying these conditions include harmonic functions that specify seasonal
effects and stationary processes; see Davis et al. (2000).

Remark 2. We also give two examples of random covariates that satisfy conditions (7) and (8);
here convergence and uniform boundedness are interpreted as in probability.

1. Suppose xnt = xt is a bounded sequence of random variables. The convergence to zero of
the terms in (7) and (8) is immediate. We check the boundedness condition for (7) only; verifying
the other is similar. Take Mn = n−1/2, then

sup
−n<k<0

∣∣∣∣∣γε(k)

n

−k∑
t=1

xt xt+ke(xt +xt+k )β0

(1 + ext β0 )
(
1 + ext+kβ0

)
∣∣∣∣∣ � γε(0)

n
sup

−n<k<0

( −k∑
t=1

|xt xt+k |
)

� C .

2. Suppose xnt = xt is a stationary time series, and γε(k) is absolutely summable. As in the
previous example, we only check the uniform boundedness part of (7). With Mn = n−1/2,
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pr

{
sup

−n<k<0

∣∣∣∣∣γε(k)

n

−k∑
t=1

xt xt+ke(xt +xt+k )β0(
1 + ext β0

)(
1 + ext+kβ0

)
∣∣∣∣∣ > A

}

�
∑

−n<k<0

pr

{
|γε(k)|

−k∑
t=1

|xt xt+k | > n A

}
� 1

n A

∑
−n<k<0

|γε(k)|
−k∑
t=1

E |xt xt+k |

� C

A

∑
−n<k<0

|γε(k)|

provided that var(|xt |) exists and
∑∞

k=−∞ |γε(k)| < ∞. So, for any δ > 0, there exists a large A
such that the left-hand-side probability is less than δ for all n. That is, the uniform boundedness
condition holds.

THEOREM 1. Let β̂n be the generalized linear model estimator of the parameter β based on
the observations Y1, . . . , Yn coming from the model (1)–(2). Assume that the latent process {εt }
is stationary, strongly mixing and satisfies Assumptions 1 and 2. Also, assume that the covariates
xnt satisfy (4)–(8), and sup1�t�n |MT

n xnt | = O(n−1/2). Then, β̂n → β0 in probability and

M−1
n (β̂n − β0) → N

(
0, 	−1

1 + 	−1
1 	2	

−1
1

)
in distribution as n → ∞, where 	1 = 	11 + 	12 and 	2 = 	12γε(0) + ∑∞

k=−∞ Wkγε(k).

Remark 3. Note that 	−1
1 is the asymptotic covariance matrix from a standard generalized

linear model analysis when there is no latent process in the true model, and 	−1
1 	2	

−1
1 is the

additional contribution to the asymptotic covariance caused by the presence of the latent process.

Remark 4. In establishing the limiting distribution of the generalized linear model estimator,
the pseudo-loglikelihood is decomposed into two pieces: a deterministic quadratic term and
a random linear term corresponding to the score function. The quadratic term has the same
behaviour as without a latent process. While the random term has asymptotic zero-mean, which
gives the consistency of the estimator, its variance requires an adjustment due to the impact of
the latent process.

2·3. Asymptotic properties when {αt } is a Gaussian linear process

Theorem 1 can be adapted to the case when {αt } is a stationary Gaussian linear process. In
this case, in order to satisfy the identifiability condition of E(eαt ) = 1, it is required that αt ∼

N(−σ 2
α/2, σ 2

α ). Moreover, the relationship between the autocovariance functions of {εt } and {αt }
is explicitly given by γε(k) = exp(γα(k)) − 1 for all k.

The corresponding asymptotic results for β̂n are given in the following theorem.

THEOREM 2. Suppose {αt } is a stationary Gaussian linear process, and
∑∞

k=0 |γε(k)| < ∞,
where {εt = eαt }. If the conditions in Theorem 1 on the covariates xnt are met, then the asymptotic
results in Theorem 1 hold for the generalized linear model estimator β̂n.

3. EXTENSION TO THE ONE-PARAMETER EXPONENTIAL FAMILY

3·1. Asymptotic properties of generalized linear model estimators

In this section, we study time series regression models in a more general set-up. Let Y1, . . . , Yn

denote the observed time series that are independent conditional on a latent process {αt }. The
conditional distribution, depending only on αt , belongs to the one-parameter exponential family
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and is given by

p(Yt | αt ) = exp{θt Yt − b(θt ) + c(Yt )}, (9)

where θt = g(xT
ntβ + αt ) for a real function g that is uniquely determined by the chosen link

function f . To see this, assume f is monotone and differentiable, and let ηt = xT
ntβ + αt . Then

E(Yt |αt ) = h(ηt ) = h
(
xT

ntβ + αt
)
, (10)

where h is the inverse function of f . On the other hand, it is well known that E(Yt | αt ) = b′(θt ) =
(b′ ◦ g)(xT

ntβ + αt ). Therefore, (b′ ◦ g)(·) = h(·).
Suppose Y1, . . . , Yn are observations from the true model with the parameter β0. The gener-

alized linear model estimator β̂n of β is defined as the maximizer of the pseudo-loglikelihood
function

�n(β) =
n∑

t=1

{
g
(
xT

ntβ
)
Yt − (b ◦ g)

(
xT

ntβ
) + c(Yt )

}

= −
n∑

t=1

(b ◦ g)
(
xT

ntβ
) +

n∑
t=1

Yt g
(
xT

ntβ
) +

n∑
t=1

c(Yt ), (11)

which ignores the latent process {αt } in the model.
In order to establish the asymptotic properties of β̂n , we take a link function f such that

the loglikelihood function (11) is concave and E{h(xT
ntβ + αt )} = h(xT

ntβ). Such a link function
exists for Poisson, negative binomial, Gaussian, among other cases; see examples in § 3·2. Then,
μt = E(Yt ) = h(xT

ntβ0). Moreover, the variance of Yt is given by

var(Yt ) = E
{

(b′′ ◦ g)
(
xT

ntβ0 + αt
)} + var

{
h
(
xT

ntβ0 + αt
)}

since var(Yt | αt ) = b′′(θt ) = (b′′ ◦ g)(xT
ntβ0 + αt ) and the autocovariance function is

cov(Yt+k, Yt ) = cov
{

h
(
xT

n,t+kβ0 + αt+k
)
, h

(
xT

ntβ0 + αt
)}

(k � 0).

Suppose there exists a sequence of nonsingular matrices Mn such that the covariates xnt satisfy
the conditions sup1�t�n |MT

n xnt | = O(n−1/2) and

MT
n

n∑
t=1

xnt x
T
nt (b

′′ ◦ g)
(
xT

ntβ0
){

g′(xT
ntβ0

)}2 Mn → 	1,

MT
n

n∑
t=1

xnt x
T
nt E

{
(b′′ ◦ g)

(
xT

ntβ0 + αt
)}{

g′(xT
ntβ0

)}2 Mn → 	
†
1,

MT
n

n∑
j,t=1

xnj x
T
nt cov

{
h
(
xT

njβ0 + α j
)
, h

(
xT

ntβ0 + αt
)}

g′(xT
njβ0

)
g′(xT

ntβ0
)
Mn → 	

†
2.

The asymptotic results for β̂n are stated in Theorem 3, whose proof follows similar lines to the
proof of Theorem 1 in the Appendix and hence is omitted.

THEOREM 3. Let β̂n be the generalized linear model estimator of β for the parameter-driven
model (9)–(10). If

Cn(s) =
n∑

t=1

sT MT
n xnt g

′(xT
ntβ0

){
h
(
xT

ntβ0 + αt
) − h

(
xT

ntβ0
)} → V
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in distribution, where V ∼ N(0, sT	
†
2s), then under suitable assumptions β̂n → β0 in probability,

and

M−1
n (β̂n − β0) → N

{
0, 	−1

1 (	†
1 + 	

†
2)	−1

1

}
in distribution.

Remark 5. When there is no latent process in the model, 	
†
1 reduces to 	1, and 	−1

1 is the
asymptotic covariance matrix of β̂n from a standard generalized linear model estimation.

3·2. Examples

Example 1. Poisson case. Suppose the random variables Y1, . . . , Yn are modelled by Yt |αt ∼

Po(λt ) and log λt = xT
ntβ + αt , where {αt } is a stationary latent process. Writing the conditional

density function in the canonical form (9), we have θt = log λt and b(θt ) = eθt . If we take a
canonical link, namely f (z) = log(z), then its inverse function h(z) = exp(z) and the function
g(z) = z.

In the Poisson set-up, E(Yt | αt ) = λt = exp(xT
ntβ + αt ). With εt defined as eαt and the con-

dition E(εt ) = 1, we have E(Yt ) = exp(xT
ntβ). It is easy to verify that 	

†
1 = 	1. The asymptotic

results for β̂n reduce to Theorem 1 of Davis et al. (2000).

Example 2. Negative binomial case. In the negative binomial case, the model is specified
by Yt |αt ∼ NegBin(r, pt ), where − log{pt/(1 − pt )} = xT

ntβ + αt with some known positive
number r . Writing the conditional density function in the form (9), we obtain θt = log(1 − pt )
and b(θt ) = −r log(1 − eθt ). If we take a link such that its inverse function h(z) = r exp(−z),
then g(z) = − log(1 + ez).

This is the set-up in § 2, where E(Yt |αt ) = r exp(xT
ntβ)εt with εt = exp(αt ). Therefore,

E(Yt ) = r exp(xT
ntβ) under the condition E(εt ) = 1. Further derivations show that the asymptotic

results of β̂n reduce to Theorem 1 in § 2·2, where 	
†
1 and 	

†
2 correspond to 	1 + 	12γε(0) and

	2 − 	12γε(0), respectively.

Example 3. Gaussian case. Consider the model Yt = xT
ntβ + αt + Zt , where the noise is

described by a stationary process plus an independent Gaussian observation error with known
variance τ 2. That is, conditional on the latent process {αt }, Y1, . . . , Yn are independent normal;
and the conditional distribution is specified by Yt | αt ∼ N(νt , τ

2), where νt = xT
ntβ + αt . Writing

the conditional density function in the form (9), we obtain

p(Yt | αt ) = exp

[
Yt

(
νt

τ 2

)
− ν2

t

2τ 2
− 1

2

{
Y 2

t

τ 2
+ log(2πτ 2)

}]
·

Then, θt = νt/τ
2 and b(θt ) = θ2

t τ 2/2. It follows that b′(θt ) = τ 2θt and b′′(θt ) = τ 2. If we take a
link such that its inverse function h(z) = z, then g(z) = z/τ 2.

In this Gaussian case, E(Yt | αt ) = xT
ntβ + αt , which yields an additive model instead of a

multiplicative model as in the Poisson and negative binomial set-ups. It is straightforward to
check that 	

†
1 = 	1. Then M−1

n (β̂n − β0) → N(0, 	−1
1 + 	−1

1 	
†
2	

−1
1 ) in distribution.

4. NUMERICAL STUDY

A simulation study was conducted to evaluate the finite sample performance of the generalized
linear model estimator. We considered two experiments: one with a negative binomial and the other
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Table 1. Simulation results for generalized linear model estimates: empirical means and standard
deviations
Experiment 1

φ 0·5 0·8
n 500 1000 500 1000

β̂2 β̂4 β̂2 β̂4 β̂2 β̂4 β̂2 β̂4

Mean 0·305 0·701 0·295 0·701 0·256 0·699 0·292 0·698
SD 0·342 0·109 0·253 0·078 0·542 0·087 0·381 0·064
ASD 0·358 0·108 0·253 0·077 0·555 0·092 0·394 0·065

Experiment 2
φ 0·1 0·5
n 100 200 500 100 200 500

Mean 0·718 0·709 0·705 0·744 0·723 0·708
SD 0·205 0·138 0·082 0·344 0·234 0·141

ASD 0·189 0·134 0·085 0·316 0·223 0·141

SD, standard deviation; ASD, asymptotic standard deviation.

with a Bernoulli density for the conditional distribution of observations given the latent process.
For each case, we simulated 1000 replications and estimated the parameters of interest, reporting
the empirical means and standard deviations of the estimates together with the asymptotic standard
deviation.

Experiment 1: Negative binomial. Suppose that the random variables Y1, . . . , Yn are inde-
pendent, conditional on the stationary latent process {αt } and the covariate xnt . The conditional
distribution is specified by Yt | αt , xnt ∼ NegBin(4, pt ), where log{pt/(1 − pt )} = xT

ntβ + αt .
We used a covariate sequence defined by xnt = {1, t/n, cos(2π t/6), sin(2π t/6)}T, which in-

cludes a standardized trend and two harmonic function components. The value of the true
parameter vector β0 was taken to be (0·1, 0·3, 0·5, 0·7)T. The latent process is specified by an
AR(1) model αt = φαt−1 + Zt , where Zt are independent identically distributed N (0, σ 2) vari-
ables, where the value of φ was taken to be 0·5 and 0·8, and σ was chosen such that var(αt ) = 1.
Results are based on samples of size 500 and 1000, respectively.

Searching for the maximizer of the loglikelihood function is implemented using R (R De-
velopment Core Team, 2008). A summary of the simulation results is given in Table 1; here
we only report the results for coefficients of the linear trend and one trigonometric term. In all
cases, the empirical standard deviation is rather close to the asymptotic standard deviation. The
generalized linear model estimates are approximately unbiased except for the case where φ =
0·8 and n = 500, which is due to slow convergence to the limit distribution when ignoring a
more strongly autocorrelated latent process. In all cases, normal probability plots, not included,
support the asymptotic normality of the β estimates.

Experiment 2: Bernoulli. In this case the conditional distribution of Y1, . . . , Yn given the
latent process and covariate is specified by Ber(pt ), where − log pt = xT

ntβ + αt is required to
be nonnegative. For simplicity, we took a constant covariate xnt = 1 and set β0 = 0·7. The latent
process is specified by an AR(1) model αt = φαt−1 + Zt , where we used a sequence of independent
and exponentially distributed random variables with parameter λ = 1 as the innovation process
{Zt }, and took φ to be 0·1 and 0·5. We considered sample sizes of 100, 200 and 500.

In order that the condition E(εt ) = 1 holds, we define εt = e−αt /E(e−αt ), where E(e−αt ) is
obtained from the formula

∏∞
j=0 1/(1 + φ j/λ). Then,

n−1/2(β̂n − β0) → N
{

0, (	†
1 + 	

†
2)/	2

1

}
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in distribution, where

	1 = 1

eβ0 − 1
, 	

†
1 = 1(

eβ0 − 1
)2

{
eβ0 − 1 − γε(0)

}
, 	

†
2 = 1(

eβ0 − 1
)2

∞∑
k=−∞

γε(k).

Simulation results are reported in Table 1. In all cases, the empirical standard deviation is
close to the asymptotic standard deviation. But there is some bias in the generalized linear model
estimates when φ = 0·5. Further studies show that the generalized linear model estimation does
not perform well when φ > 0·6. This is due to the fact that when the latent process becomes large,
the probabilities pt = e−(β0+αt ) become extremely small so that most of the simulated values of
{Yt } are zero. This, in turn, makes estimation virtually impossible.

5. APPLICATION TO REAL DATA

We applied the results of § 2 to the polio data studied by Zeger (1988). The data consist of
monthly counts of poliomyelitis cases in the USA from the year 1970 to 1983 as reported by
the Centers for Disease Control. The time series nature of the data is well indicated by the
autocorrelation function plot. Davis et al. (2000) modelled the counts by the Poisson distribution
given a latent process. We instead used a negative binomial conditional distribution as described
in § 2. We specified the same covariates as in Davis et al. (2000), namely

xt = {1, t ′/1000, cos(2π t ′/12), sin(2π t ′/12), cos(2π t ′/6), cos(2π t ′/6)}T,

where t ′ = t − 73 is used to locate the intercept term at January 1976. In order to compare our
results with those of Davis et al. (2000), we used the link function

log
{

r (1 − pt )

pt

}
= xT

t β + αt ,

where {αt } was assumed to be an AR(1) latent process with Gaussian innovations. This specification
is slightly different than the one used in § 2, with which we obtain

μt = E
{

r (1 − pt )

pt

}
= E

(
exT

t β+αt
) = exT

t β

under the condition E(eαt ) = 1. Then, the regression coefficients have the same interpretation as
those in Davis et al. (2000).

The data were fitted by a standard negative binomial generalized linear model. For parameter
estimation we adopted the approach of Benjamin et al. (2003), maximizing the likelihood L(β, r )
with respect to β for different r values. The estimate r̂ = 2 was determined by the r value that
yielded the smallest AIC. The corresponding estimate β̂NB of β and its standard error are reported
in Table 2, columns 5–6. The AIC value for this model fit is 519·857. For comparison, the results
from a standard Poisson generalized linear model fit of Davis et al. (2000) are also included in
Table 2, columns 2–3; the AIC value for their model fit is 557·898. Based on AIC, the standard
negative binomial generalized linear model fit is better.

The estimates and standard errors in the Poisson and negative binomial cases are comparable.
These standard error calculations ignore the possibility of the presence of a latent process. We
examined the Pearson residuals for the existence of a latent process and a suitable model if such a
process exists. Since the serial dependence among observations is ignored when fitting a standard
generalized linear model, we would expect that Pearson residuals display the same dependence
structure as that of the polio counts. In both cases, the partial autocorrelation function plots of
Pearson residuals support the assumption of an AR(1) latent process.
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Table 2. Estimates and their standard errors from analyses of polio data by standard
negative binomial and Poisson generalized linear models

Poisson Negative binomial Simulations
Covariate β̂Po SE ASE β̂NB SE ASE Mean SD

Intercept 0·207 0·075 0·205 0·209 0·100 0·167 0·162 0·173
Trend −4·799 1·399 4·115 −4·354 1·970 3·311 −4·381 3·190
cos(2π t ′/12) −0·149 0·097 0·157 −0·143 0·134 0·156 −0·153 0·158
sin(2π t ′/12) −0·532 0·109 0·168 −0·504 0·144 0·165 −0·512 0·163
cos(2π t ′/6) 0·169 0·098 0·122 0·168 0·136 0·144 0·179 0·149
sin(2π t ′/6) −0·432 0·101 0·125 −0·422 0·138 0·146 −0·424 0·145

ASE, asymptotic standard error; SD, standard deviation; SE, standard error.

Suppose αt = φαt−1 + Zt , where Zt are independent identically distributed N (0, σ 2) variables.
The asymptotic standard errors in the seventh column of Table 2 were obtained using Theorem 2.
To be specific, we first estimated φ and σ 2 by the method of moments. Recall that

var(Yt ) = μt + μ2
t

(r + 1)σ 2
ε + 1

r
,

where εt = eαt . So, σ̂ 2
ε = 0·3586 and ρ̂ε (1) = 0·7719 were obtained using an ordinary least

squares type of estimators suggested by Brännäs & Johansson (1994):

σ̂ 2
ε = 1

r̂ + 1

[
r̂
∑n

t=1 μ̂2
t

{
(Yt − μ̂t )2 − μ̂t

}
∑n

t=1 μ̂4
t

− 1

]
,

ρ̂ε(1) = σ̂−2
ε

∑n
t=2 μ̂t μ̂t−1(Yt − μ̂t )(Yt−1 − μ̂t−1)∑n

t=2 μ̂2
t μ̂

2
t−1

.

Then σ̂ 2
α = 0·3065 and ρ̂α (1) = 0·7973 were obtained through the identity γε(k) = eγα(k) − 1. It

followed that φ̂ = 0·7973 and σ̂ 2 = 0·1117. Moreover, γ̂α(k) and γ̂ε(k) were readily computed.
With these estimates, we approximated the asymptotic standard errors of β̂NB using the formula

var(β̂NB) = (	̂11,n + 	̂12,n)−1(	̂11,n + 	̂12,n + 	̂12,nσ̂
2
ε + Ŵn

)
(	̂11,n + 	̂12,n)−1,

where

	̂11,n =
n∑

t=1

xt xT
t μ̂t

(1 + μ̂t/r̂ )2
, 	̂12,n = 1

r̂

n∑
t=1

xt xT
t μ̂

2
t

(1 + μ̂t/r̂ )2
,

Ŵn =
n∑

t=1

n∑
s=1

xt xT
s μ̂t μ̂s

(1 + μ̂t/r̂ )(1 + μ̂s/r̂ )
γ̂ε(t − s),

with μ̂t = exp(xT
t β̂NB).

One of the main objectives in modelling the polio data is to investigate whether or not the
incidence of polio has been decreasing since 1970. The results showed that the negative trend was
not significant using the standard error that includes a latent process. A false significance would
be obtained if using the standard error of 1·970 produced by the standard negative binomial gen-
eralized linear model estimation. This is in agreement with the conclusion of Davis et al. (2000).

To further check the generalized linear model estimates and asymptotic standard errors, we
simulated 1000 replications of a time series of length 168 using r̂ and β̂NB as true parameter
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Table 3. Estimates and their standard errors from analyses of polio data by
parameter-driven negative binomial and Poisson generalized linear models

Poisson Negative binomial
Covariate β̂Po SE β̂NB SE

Intercept 0·090 0·141 0·106 0·177
Trend −3·600 2·751 −3·467 3·375
cos(2π t ′/12) −0·098 0·143 −0·109 0·129
sin(2π t ′/12) −0·478 0·154 −0·488 0·140
cos(2π t ′/6) 0·190 0·121 0·182 0·122
sin(2π t ′/6) −0·355 0·122 −0·365 0·123

SE, standard error.

values. The latent process {αt } was assumed to be a Gaussian AR(1) with φ = 0·7973 and marginal
distribution N(−σ 2

α/2, σ 2
α ), where σ 2

α = 0·3065. The empirical means and standard deviations of
estimates from simulations are reported in the last two columns of Table 2. The estimates were
approximately unbiased, except for the intercept term where the empirical mean of 0·162 was
significantly different from 0·209 used for simulating data. The empirical standard deviations
were in good agreement with the asymptotic standard errors.

We also fitted the polio data by parameter-driven negative binomial and Poisson generalized
linear models using the procedure GLIMMIX in SAS, assuming a Gaussian AR(1) latent process.
The estimates of coefficients and their standard errors are reported in Table 3, in the negative
binomial case r̂ = 4·146. Because the AIC generated by GLIMMIX is based on pseudolikelihood
estimation, it is not useful for comparing models. Instead, we performed model diagnostics via
Pearson residuals. Since now the serial dependence among the polio counts had been taken into
account, we should expect Pearson residuals to be independent. The autocorrelation function
plot showed that the Pearson residuals in the negative binomial case appeared independent. In
addition, a p-value of 0·14550 from the Ljung–Box test of randomness implied no evidence
against independence, whereas in the Poisson case the p-value 0·00097 indicated strong evidence
to reject independence of the Pearson residuals. Therefore, the parameter-driven negative binomial
generalized linear model appears more appropriate for the polio data.

We further simulated time series of length 168 from the Poisson model using the estimates from
Davis et al. (2000) as true parameter values and fitted the simulated data by both parameter-driven
negative binomial and Poisson generalized linear models. It turned out that both model-fittings
yielded the same estimates for β. The very large value of r̂ in the negative binomial case indicated
that the model was actually Poisson. On the contrary, when we simulated time series from the
negative binomial model using β̂NB as true parameter values, the negative binomial model-
fitting distinguished itself from the Poisson model-fitting in most cases. This again supported
our conclusion that the parameter-driven negative binomial generalized linear model is more
appropriate for the polio data.
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APPENDIX

Proof of Theorem 1

We first state a central limit theorem for strongly mixing processes.

PROPOSITION 1 (Davidson, 1992). Let {Xnt , t = 1, . . . , n, n � 1} denote a triangular array of random
variables defined on the probability space (	,F ,P) such that

1. E(Xnt ) = 0 and E(
∑n

t=1 Xnt )2 = 1;
2. There exists a positive constant array {cnt } and a constant γ > 2 such that {E(|Xnt/Cnt |γ )}1/γ is

uniformly bounded in t and n;
3. For each n, the sequence {Xnt } is strongly mixing with mixing coefficient α(m) such that∑∞
m=1 α(m)γ /(γ−2) < ∞; and
4. supn{n(max1�t�n cnt )2} < ∞.

Then,
∑n

t=1 Xnt
d→ N(0, 1) in distribution.

Proof of Theorem 1. Let u = M−1
n (β − β0), then maximizing �n(β) in (3) with respect to β is equivalent

to minimizing gn(u) = −�n(β0 + Mnu) + �n(β0) with respect to u. We write gn(u) = gn,1(u) − gn,2(u),
where

gn,1(u) = −r
n∑

t=1

exT
nt β0 xT

nt Mnu + r
n∑

t=1

(
1 + exT

nt β0
){

log
(
1 + exT

nt (β0+Mnu)
) − log

(
1 + exT

nt β0
)}

,

gn,2(u) = −
n∑

t=1

(
Yt − rexT

nt β0
){

log
(
1 + e−xT

nt (β0+Mnu)
) − log

(
1 + e−xT

nt β0
)}

.

For any fixed u, gn,1(u) → uT	1u/2. To show this, we express by applying a Taylor series

gn,1(u) = r

2

n∑
t=1

exT
nt β0

1 + exT
nt β0

(
xT

nt Mnu
)2 + E1

n (u),

where E1
n(u) is the remainder in the expansion. It is easily shown that E1

n (u) → 0. Thus, the result
follows from conditions (4)–(5). Moreover, we show that, for any fixed u, gn,2(u) → uTN(0,	1 + 	2) in
distribution. We can similarly write gn,2(u) = uTUn − E2

n(u), where

Un =
n∑

t=1

(
Yt − rexT

nt β0
) MT

n xnt

1 + exT
nt β0

.

As the remainder E2
n(u) → 0 in probability, it suffices to show

Un → N(0,	1 + 	2) (A1)

in distribution. For any real vector s, it can be shown that

E
(
eisTUn | αt

) ≈ exp(Dn + Fn), (A2)

where A ≈ B means A − B → 0 in probability,

Dn = r
n∑

t=1

exT
nt β0

{
exp

(
isT M T

n xnt

1 + exT
nt β0

)
− 1 − isT M T

n xnt

1 + exT
nt β0

}
− (γε(0) + 1)r

2

n∑
t=1

(sT M T
n xnt )2e2xT

nt β0(
1 + exT

nt β0
)2 ,

Fn = r
n∑

t=1

(εt − 1)exT
nt β0

{
exp

(
isT M T

n xnt

1 + exT
nt β0

)
− 1

}
.
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It is easy to show

Dn → −1

2
sT{	1 + 	12γε(0)}s. (A3)

Moreover, we can show that |Fn − iCn(s)| → 0 in probability, where

Cn(s) = r
n∑

t=1

sT M T
n xnt exT

nt β0

1 + exT
nt β0

(εt − 1).

On the other hand, by applying Proposition 1,

Cn(s) → V (A4)

in distribution, where V ∼ N(0, sTW s) with W = ∑∞
k=−∞ Wkγε(k). To be specific, let

τ 2
n (s) = var{Cn(s)}

= r2sT M T
n

n∑
j=1

n∑
t=1

xnj e
xT

nj β0 xT
nt e

xT
nt β0(

1+e
xT
nj

β0
)(

1+exT
nt β0

) cov(ε j , εt )Mns.

Then τ 2
n (s) → sTW s. Defining

Znt = r

τn(s)
· sT M T

n xnt exT
nt β0

1 + exT
nt β0

(εt − 1),

we show
∑n

t=1 Znt → N(0, 1) in distribution by verifying the conditions in Proposition 1. Firstly, it is
clear that

E(Znt ) = 0, E

(
n∑

t=1

Znt

)2

= E

{
Cn(s)

τn(s)

}2

= 1.

Next, put cnt = n−1/2, then supn{n(max1�t�n cnt )2} = 1 < ∞. For λ > 0,

{
E

(
Znt

cnt

)λ+2
} 1

λ+2

=
⎡
⎣E

{
r

τn(s)
· sT M T

n xnt exT
nt β0

cnt

(
1 + exT

nt β0
) (εt − 1)

}λ+2
⎤
⎦

1/(λ+2)

,

= r

τn(s)
· sT M T

n xnt exT
nt β0

cnt

(
1 + exT

nt β0
){E(εt − 1)λ+2

}1/(λ+2)
,

which is bounded uniformly in t and n by the assumption sup1�t�n |MT
n xnt | = O(n−1/2) and Assumption

1. Finally, the third condition of Proposition 1 is assured by Assumption 2. Therefore, (A4) holds, and it
follows that Fn → iV in distribution. This together with (A2) and (A3) yields

E(eisTUn ) → E

(
exp

[
−1

2
sT {	1 + 	12γε(0)} s + iV

])
= exp

{
−1

2
sT(	1 + 	2)s

}
,

from which (A1) follows.
Since gn has convex sample paths, the convergence of gn(u) in distribution to

g(u) = 1

2
uT	1u − uTN(0,	1 + 	2)

can be extended to finite dimensional convergence, and further extended to convergence in distribution
on the space C(Rl ); see Rockafellar (1970) and Pollard (1991). The limit process g(u) has a unique
minimizer, say û. Therefore, the estimator ûn = M−1

n (β̂n − β0) converges in distribution to û. Note that
û ∼ N(0,	−1

1 + 	−1
1 	2	

−1
1 ). The proof is complete. �
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Proof of Theorem 2

It suffices to show that (A4) holds true. This can be done by adapting the technique for proving the
central limit theorem of Gaussian linear processes; see Brockwell & Davis (1991) for the theoretical results
required. �
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