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Penalized likelihood methods have become increasingly popular in recent years for evaluating haplotype-phenotype
association in case-control studies. Although a retrospective likelihood is dictated by the sampling scheme, these penalized
methods are typically built on prospective likelihoods due to their modeling simplicity and computational feasibility. It has
been well documented that for unpenalized methods, prospective analyses of case-control data can be valid but less
efficient than their retrospective counterparts when testing for association, and result in substantial bias when estimating
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the difference between the two analyses is negligible for additive and slight for dominant haplotype effects. For recessive
haplotype effects, the more appropriate retrospective likelihood clearly outperforms the prospective likelihood. If an
additive model is incorrectly used, as the true underlying genetic mode is unknown a priori, both retrospective and
prospective penalized methods suffer from a sizeable power loss and increase in bias. The impact of using the incorrect
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and selection operator (LASSO) [Tibshirani, 1996] to
perform selection among numerous possible haplotypes
resulting from different haplotype window lengths. Guo
and Lin [2009] use LASSO regression to evaluate the

INTRODUCTION

Haplotype-based association analysis evaluates the joint

effects of closely linked genetic markers on a trait of
interest. When compared to its single-marker counterparts,
this multi-marker approach can be more powerful to
detect associations when the causal variants are not
genotyped [de Bakker et al., 2005; Zaitlen et al., 2007],
have low frequency [de Bakker et al., 2005; Schaid, 2004],
or exhibit cis-acting effects [Clark, 2004; Schaid, 2004].
A standard approach for performing haplotype-based
analysis is to regress the trait value on the haplotypes
and to test the significance of the regression parameters
[Balding, 2006]. In recent years, applying penalized like-
lihood methods to identify important haplotypic factors
has become increasingly popular in the literature. For
example, Li et al. [2007] use the least absolute shrinkage
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effects of rare haplotypes and high-dimension haplotype-
environment interactions. Tzeng et al. [2010] use adaptive
LASSO regression [Zou, 2006] to study high-dimensional
gene-treatment interactions in a haplotype-based pharma-
cogenetic analysis. These methods introduce a penalty on
the regression coefficients and shrink the coefficient
estimates of non-important covariates toward zero. The
motivation behind using penalized methods in haplotype-
based analysis is that while the model space under
consideration may be large (e.g. 6-16 haplotypic predictors
with a sample size of 500-1,000 [Chen and Kao 2006;
Epstein and Satten, 2003; French et al., 2006; Stram et al,,
2003], which can yield 2° to 2'® possible models), many of
the haplotypic predictors are not likely to be associated
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with the phenotype. In this case, it is more efficient to
shrink these effect estimates to zero than to estimate them
purely. This shrinkage leads to a reduction in variance and
can increase the power to detect important haplotypic
predictors [Guo and Lin, 2009].

Modifications of classic penalized methods have also
been developed to perform haplotype-based analysis and
attempt to address issues specific to this type of analysis.
Tanck et al. [Souverein et al., 2006, 2008; Tanck et al., 2003]
use a modified version of Ridge regression to stabilize
inference for rare haplotypes. By constructing an L,-norm
penalty term on the differences in coefficients of similar
haplotypes, the coefficients of rare haplotypes are
smoothed toward that of a similar common haplotype.
Chen et al. [2009] develop an adaptive penalized like-
lihood framework to address the precision-efficiency
tradeoff encountered in retrospective methods. Motivated
by the fact that typical retrospective case-control estimates
of haplotype effects are efficient but sensitive to violations
of underlying assumptions (e.g. Hardy-Weinberg equili-
brium and gene-environment independence), they con-
struct a penalized estimator based on either an L;-norm or
an Ly-norm penalty that combines the merits of assump-
tion-free estimators (i.e. robust) and assumption-depen-
dent estimators (i.e. efficient). Tzeng and Bondell [2010]
modify traditional adaptive LASSO regression by placing
an L;-norm penalty on pair-wise differences of the
regression coefficients. This allows for effect comparisons
between all pairs of distinct haplotypes, rather than with
respect to an arbitrary baseline haplotype, during the
estimation process. As a result, the approach is able to sort
haplotypes into different groups according to their effect
sizes and eliminates the need for a post-hoc pair-wise
analysis of haplotype effects. In general, the key of a
penalized regression method lies in the form of the
penalty—by carefully designing the form of the penalty,
one can gear the penalized likelihood approach toward
accomplishing various desired tasks.

Penalized regression methods rely on the underlying
data likelihood. When analyzing data from case-control
studies, one can implement methods based on a prospec-
tive likelihood (modeling the probability of disease status
conditional on exposure) or a retrospective likelihood
(modeling the probability of exposure conditional on
disease status). Under a case-control design, a retro-
spective likelihood should be used because data are
collected based on disease status. However, in practice, it
is common for researchers to use a prospective likelihood,
as it does not require specifying a model for the joint
distribution of the genetic and environmental effects.
Bypassing this step makes implementing prospective
methods much easier than retrospective methods [Lin
et al., 2005]. This approach seems congruent with the well-
known result that optimizing the prospective likelihood
yields the same inference on the disease model parameters
as optimizing the retrospective likelihood [Prentice and
Pyke, 1979]. This result requires that the distribution of the
covariates be free of restrictions, which does not generally
hold in haplotype-based analysis. Haplotypes are not
directly observed from unphased genotype data. In order
to reconstruct the haplotypes and estimate their effects,
some assumptions must be placed on their frequency
distribution (typically Hardy-Weinberg equilibrium).

Most of the penalized regression approaches mentioned
above utilized a prospective likelihood. It has been well

documented that when using non-penalized regression
methods in haplotype-based analysis of case-control data,
ignoring the ascertainment scheme can be detrimental.
A prospective analysis can lead to a loss of efficiency and
severe bias when assessing the haplotype effects [Cordell,
2006; Satten and Epstein, 2004; Stram et al., 2003]. The aim
of this work is to determine whether similar consequences
occur when using penalized regression for case-control
studies. Specifically, we consider the adaptive LASSO
penalty, and use simulation studies to examine the relative
performance in parameter estimation and model selection
between the penalized method using a prospective like-
lihood and using a retrospective likelihood. Our results
suggest that the impact of using a prospective likelihood in
place of a retrospective likelihood depends on (1) the
underlying genetic mode of the causal variants, and (2) the
genetic model used in the analysis. If the correct genetic
model is used, then the difference between the two
analyses is negligible for additive and slight for dominant
haplotype effects. For recessive haplotype effects, the
more appropriate retrospective likelihood clearly outper-
forms the prospective likelihood. If an additive model is
used regardless of the underlying genetic mode, then both
retrospective and prospective penalized methods suffer
from a sizeable power loss and increase in bias. The impact
of using the incorrect genetic model is much bigger on
retrospective analyses than prospective analyses, and
results in comparable performances for both methods. In
addition to extensive simulation studies, we present an
application to the Genetic Analysis Workshop 15 rheuma-
toid arthritis data.

METHODS

PROSPECTIVE AND RETROSPECTIVE
LIKELIHOODS

Let the vector (Y;,G;E;) represent the observed data for
individual i in a case-control sample of size n. Let Y; be a
binary indicator of disease status, where Y;=1, if
individual 7 is a case and 0 otherwise. Let G; denote the
unphased genotype of individual i at m biallelic SNPs and
E; denote any environmental covariates measured on
individual i. Let H; represent the vector of haplotype
counts for individual i. Although researchers want to
investigate the relationship between Y; and H;, they only
have access to G;; therefore, the individual’s haplotype set
must be inferred from their unphased genotypes.

The relationship between the disease phenotype and the
covariates can be characterized by the conditional density
function P(Y'|H,E). A standard approach for binary trait
values is logistic regression, which models the conditional
probability as

exply - (Bo+Z(H,E)"B))

P =Y ) = exp(Bot Z(HLEYP)

where By is an intercept, B is the vector of disease model
parameters representing the log-odds ratios, and Z(H, E) is
a specified vector-valued function of the vector of
haplotype counts H and the vector of environmental
covariates E. For example, one can use an identity function
for Z(H,E) so that Z(H,E)" = [H*T,ET], where H* is the
vector H with baseline haplotype element removed. Other
examples of Z(H,E) are described in the data generation
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section and the choice depends on the genetic model of the
haplotype effects adopted in the analysis. The dimension
of B is determined by the dimension of [H* E]; it is the sum
of the number of haplotypes (excluding the baseline) and
the number of environmental covariates included in the
model, along with any interaction terms that may be used.
The dimension of B is denoted by p. Throughout this work,
we assume that the sample size is greater than the
dimension of B, i.e. n>p. This is consistent with case-
control data sets, which typically have sample sizes in the
order of 10* to 10% and the number of potential predictors
in the order of 10 [Chen and Kao 2006; Epstein and Satten,
2003; French et al., 2006; Stram et al., 2003].

Various likelihood models have been developed to
conduct inference about the disease model parameters in
haplotype-based analyses while properly accounting for
phase uncertainty. The inference can be based either on a
prospective likelihood or on a retrospective likelihood. In
this work, we consider maximum likelihood methods
developed by two groups—one focusing on a prospective
approach and the other on a retrospective approach.
We implement the prospective method developed in
Lake et al. [2003]. Their prospective likelihood models
P(Y;|G;E)) and is expressed as

n

n
Lp=[[PYilG,En =] D_ P(H:YilGiE)

i=1 i=1 H;eS(G;)
n

=11 >_ PilH:.E)PH)),
i=1 H;eS(G;)

where S(G) is the set of all haplotype pairs consistent
with G, P(H=h) =2 Hi:l np* /ni under the assumption of
Hardy-Weinberg equilibrium, 7; is the number of copies of
the kth haplotype in I, ;. is the population frequency of the
kth haplotype, and I is the number of haplotypes included
in the disease model. We implement the
retrospective method developed in Lin and Zeng [2006].
Their retrospective likelihood models P(G,E;!Y;) and is
expressed as

n

n
Ly =[[PGiElYD=T] > PH,G,EIY)

i=1 i=1 H;eS(G))
n

o [T D PYilH: ENPH)PEG)).
i=1 H;eS(G;)

The only difference between the two likelihoods is the
conditional density function P(E;|G;) found in the retro-
spective likelihood. The parameters in this model are of no
interest to researchers performing haplotype-based asso-
ciation analysis, but they must be estimated in order to
make proper inference when using a retrospective design.
Specifying a model for this conditional density function
and the subsequent maximum likelihood estimation are
computationally intensive. As a result, researchers often
rely on prospective methods when analyzing case-control
data even though retrospective methods are dictated by
the ascertainment scheme [Lin and Zeng, 2006].

HAPLOTYPE ANALYSIS VIA PENALIZED
LIKELIHOOD METHODS

While many different penalized likelihood methods can
be used in haplotype-based association analysis, we
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consider the adaptive LASSO (ALASSO) penalty in this
work. This approach achieves simultaneous variable
selection and parameter estimation and is an oracle
procedure. This refers to the fact that the approach
asymptotically selects the correct model, and the resulting
estimator is root-n consistent and asymptotically normal
with the same variance as if the true model were known
beforehand [Zou, 2006].

The ALASSO effect estimates are obtained by minimiz-
ing a penalized negative log-likelihood. These estimates
are expressed as

A p
B, = arg ming — £,(B, ¢)+7‘Zw/|ﬁf|’
=

where ¢,(B, ¢) denotes the log-likelihood, ¢ is a (possible)
set of nuisance parameters (e.g. the haplotype frequencies,
M), A is the non-negative regularization parameter that
controls the amount of shrinkage, and w; are data-
dependent weights. By placing an L;-norm penalty on
the regression coefficients, the ALASSO can set their
estimates to exactly zero if the value of A is large enough.
It is this feature that allows the procedure to perform
simultaneous variable selection and parameter estimation.
Unlike its predecessor the LASSO, the ALASSO places a
different penalty on each coefficient through the use of
adaptive weights that are inversely proportional to their
relative importance. Consequently, haplotypes with negli-
gible effects receive larger penalties and are more readily
shrunk to zero. This allows the effects of associated
haplotypes to be estimated more efficiently. Zou_[2006]
proposed to set the weights as w; = |B;|™, where p; is an
initial root-n consistent estimator of fB; and y>0 is an
additional tuning parameter. In our analysis, we chose
v =1 and let B; be the maximum likelihood estimate of the
haplotype eftect computed by haplo.glm in R and
HAPSTAT in Linux for the prospective and retrospective
likelihoods, respectively [Lake et al., 2003; Lin et al., 2005].

When performing penalized likelihood methods, it is
typical to center and scale the design matrix. Scaling
assures that each column of the design matrix has the same
variance and the resulting estimator is scale-equivariant
(i.e. multiplication of any predictor by any constant will
simply divide the resulting slope estimate by the identical
constant; hence the linear predictor remains unchanged).
This is desirable so that if, for example, the units of a
predictor are changed, such as feet to inches, the resulting
predicted values will remain unchanged. Often the
predictors are also centered, so that in the normal linear
regression setting, the intercept can be omitted and the
slope parameter estimates are orthogonal to the intercept
estimate. However, in the generalized linear models as
considered here, this is not the case; hence, the design
matrix is typically not centered. Furthermore, in the
ALASSO analysis, we also do not scale the imputed
haplotype design matrix because the adaptive weights we
set (i.e. \le_l) are scale-equivariant. The use of scale-
equivariant weights automatically forces the resulting
estimator to be scale-equivariant.

The ALASSO solution (B,) also depends on the value
of A. The regularization parameter controls the tradeoff
between model fit and model sparsity. By including more
predictors, one can continually improve the fit on the
training data at the expense of interpretability and over
fitting. Many model selection criteria, such as Mallow’s
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C,, Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), and cross validation [Arlot and
Celisse, 2010; Hastie et al., 2009; Shao, 1997], can be used
to determine the appropriate value of A from an exhaustive
grid search. Because the goal of haplotype-based associa-
tion analysis is more aligned with selecting the true model
than minimizing prediction error, we use the BIC for
tuning, which can achieve consistent model selection
[Yang, 2005]. BIC is defined as

BIC = —24,(B,., d)+dfs - log(n),

where £,(B,, ) is the log-likelihood evaluated at the
estimated regression coefficients and maximized over ¢
for a given A, and dfy is the degrees of freedom, which
equals the number of non-zero elements in ($;, $). The A
that minimizes the BIC is chosen as the regularization
parameter, and its corresponding B, is the ALASSO
estimate. For comparison, we also present some of the
results using AIC as a tuning method. In the definition of
AIC, the penalty on the degrees of freedom is changed
from log(n) to 2. As a result, models selected using AIC
incur less shrinkage, and the chosen ALASSO estimate will
be closer to the unpenalized MLE estimate than those
found using BIC.

For computational convenience, the objective function
created via the least squares approximation (LSA) method
was used to calculate the ALASSO solution. The LSA
method replaces the objective function of the original
ALASSO problem with a least squares objective function
[Wang and Leng, 2007]. The method is motivated by a
standard Taylor series expansion of —¢,(B, ¢) about (B, ¢),
the function’s unpenalized minimizer, and shows that the
ALASSO estimate has the exact same asymptotic distribu-
tion as the estimator given by

) o N p
B, = arg ming(B — B)'E7'(B — B)"')‘walﬁf"

=1

where ¥ is the estimated covariance matrix of p. Note that
the minimizer of the unpenalized least squares objective
function is exactly the maximum likelihood estimator.
Hence, as with the penalized likelihood, varying the
tuning parameter yields a continuous solution path from
the MLE to the solution with all coefficients equal to zero.
Because the underlying data likelihoods are not quadratic
in the regression coefficients, using the alternative least
squares objective function greatly reduces the computa-
tional costs for finding the ALASSO solution [Wang and
Leng, 2007]. Using the LSA method eliminates the need for
an iterative procedure to perform optimization; it only
requires one unpenalized fit of the original objective
function and then a grid search to determine A. The final
estimate is again chosen by minimizing the BIC (and AIC
for some results).

SIMULATION STUDIES

We performed simulation studies to examine the
performance of the ALASSO method under two compet-
ing data likelihoods when analyzing case-control data.
Specifically, we wanted to determine if using a prospective
likelihood in place of the more appropriate retrospective
likelihood was detrimental when performing haplotype-
based analyses using a penalized likelihood method.

To answer this question, we compared the parameter
estimation and model selection properties of each ap-
proach. For ease of discussion, let aPro refer to ALASSO
coupled with a prospective likelihood and aRetro refer to
ALASSO coupled with a retrospective likelihood.

SIMULATION SETTINGS

Our simulation studies were based on two haplotype
distributions (given in Table I) studied by Lin and Huang
[2008]. These distributions are based on the common
haplotypes formed by five SNPs on chromosome 18 in the
CEU sample of the HapMap data. The SNPs used to build
the first haplotype distribution were in strong linkage
disequilibrium, while those used to build the second
haplotype distribution were not. Distribution 1 represents
a haplotype distribution with a few high frequency
haplotypes, while the haplotype frequencies in Distribu-
tion 2 are more uniform. Each distribution was normalized
so that the haplotype frequencies summed to 1. Because
eight haplotypes define Distribution 1 and 11 haplotypes
define Distribution 2, the specific dimension of B is p=7
and p = 10, respectively.

For each haplotype distribution, we considered two
simulation studies—one in which a single haplotype was
associated with the disease (Simulation I) and one in
which two haplotypes were associated with the disease
(Simulation II). Because our focus was on identifying and
estimating disease-haplotype associations, only genetic
covariates were considered in our simulation studies (i.e. E
is taken to be ). We took the sample size to be n =1,000
with an equal number of cases and controls. In both
simulation studies, we examined the effect of varying the
genetic mode of the associated haplotype(s) on the
performance of aPro and aRetro. We allowed the asso-
ciated haplotype(s) to act additively, dominantly, or
recessively with respect to disease risk. In practice, the
genetic mode of a risk haplotype is unknown a priori, and
researchers typically analyze the data additively regard-
less of the true genetic model. To mimic this scenario, we
analyzed each data set using the correct genetic model and
again using an additive model. We use the term “genetic
mode” to refer to the true underlying architecture of the
relationship between the disease and the risk haplotypes,
and the term “genetic model” to refer to the assumed
architecture used in the analysis.

TABLE 1. Haplotype distributions used in simulations

Distribution 1 Distribution 2

Hap ID Haplotype Frequency Haplotype Frequency

1 00000 0.406 00010 0.131
2 00001 0.213 00001 0.105
3 01111 0.141 10010 0.103
4 10000 0.132 10101 0.100
5 10001 0.055 00100 0.088
6 01000 0.021 10100 0.088
7 01100 0.018 00101 0.086
8 01001 0.014 01101 0.084
9 10001 0.081
10 10000 0.079
11 00000 0.055

Genet. Epidemiol.
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TABLE II. Settings for SIM I and SIM II (odds ratios)

Distribution 1

Distribution 2

Sim I Sim II Sim I Sim II

Hap ID Freq R C R/R R/C C/C Freq R C R/R R/C C/C

1 0.406 0.131

2 0213 11 1 1 1 01051 6 1 0 0
3 014111 1 1 6 010311 1 1 0
4 013216 1 0 6 01001 1 1 1 1
5 0055 6 1 6 0 1 008 11 1 1 1
6 0021 11 6 1 1 0088 11 1 1 1
7 001811 1 1 1 008 11 1 1 1
8 001411 1 1 1 0084 11 1 1 1
9 008111 1 1 1
10 0079 11 6 1 1
11 0055 6 1 6 0 1

In addition to genetic mode, we varied the frequency
and effect size of the associated haplotype. In Simulation I
(SIM 1), a rare or a common haplotype was chosen to be
the associated genetic variant for each haplotype distribu-
tion. A haplotype with a frequency less than 0.10 was
considered rare; otherwise, it was considered common. We
set the effect sizes of the associated haplotype (in terms of
the odds ratio 0) so that the power of finding the effect fell
in a reasonable range. Under additive and dominant
modes, we set 6=1{1.0,1.3,1.5,1.7,2.0}, and under a
recessive mode, we set 0= {1.0,2.0,2.5,3.0,3.5}. We let
0 =1 to examine the performance of the approaches under
a null model. In Simulation II (SIM II), we allowed two
haplotypes to be associated with the disease, where the
associated haplotypes were both rare, one rare and one
common, or both common. The odds ratios of both
associated haplotypes were set to 6 = 1.7 for additive and
dominant modes and 0 =3.0 for a recessive mode. The
settings for Simulations I and II can be found in Table II. In
all, 78 different simulation settings were studied.

DATA GENERATION

We generated the haplotype pair of an individual
conditional on their disease status and then dissolved the
haplotype pair into its unphased genotypes. Let
P(H=h!Y =y) denote the probability of having a parti-
cular haplotype pair conditional on disease status. This
probability can be expressed as

P(Y =y|H="h)-P(H = h)
Y PY=yH=h)-PH=h)

For a case individual, P(Y = 1| H = h) was found using the
logistic regression model

PH=hY =y) =

exp{By+Z(H)" B}
1+exp{By+Z(H)' B}

For a control individual, P(Y=0H=h)=1—-P(Y=1|H=h).
The function Z(-) depends on the genetic mode of the
haplotype(s) associated with the disease. If the haplotype
acts additively with respect to disease risk, then Z(H)=H*
where H* is the haplotype-count vector H with the
baseline haplotype element removed. If the haplotype acts

P(Y = 1|H) =
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dominantly, then Z(H)=I{H*>1}, where the inequality
is taken component wise, and I{A}=1 if A is true. If
the haplotype acts recessively, then Z(H)=I{H*=2}.
The vector B was taken to be the log of the vectors
given in Table II for each simulation setting. The value
of Py was set to maintain a disease prevalence between
3% and 5%. Once P(Y=y|H=h) was calculated for
each haplotype pair formed from the haplotype
distributions given in Table I, the vectors Pyy—,=
(PH=m|Y=y)---P(H=hy|Y=y)) were calculated for
Y=0 and Y=1 where g is total number of haplotype
pairs. The sample was generated by taking n/2 draws
from the multinomial distribution parameterized by
PHjy=0 to determine the haplotype pairs of the controls,
and by taking n/2 draws from the multinomial distribu-
tion parameterized by Pyjy=1 to determine the haplotype
pairs of the cases. The haplotype pair of each individual
was then dissolved into its unphased genotype.

COMPUTATIONAL DETAILS

For each simulation setting, 1,000 replicate data sets
were generated, except for simulation under the null (i.e.
0 =1) where 2,000 replicated data sets were generated. We
doubled the number of simulated data sets in the null
simulation to obtain more stable estimates of the false-
positive counts (FP counts). For each data set, analysis
began by calculating the unpenalized MLEs of the
haplotype log-odds ratios. Prospective MLEs were ob-
tained using haplo.glm in R [Lake et al., 2003] and
retrospective MLEs were obtained using HAPSTAT in
Linux [Lin et al., 2005]. The estimated covariance matrix of
the MLEs was also obtained from each program. The final
aPro and aRetro estimates were calculated by using the
MLEs and their covariance matrix to compute the
ALASSO solution via LSA. Based on these final estimates,
estimation and model selection measures were calculated
to compare the performance of the aPro and aRetro
approaches. The estimation measures provided in this
analysis are the bias and mean square error (MSE) of
haplotype effect estimates. The model selection measures
provided are the FP count (i.e. the number of non-risk
haplotypes retained in the model) and the false-negative
count (FN count, i.e. the number of risk haplotypes not
retained in the model), for which a smaller FN count
indicates better power to identify risk haplotypes. For each
measure, we report the mean across the replicated data
sets and the corresponding standard error of the mean.
The functions used to obtain the results of this simulation
study are available at the corresponding author’s website
http: //www4.stat.ncsu.edu/~tzeng/publications.php.

SIMULATION RESULTS

We present the results of Null Simulation (i.e. no-risk
haplotypes) for both haplotype distributions in Table IIIL
For the simulations involving risk haplotypes, because the
pattern of results was similar across both haplotype
distributions, for brevity we focus the discussion on the
results for the first haplotype distribution. The results of
Simulation I (single-risk haplotype) for this setting are
found in Tables IV and V. The results of Simulation II
(two-risk haplotypes) for this setting are found in Tables VI
and VII. The discussion generalizes to the second
haplotype distribution, and specific results are shown in
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TABLE III. BIC-penalized results of null simulation (no-risk haplotypes)

Model selection results

Parameter estimation results

False positives® Bias MSE
Model® Pro Retro Pro Retro Pro Retro
Haplotype Distribution 1
(Correct analysis)
Additive 0.025¢ 0.028 0.000 —0.001 0.002 0.002
(0.005) (0.006) (0.002) (0.002) (0.001) (0.001)
Dominant 0.025 0.033 0.000 0.000 0.002 0.003
(0.006) (0.006) (0.002) (0.002) (0.001) (0.001)
Recessive 0.026 0.029 —0.001 0.003 0.001 0.003
(0.008) (0.011) (0.001) (0.002) (0.001) (0.002)
Haplotype Distribution 2
(Correct analysis)
Additive 0.062 0.055 0.000 0.000 0.002 0.002
(0.020) (0.017) (0.002) (0.002) (0.001) (0.001)
Dominant 0.059 0.054 0.001 0.001 0.001 0.001
(0.018) (0.014) (0.002) (0.001) (0.001) (0.001)
Recessive 0.057 0.054 0.000 0.007 0.000 0.007
(0.001) (0.017) (0.000) (0.005) (0.000) (0.005)

“False positives are counts out of 7 for Distribution 1 and out of 10 for Distribution 2.

PModel refers to genetic model adopted in the analysis.

“Measures in this table are found by averaging over 2,000 simulated data sets; standard errors (SE) are shown in parentheses. (Additionally,
the bias and MSE were first averaged across all null haplotypes in the model)

Tables VIII-XI. For each simulation, the results are broken
down into two broad categories—correct analysis versus
additive analysis. Correct analysis refers to specifying the
correct genetic model when analyzing the data using
haplo.glm or HAPSTAT, while additive analysis refers to
analyzing non-additive data additively.

NULL SIMULATION

For each haplotype distribution, both aPro and aRetro
have desirable and similar performances under the null
model (Table III). The FP count is low for both methods
(at most 0.033 FPs out of 7 variables for Distribution 1, and
at most 0.062 FPs out of 10 variables for Distribution 2). The
effect estimations are also very similar, with the bias from
both methods ranging from —0.001 to 0.007, and MSE
ranging from 0.000 to 0.007. When comparing results
between the two haplotype distributions, the FP count is
lower for Distribution 1 than Distribution 2. This result is
not unexpected, as the dimension of Distribution 2 is larger.

SIMULATION I FOR HAPLOTYPE
DISTRIBUTION 1

Additive genetic mode. When the risk haplotype
acts additively, the FN and FP counts are very close for
aPro and aRetro (Table IV). The FN count decreases when
the effect size of the risk haplotype increases or if the
frequency of the risk haplotype increases, but the relative
performance of the two methods stays the same. When
comparing the bias and MSE of aPro and aRetro, the
measures from the two procedures are also very close,
which indicates that aPro and aRetro perform similarly
with respect to effect estimation. For both procedures, the
bias on the effect estimates is negative and the magnitudes

are larger than what have been reported for an unpena-
lized likelihood analysis (e.g. Lin and Zeng [2006] and
Tables XIV and XV). These results are not unexpected
when using a penalized likelihood approach. When a
haplotype is not included in the model, its effect estimate
is shrunk toward zero or set to exactly zero. Shrinkage can
cause a large bias on the effect estimates. The impact of
using a penalized method on the bias is greatest when the
effect size is large and the power to detect the risk
haplotype is low. As a result, a decrease in effect size or an
increase in power does not necessarily guarantee a
reduction in bias; the magnitude of the bias is a
compromise between these two factors. This phenomenon
is seen when examining the biases in Table IV. First, the
bias for rare-risk haplotypes is larger than the correspond-
ing common-risk haplotypes with the same effect size
because the power to detect rare-risk haplotype is smaller.
Second, for a given risk haplotype, the bias on the effect
estimate increases as the effect size increases until the
power to detect the risk haplotype becomes large enough
to overcome the shrinkage, and the bias on the effect
estimate begins to decrease.

A similar pattern is observed when examining the MSE
of the two procedures. Again, the MSE of aPRo and aRetro
is larger than what has been found in an unpenalized
likelihood analysis. MSE is an estimation measure that
incorporates both the variance of an estimator and its bias.
Because the effect estimates obtained from penalized
methods are typically more efficient than those obtained
from the corresponding unpenalized methods, it appears
that the MSE of the effect estimates from aPro or aRetro
could be dominated by their biases.

Dominant genetic mode. Under a dominant genet-
ic mode, aRetro performs slightly better than aPro when
the data are analyzed under the correct genetic model
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TABLE IV. BIC-penalized results of Sim I (one-risk haplotype) for Distribution 1—correct analysis®

Model selection results Parameter estimation results

False negatives® False positives Bias MSE
Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Additive Rare 1.3 0.943¢ 0.945 0.019 0.024 —0.230 —0.231 0.071 0.071
(0.007) (0.007) (0.004) (0.005) (0.004) (0.004) (0.001) (0.001)
15 0.820 0.805 0.010 0.015 —0.304 —0.298 0.142 0.140
(0.012) (0.013) (0.007) (0.006) (0.005) (0.006) (0.003) (0.004)
17 0.623 0.614 0.051 0.050 —0.305 —0.304 0.186 0.183
(0.015) (0.015) (0.008) (0.008) (0.01) 0.01) (0.004) (0.004)
2.0 0.244 0.239 0.059 0.064 —0.201 —0.200 0.144 0.142
(0.014) (0.013) (0.008) (0.008) (0.010) (0.010) (0.006) (0.006)
Common 13 0.801 0.792 0.030 0.027 —0.190 —0.188 0.059 0.058
(0.013) (0.013) (0.005) (0.005) (0.005) (0.005) (0.001) (0.001)
15 0.465 0.460 0.075 0.075 —0.189 —0.187 0.082 0.081
(0.016) (0.016) (0.006) (0.007) (0.005) (0.007) (0.002) (0.001)
1.7 0.120 0.112 0.066 0.073 —-0.103 —0.101 0.050 0.048
(0.010) (0.010) (0.009) (0.009) (0.006) (0.006) (0.003) (0.003)
2.0 0.003 0.003 0.054 0.056 —0.071 —0.072 0.027 0.027
(0.002) (0.002) (0.008) (0.008) (0.005) (0.005) (0.001) (0.001)
Dominant Rare 1.3 0.946 0.941 0.018 0.028 —0.230 —0.228 0.072 0.071
(0.007) (0.007) (0.004) (0.005) (0.004) (0.004) (0.001) (0.001)
15 0.870 0.840 0.025 0.015 —0.324 —0.311 0.151 0.146
(0.011) (0.012) (0.008) (0.007) (0.006) (0.007) (0.002) (0.002)
1.7 0.659 0.632 0.034 0.031 —-0.317 —0.307 0.196 0.188
(0.015) (0.015) (0.006) (0.006) (0.010) (0.010) (0.004) (0.004)
2.0 0.332 0.303 0.064 0.069 —0.251 —0.239 0.184 0.170
(0.015) (0.015) (0.009) (0.009) (0.011) (0.011) (0.007) (0.007)
Common 13 0.864 0.849 0.024 0.025 —0.207 —0.203 0.063 0.062
(0.011) (0.011) (0.006) (0.005) (0.004) (0.005) (0.001) (0.001)
15 0.590 0.555 0.060 0.055 —0.231 —0.224 0.101 0.096
(0.016) (0.016) (0.007) (0.007) (0.006) (0.007) (0.002) (0.002)
1.7 0.263° 0.206 0.064 0.067 —0.161 —0.145 0.088 0.073
(0.014) (0.013) (0.008) (0.009) (0.008) (0.007) (0.004) (0.003)
2.0 0.035 0.025 0.062 0.065 —0.090 —0.091 0.046 0.041
(0.006) (0.005) (0.008) (0.008) (0.006) (0.006) (0.003) (0.003)
Recessive Rare 2.0 0.990 0.910 0.010 0.035 —0.693 —0.583 0.480 0.474
(0.003) (0.011) (0.007) (0.013) 0.000 (0.026) (0.000) (0.005)
2.5 0.990 0.870 0.010 0.010 —0.916 —0.753 0.840 0.753
(0.003) (0.013) (0.007) (0.007) (0.000) (0.031) (0.000) (0.016)
3.0 0.990 0.770 0.010 0.015 —1.099 —0.764 1.207 0.987
(0.002) (0.014) (0.007) (0.009) (0.000) (0.045) (0.000) (0.030)
3.5 0.995 0.720 0.005 0.005 —1.253 —0.865 1.569 1.163
(0.001) (0.009) (0.005) (0.005) (0.000) (0.046) (0.000) (0.047)
Common 2.0 0.925 0.695 0.000 0.010 —0.603 —0.441 0.467 0.347
(0.008) (0.015) (0.000) (0.007) (0.023) (0.028) (0.006) (0.014)
2.5 0.735 0.350 0.010 0.030 —0.549 —0.329 0.711 0.321
(0.014) (0.015) (0.007) (0.012) (0.045) (0.033) (0.023) (0.027)
3.0 0.480 0.110 0.015 0.045 —0.440 —0.226 0.631 0.188
(0.016) (0.010) (0.009) (0.016) (0.047) (0.026) (0.040) (0.026)
3.5 0.355 0.060 0.030 0.020 —0.367 —0.242 0.671 0.176
(0.015) (0.008) (0.012) (0.010) (0.052) (0.024) (0.055) (0.026)

Correct analysis means the genetic model adopted in the analysis is the same as the underlying genetic mode.

PFalse negatives are counts out of 1 and false positives are counts out of 6.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk
haplotype.

4Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.

“Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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TABLE V. BIC-penalized results of Sim I (one-risk haplotype) for Distribution 1—additive analysis®

Model selection results

Parameter estimation results

False negatives® False positives Bias MSE

Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Dominant Rare 13 0.949¢ 0.956 0.023 0.020 —0.234 —-0.237 0.070 0.070
(0.007) (0.006) (0.005) (0.004) (0.004) (0.004) (0.001) (0.001)

15 0.865 0.860 0.025 0.025 —0.326 —0.324 0.149 0.148
(0.011) (0.011) (0.007) (0.006) (0.006) (0.006) (0.003) (0.004)

1.7 0.665 0.677 0.040 0.040 —0.331 —0.342 0.195 0.197
(0.015) (0.015) (0.006) (0.006) (0.009) (0.009) (0.004) (0.004)

2.0 0.356 0.366 0.074 0.083 —0.286 —0.304 0.194 0.198
(0.015) (0.015) (0.009) (0.010) (0.011) (0.010) (0.007) (0.007)

Common 1.3 0.879 0.883 0.024 0.025 —-0.219 —0.221 0.062 0.062
(0.010) (0.010) (0.005) (0.006) (0.004) (0.004) (0.001) (0.001)

15 0.650 0.660 0.060 0.050 —-0.273 —0.281 0.110 0.111
(0.015) (0.015) (0.007) (0.007) (0.004) (0.005) (0.004) (0.003)

1.7 0.291 0.301 0.064 0.068 —-0.225 —0.242 0.099 0.103
(0.014) (0.015) (0.008) (—0.009) (0.007) (0.007) (0.004) (0.004)

2.0 0.049 0.051 0.081 0.090 —0.186 —0.216 0.068 0.077
(0.007) (0.007) (0.009) (0.010) (0.006) (0.006) (0.003) (0.003)

Recessive Rare 2.0 0.985 0.985 0.025 0.035 —0.688 —0.689 0.481 0.481
(0.004) (0.004) (0.011) (0.013) (0.006) (0.005) (0.006) (0.006)

2.5 1.000° 0.995 0.025 0.025 —-0.916 —0.914 0.840 0.836
(0.000) (0.002) (0.011) (0.011) (0.000) (0.002) (0.000) (0.003)

3.0 0.985 0.980 0.025 0.030 —1.089 —1.088 1.192 1.189
(0.004) (0.004) (0.011) (0.012) (0.005) (0.006) (0.009) (0.009)

3.5 1.000 0.990 0.000 0.005 —1.253 —1.248 1.569 1.561
(0.000) (0.003) (0.000) (0.005) (0.000) (0.003) (0.000) (0.006)

Common 2.0 0.975 0.950 0.005 0.020 —0.685 —0.684 0472 0.470
(0.005) (0.007) (0.005) (0.010) (0.004) (0.004) (0.004) (0.004)

2.5 0.890 0.890 0.015 0.025 —0.876 —-0.877 0.781 0.782
(0.010) (0.010) (0.009) (0.013) (0.008) (0.008) (0.012) (0.012)

3.0 0.860 0.845 0.015 0.030 —1.051 —1.044 1.120 1.107
(0.011) (0.011) (0.009) (0.012) (0.008) (0.009) (0.016) (0.017)

3.5 0.740 0.715 0.010 0.020 —1.156 —1.146 1.365 1.343
(0.014) (0.014) (0.007) (0.010) (0.012) (0.012) (0.025) (0.026)

?Additive analysis means an additive model is adopted in the analysis when the underlying genetic mode is not.
PFalse negatives are counts out of 1 and false positives are counts out of 6.
“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk

haplotype.

¥Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.
°Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).

(Table IV). While having comparable FP counts, the FN
count of aRetro is less than that of aPro although the
differences are not always significant (i.e. the intervals of
mean +2SEs overlap). Similar results are observed for the
estimation measures. The bias and MSE of aRetro are
similar to or lower than that of aPro.

When the data are incorrectly analyzed additively
(Table V), the FP count is similar for both methods, and
stays roughly at the same level as the correct analysis.
However, both methods suffer from an increase in FNs,
bias, and MSE when compared to the performance of the
correct analysis. It appears that the impact of using an
incorrect genetic model is larger on aRetro than on aPro.
For example, the aRetro FN count of retaining a common
dominant risk haplotype with OR=1.7 increased from
0.206 to 0.301 under the additive analysis, while the FN
count of aPro increased from 0.263 to 0.291, with the SEs of

all figures around 0.014. The aRetro bias in this setting
increases from |—0.1451 to 1—-0.2421, while the bias of
aPro increases from |—0.1611 to |—0.2251. As a result,
aPro performs worse than aRetro under correct analysis
(Table IV) but is comparable or slightly better than aRetro
under the additive analysis (Table V).

Recessive genetic mode. Under a recessive genetic
mode, aRetro clearly outperforms aPro when the data are
analyzed under the correct model (Table IV). Both methods
have comparable FP counts, but the FIN count of aRetro is
significantly less than that of aPro. When the risk haplotype
is rare, the FN count of aPro is almost 1, indicating that aPro
has almost no power to retain the risk haplotype in the
model under this scenario. When the risk haplotype is
common, the FN count of aRetro is 75% to 17% smaller than
the FN count of aPro. The lack of power of aPro also
manifests in significantly more bias on the effect estimates.
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The bias on effect estimates from aRetro is 84% to 50% of
the bias from aPro. The MSE on the effect estimates from
aRetro is 90% to 26% of the MSE from aPro in most cases.

When this data are incorrectly analyzed additively
(Table V), the performance of each method suffers from
an increase in FNs, bias, and MSE. The magnitude of the
performance loss due to incorrect modeling is more severe
than what was observed under a dominant mode and is
much more severe for aRetro than aPro. For example, the
aRetro FN count of retaining a common recessive risk
haplotype with OR=2.5 increased from 0.350 to 0.890
under the additive analysis, while the FN count of aPro
increased from 0.735 to 0.890, with the SEs of all figures

around 0.014. The aRetro bias in this setting increases from
1 —0.3291 to | —0.877 |, while the bias of aPro increases from
| —0.5491 to | —0.8761. Consequently, while aRetro exhibits
absolute superiority over the aPro method (Table IV) under
a correct analysis, it becomes comparable to or slightly
better than aPro under the additive analysis (Table V).

SIMULATION II FOR HAPLOTYPE
DISTRIBUTION 1

Simulation II examines the performance of aPro and
aRetro when two haplotypes are associated with the disease
(Tables VI and VII). Under each genetic mode, the patterns

TABLE VI. BIC-penalized results of Sim II (two-risk haplotypes) for Distribution 1—correct analysis®

Model selection results

Parameter estimation results

False negatives® False positives Bias MSE
Mode® Freq Pro Retro Pro Retro Pro Retro Pro Retro
Additive R/R R1¢ 1.548° 1.536 0.029 0.031 —0.443 —0.444 0.267 0.266
(0.020) (0.021) (0.006) (0.006) (0.008) (0.008) (0.002) (0.003)
R2 —0.327 —0.324 0.193 0.190
(0.009) (0.009) (0.004) (0.004)
R/C R1 0.596 0.588 0.089 0.098 —0.250 —0.249 0.156 0.155
(0.020) (0.020) (0.010) (0.011) (0.006) (0.006) (0.003) (0.002)
C1 —0.109 —0.109 0.048 0.046
(0.010) (0.010) (0.004) (0.004)
c/C C1 0.204 0.205 0.095 0.090 —0.113 —0.115 0.053 0.054
(0.017) (0.017) (0.010) (0.010) (0.006) (0.006) (0.002) (0.002)
C2 —0.101 —0.103 0.042 0.042
(0.006) (0.006) (0.003) (0.003)
Dominant R/R R1 1.628 1.566 0.036 0.039 —0.441 —0.433 0.270 0.261
(0.020) (0.021) (0.006) (0.006) (0.009) (0.009) (0.003) (0.003)
R2 —0.371 —0.352 0.214 0.202
(0.009) (0.009) (0.004) (0.004)
R/C R1 0.741 0.704 0.077 0.084 —0.253 —0.252 0.167 0.162
(0.022) (0.022) (0.009) (0.010) (0.008) (0.007) (0.003) (0.003)
C1 —0.142 —0.133 0.077 0.071
(0.010) (0.010) (0.004) (0.004)
c/C C1 0.477 0.433 0.087 0.114 —0.170 —0.149 0.092 0.074
(0.024) (0.021) (0.010) (0.011) (0.007) (0.006) (0.003) (0.003)
C2 —0.152 —0.130 0.076 0.059
(0.008) (0.007) (0.004) (0.003)
Recessive R/R R1 2.000" 1.865 0.005 0.020 —0.916 —0.916 0.840 0.840
(0.000) (0.024) (0.005) (0.010) (0.000) (0.000) (0.000) (0.000)
R2 —0.916 —0.731 0.840 0.766
(0.000) (0.034) (0.000) (0.015)
R/C R1 1.775 1.215 0.010 0.030 —0.916 —0.684 0.840 0.749
(0.030) (0.046) (0.007) (0.014) (0.000) (0.038) (0.000) (0.019)
C1 —0.618 —0.367 0.720 0.354
(0.041) (0.033) (0.026) (0.027)
c/C C1 1.490 0.595 0.000 0.050 —0.662 —0.319 0.717 0.322
(0.054) (0.053) (0.000) (0.015) (0.043) (0.028) (0.029) (0.025)
Cc2 —0.547 —0.292 0.664 0.244
(0.037) (0.033) (0.022) (0.027)

“Correct analysis means the genetic model adopted in the analysis is the same as the underlying genetic mode.
PFalse negatives are counts out of 2 and false positives are counts out of 5.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype.

IR refers to a rare risk haplotype and C refers to a common risk haplotype.

“Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.
‘Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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TABLE VII. BIC-penalized results of Sim II (two-risk haplotypes) for Distribution 1—additive analysis®
Model selection results Parameter estimation results
False negatives® False positives Bias MSE

Mode® Freq Pro Retro Pro Retro Pro Retro Pro Retro
Dominant R/R R1¢ 1.653¢ 1.660 0.028 0.029 —0.448 —0.452 0.268 0.265
0.019) (0.019) (0.005) (0.005) (0.008) (0.008) (0.002) (0.002)

R2 —0.391 -0.397 0.218 0.219
(0.008) (0.008) (0.004) (0.004)

R/C R1 0.790 0.789 0.079 0.083 —0.261 —0.265 0.163 0.160
(0.024) (0.024) (0.009) (0.010) (0.007) (0.007) (0.004) (0.004)

C1 —0.216 —-0.233 0.094 0.098

0.01) (0.009) (0.004) (0.004)

Cc/C C1 0.594 0.603 0.085 0.093 —0.243 —0.255 0.110 0.113

(0.026) (0.026) (0.010) (0.010) (0.007) (0.006) (0.004) (0.004)

C2 —0.225 —-0.237 0.096 0.098

(0.007) (0.007) (0.004) (0.004)

Recessive R/R R1 2.000 2.000 0.015 0.025 —0.916 —0.916 0.840 0.840
(0.000) (0.000) (0.009) (0.011) (0.000) (0.000) (0.000) (0.000)

R2 —0.916 —0.916 0.840 0.840

(0.000) (0.000) (0.000) (0.000)

R/C R1 1.910 1.910 0.025 0.030 —-0.916 —-0.916 0.843 0.844

(0.021) (0.021) (0.011) (0.012) (0.000) (0.000) (0.011) (0.011)

C1 —0.885 —0.884 0.795 0.794

(0.005) (0.005) (0.009) (0.009)

c/C C1 1.875 1.865 0.015 0.025 —0.895 —0.894 0.809 0.807

(0.028) (0.029) (0.009) (0.011) (0.006) (0.006) (0.009) (0.009)

C2 —0.895 —0.894 0.808 0.806

(0.006) (0.006) (0.009) (0.009)

?Additive analysis means an additive model is adopted in the analysis when the underlying genetic mode is not.

PFalse negatives are counts out of 2 and false positives are counts out of 5.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype.

IR refers to a rare risk haplotype and C refers to a common risk haplotype.

“Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.

of results observed in Simulation I remain the same in
Simulation II. First, when the risk haplotypes act additively
on disease susceptibility, the performances of aPro and
aRetro are comparable for FlNs, FPs, bias and MSE. Second,
the performance of aRetro is better than that of aPro under a
dominant mode with correct analysis. The gain brought by
aRetro is similar across all three simulation scenarios but is
rarely significantly different from aPro. However, when
analyzing the data with an additive model, all measures
increase for both methods. The performance loss is more
severe in aRetro, resulting in a comparable performance of
aPro and aRetro. Finally, under a recessive mode analyzed
correctly, aRetro has significantly fewer FNs, slightly more
FPs, and significantly smaller bias/MSE when compared to
aPro for almost all simulation scenarios. However, when
recessively acting haplotypes are analyzed using an additive
genetic model, the performance of each procedure suffers,
especially aRetro. Both methods essentially lose their power
to detect the two-risk haplotypes (e.g. having FN counts
close to 2 as no-risk haplotypes were retained in the model)
and yield sizable biases/MSE.

SIMULATION I AND II FOR HAPLOTYPE
DISTRIBUTION 2

When comparing results between the two haplotype
distributions for Simulations I and II, all measures were

typically higher for Distribution 2. Like for the Null
Simulation, these results are not unexpected because
Distribution 2 has a larger dimension, which means more
parameters needed to be estimated in the analysis.
Increasing the number of parameters and using the
same amount of data for estimation can decrease
power (ie. increase the FN count) and increase bias.
Although the magnitudes of model selection and estima-
tion measures differ between the two haplotype distribu-
tions, when comparing the relative performance of aPro
and aRetro, the pattern of results observed in the first
haplotype distribution is similar to that in the second
haplotype distribution for both Simulations I and II (Tables
VIII-XI). The relative performance of aPro and aRetro
depends on both the underlying genetic mode of the
risk haplotypes and the genetic model adopted in the
analysis. When the haplotypes associated with disease
risk act additively, the two procedures perform compar-
ably with respect to model selection and estimation
measures. Under a dominant mode, aRetro performs
slightly better than aPro and substantially better under a
recessive mode. When these data are analyzed using an
additive model, both procedures suffer from a loss in
power and an increase in bias/MSE. The impact of
imposing the incorrect genetic model is more severe
for aRetro than for aPro, and the performance gain of
aRetro is lost.
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TABLE VIII. BIC-penalized results of Sim I (one-risk haplotype) for Distribution 2—correct analysis®

Model selection results Parameter estimation results

False Negatives® False Positives Bias MSE
Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Additive Rare 13 0.965¢ 0.960 0.065 0.035 —0.245 —0.244 0.068 0.068
(0.006) (0.006) (0.017) (0.013) (0.006) (0.006) (0.000) (0.000)
15 0.885 0.865 0.090 0.045 —0.338 —0.329 0.151 0.148
(0.010) (0.011) (0.021) (0.015) (0.014) (0.014) (0.003) (0.003)
1.7 0.675 0.685 0.080 0.070 —0.349 —0.351 0.198 0.201
(0.015) (0.015) 0.02) (0.021) (0.020) (0.020) (0.009) (0.009)
2.0 0.290 0.290 0.140 0.080 —0.250 —0.250 0.169 0.168
(0.014) (0.014) (0.027) (0.022) (0.023) (0.023) (0.015) (0.015)
Common 1.3 0.715 0.710 0.085 0.075 —0.229 —0.221 0.067 0.067
(0.014) (0.014) (0.021) (0.020) (0.009) (0.010) (0.001) (0.001)
15 0.385° 0.315 0.050 0.050 —0.311 —0.286 0.130 0.121
(0.015) (0.015) (0.017) (0.017) (0.013) (0.014) (0.005) (0.005)
1.7 0.125 0.120 0.065 0.080 —0.443 —0.382 0.233 0.199
(0.010) (0.010) (0.020) (0.023) (0.013) (0.016) (0.008) (0.009)
2.0 0.005 0.010 0.090 0.160 —0.646 —0.583 0.450 0.404
(0.002) (0.003) (0.025) (0.034) (0.013) (0.018) (0.009) (0.012)
Dominant Rare 13 0.955 0.930 0.085 0.040 —0.234 —-0.219 0.073 0.076
(0.007) (0.008) (0.021) (0.016) (0.010) (0.012) (0.003) (0.004)
15 0.895 0.880 0.085 0.045 —0.343 —0.336 0.152 0.151
(0.010) (0.010) (0.023) (0.016) (0.013) (0.014) (0.003) (0.003)
1.7 0.770 0.690 0.125 0.110 —0.388 —0.346 0.224 0.203
(0.013) (0.015) (0.023) (0.024) (0.019) (0.021) (0.008) (0.009)
2.0 0.510 0.425 0.125 0.080 —0.361 —0.322 0.260 0.225
(0.016) (0.016) (0.023) (0.020) (0.026) (0.025) (0.016) (0.016)
Common 1.3 0.815 0.800 0.030 0.035 —0.240 —0.234 0.067 0.068
(0.012) (0.013) (0.012) (0.013) (0.007) (0.008) (0.001) (0.001)
15 0.545 0.520 0.070 0.110 —0.296 -0.273 0.132 0.123
(0.016) (0.016) (0.019) (0.025) (0.015) (0.016) (0.004) (0.005)
1.7 0.270 0.235 0.075 0.100 —0.376 —0.339 0.205 0.185
(0.014) (0.013) (0.019) (0.025) (0.018) (0.019) (0.008) (0.009)
2.0 0.020 0.010 0.110 0.130 —0.509 —0.441 0.349 0.304
(0.004) (0.003) (0.025) (0.026) (0.021) (0.024) (0.014) (0.016)
Recessive Rare 2.0 1.000 0.930 0.050 0.035 —0.693 —0.610 0.480 0.467
(0.000) (0.008) (0.015) (0.013) (0.000) (0.022) (0.000) (0.005)
2.5 1.000 0.810 0.050 0.075 —0.916 —0.660 0.840 0.728
(0.000) (0.012) (0.015) (0.019) (0.000) (0.038) (0.000) (0.018)
3.0 1.000 0.810 0.070 0.025 —1.099 —0.859 1.207 0.995
(0.000) (0.012) (0.018) (0.011) (0.000) (0.036) (0.000) (0.031)
3.5 1.000 0.685 0.045 0.055 —1.253 —0.841 1.569 1.103
(0.000) (0.015) (0.015) (0.018) (0.000) (0.045) (0.000) (0.049)
Common 2.0 0.935 0.820 0.025 0.060 —0.693 —0.539 0.481 0.404
(0.008) (0.012) (0.011) (0.020) (0.000) (0.024) (0.000) (0.012)
2.5 0.880 0.610 0.010 0.070 —0.856 —0.555 0.824 0.531
(0.010) (0.015) (0.007) (0.019) (0.021) (0.034) (0.007) (0.028)
3.0 0.700 0.465 0.020 0.060 —0.932 —0.548 1.087 0.590
(0.014) (0.016) (0.010) (0.018) (0.033) (0.038) (0.024) (0.041)
3.5 0.585 0.405 0.000 0.100 —0.974 —0.590 1.284 0.690
(0.016) (0.016) (0.000) (0.024) (0.041) (0.041) (0.041) (0.052)

Correct analysis means the genetic model adopted in the analysis is the same as the underlying genetic mode.

PFalse negatives are counts out of 1 and false positives are counts out of 9.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk
haplotype.

4Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE)are shown in parentheses.

“Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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TABLE IX. BIC-penalized results of Sim I (one-risk haplotype) for Distribution 2—additive analysis®
Model selection results Parameter estimation results
False negatives® False positives Bias MSE
Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Dominant Rare 1.3 0.9504 0.955 0.095 0.045 —0.232 —-0.235 0.073 0.072
(0.007) (0.007) (0.023) (0.015) (0.010) (0.009) (0.003) (0.002)
1.5 0.900 0.900 0.070 0.045 —0.351 —0.351 0.151 0.152
(0.009) (0.009) (0.022) (0.016) (0.012) (0.012) (0.003) (0.003)
1.7 0.795 0.790 0.130 0.075 —0.406 —0.408 0.229 0.227
(0.013) (0.013) (0.024) (0.019) (0.018) (0.017) (0.008) (0.008)
2.0 0.505 0.550 0.100 0.070 —0.390 —0.414 0.263 0.281
(0.016) (0.016) (0.021) (0.019) (0.024) (0.023) (0.016) (0.016)
Common 1.3 0.820 0.805 0.035 0.025 —0.243 —0.245 0.067 0.067
(0.012) (0.013) (0.013) (0.011) (0.006) (0.006) (0.001) (0.001)
1.5 0.565 0.570 0.075 0.075 —0.314 —0.308 0.133 0.129
(0.016) (0.016) (0.019) (0.019) (0.013) (0.013) (0.004) (0.005)
1.7 0.275 0.270 0.075 0.100 —0.397 —0.385 0.208 0.200
(0.014) (0.014) (0.020) (0.024) (0.016) (0.016) (0.008) (0.009)
2.0 0.015 0.020 0.090 0.100 —0.539 —0.478 0.358 0.304
(0.004) (0.004) (0.025) (0.026) (0.018) (0.019) (0.014) (0.015)
Recessive Rare 2.0 1.000 1.000 0.075 0.025 —0.693 —0.693 0.480 0.480
(0.000) (0.000) (0.020) (0.011) (0.000) (0.000) (0.000) (0.000)
2.5 0.995 0.995 0.105 0.055 —0.912 —0.912 0.835 0.835
(0.002) (0.002) (0.026) (0.020) (0.004) (0.004) (0.004) (0.004)
3.0 0.995 0.990 0.080° 0.010 —1.096 —1.094 1.203 1.199
(0.002) (0.003) (0.019) (0.007) (0.002) (0.003) (0.004) (0.006)
3.5 0.985 0.985 0.075 0.035 —1.244 —1.242 1.552 1.551
(0.004) (0.004) (0.020) (0.015) (0.005) (0.006) (0.010) (0.011)
Common 2.0 0.930 0.950 0.035 0.015 —0.691 —0.691 0.478 0.478
(0.008) (0.007) (0.013) (0.009) (0.002) (0.002) (0.002) (0.002)
2.5 0.890 0.890 0.045 0.055 —0.903 —0.895 0.821 0.809
(0.010) (0.010) (0.015) (0.016) (0.005) (0.007) (0.007) (0.009)
3.0 0.790 0.805 0.040 0.020 —1.087 —1.078 1.186 1.171
(0.013) (0.013) (0.014) (0.010) (0.005) (0.006) (0.009) (0.011)
3.5 0.730 0.715 0.020 0.030 —1.230 —1.216 1.523 1.495
(0.014) (0.014) (0.010) (0.014) (0.007) (0.009) (0.014) (0.018)

?Additive analysis means an additive model is adopted in the analysis when the underlying genetic mode is not.
PFalse negatives are counts out of 1 and false positives are counts out of 9.
“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk

haplotype.

¥Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.
°Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).

ANALYSIS OF GAW15 RA DATA

Rheumatoid arthritis (RA) is a condition that is believed
to be influenced by a number of genetic and environ-
mental factors. Genetic Analysis Workshop (GAW) 15
designed a series of studies to investigate the genetic risk
factors of this condition. One of these studies focused on a
dense panel of 2,300 SNPs from a 10-megabase region of
chromosome 18q. This region of the genome was chosen
because it had shown prior evidence of linkage to RA
[Browning and Thomas, 2007]. The panel of SNPs was
genotyped for 460 cases and 460 controls collected by the
North American Rheumatoid Arthritis Consortium. Before
implementing the prospective and retrospective analyses
discussed in this article, the quality control filters
described by Browning and Thomas [2007] were
applied to the data, and five SNPs in Hardy-Weinberg

disequilibrium and one case with no genotype information
were removed from the data set prior to analysis. We
analyzed this data using the four methods discussed in
this article—unpenalized prospective likelihood, prospec-
tive likelihood coupled with the ALASSO penalty, un-
penalized retrospective likelihood, and retrospective
likelihood coupled with the ALASSO penalty. The un-
penalized methods were fit using haplo.glm in R and
HAPSTAT in Linux for the prospective and retrospective
likelihoods, respectively. The penalized methods were fit
using the LSA code posted on the corresponding author’s
website.

Based on the findings of Browning and Thomas, we
analyzed two blocks of linkage disequilibrium (LD)
around the region that showed significant association
(SNPs 1631 and 1632). The two regions we investigated
were (a) SNPs 1626 to 1632, a block of SNPs that are in
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TABLE X. BIC-penalized results of Sim II (two-risk haplotypes) for Distribution 2—correct analysis?®

Koehler et al.

Model selection results

Parameter estimation results

False negatives® False positives Bias MSE

Mode® Freq Pro Retro Pro Retro Pro Retro Pro Retro
Additive R/R R1¢ 1.040° 1.025 0.195 0.140 —0.318 —0.301 0.190 0.184
(0.056) (0.056) (0.037) (0.028) (0.021) (0.022) (0.009) (0.009)

R2 —0.227 —0.219 0.125 0.122
(0.019) (0.019) (0.009) (0.009)

R/C R1 1.030 0.985 0.120 0.120 —0.470 —0.422 0.257 0.234
(0.033) (0.054) (0.028) (0.028) (0.013) (0.017) (0.006) (0.007)

C1 —0.417 —-0.333 0.219 0.176
(0.015) (0.018) (0.008) (0.009)

c/C C1 0.960 0.970 0.095 0.130 —0.467 —0.425 0.251 0.228
(0.037) (0.055) (0.024) (0.029) (0.013) (0.015) (0.006) (0.007)

c2 —0.452 —0.416 0.235 0.217
(0.013) (0.015) (0.007) (0.008)

Dominant R/R R1 1.120 0.975 0.170 0.130 —0.319 —0.279 0.188 0.166
(0.055) (0.054) (0.028) (0.026) (0.021) (0.021) (0.009) (0.009)

R2 —0.248 —0.229 0.151 0.135
(0.021) (0.020) (0.009) (0.009)

R/C R1 1.290f 1.060 0.165 0.210 —0.414 —0.337 0.240 0.197
(0.042) (0.052) (0.029) (0.037) (0.019) (0.021) (0.007) (0.009)

C1 —0.391 —0.349 0.210 0.184
(0.017) (0.018) (0.009) (0.009)

c/C C1 1.180 1.130 0.075 0.095 —0.456 —0.411 0.243 0.212
(0.046) (0.056) (0.020) (0.023) (0.013) (0.015) (0.007) (0.008)

c2 —0.434 —0.379 0.229 0.194
(0.014) (0.016) (0.008) (0.009)

Recessive R/R R1 2.000 1.610 0.030 0.050 —0.916 —-0.749 0.840 0.763
(0.000) (0.044) (0.012) (0.015) (0.000) (0.032) (0.000) (0.018)

R2 —0.916 —0.642 0.840 0.642
(0.000) (0.034) (0.000) (0.025)

R/C R1 1.880 1.400 0.020 0.045 —0.916 —0.736 0.840 0.746
(0.023) (0.045) (0.010) (0.015) (0.000) (0.032) (0.000) (0.017)

C1 —0.846 —0.517 0.827 0.487
(0.024) (0.033) (0.009) (0.028)

c/C C1 1.725 1.330 0.010 0.085 —0.885 —0.632 0.854 0.593
(0.034) (0.052) (0.007) (0.022) (0.019) (0.031) (0.014) (0.026)

2 —0.874 —0.604 0.824 0.560
(0.017) (0.031) (0.007) (0.027)

Correct analysis means the genetic model adopted in the analysis is the same as the underlying genetic mode.
PFalse negatives are counts out of 2 and false positives are counts out of 8.
“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype.
IR refers to a rare risk haplotype and C refers to a common risk haplotype.
“Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.

‘Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).

extremely high LD with SNPs 1631 and 1632 and (b) SNPs
1621 to 1630, a haplotype block [Barrett et al., 2005] that is
next to SNPs 1631 and 1632 and located in gene CCBE1.
High LD was defined as having a pair-wise D’ >0.99; D’ is
a measure of LD that scales the raw difference between the
expected and observed haplotype frequencies of a pair of
SNPs so that it is between —1 and 1. For each block of
SNPs, we considered additive, dominant, and recessive
models for haplotype effects. Examining the values of
the fitted likelihoods for each method, it appears that
the haplotypes in these blocks do not act recessively;
so only the results of the additive and dominant analyses
are shown. The results of our analysis (coefficient
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estimates for all methods and unadjusted p-values for
the unpenalized methods) can be found in Tables XII
and XIIL

In their analysis, Browning and Thomas located a
significant haplotype sequence “21” at SNPs 1631 and
1632. When analyzing the LD block containing these SNPs
(a), all four methods considered in this article were able to
find the same signal. This result can be seen when
examining the small p-value and the non-zero coefficient
of the haplotype “1121121” for the unpenalized and
penalized methods, respectively (Table XII). All the four
methods finding the same result is not surprising and is
supported by the results of our simulation studies. Based
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TABLE XI. BIC-penalized results of Sim II (two-risk haplotypes) for Distribution 2—additive analysis®

Model selection results Parameter estimation results
False negatives® False positives Bias MSE

Mode® Freq Pro Retro Pro Retro Pro Retro Pro Retro
Dominant R/R R1¢ 1.140° 1.135 0.160 0.110 —0.337 —0.348 0.192 0.195
(0.055) (0.056) (0.028) (0.025) (0.020) (0.019) (0.009) (0.009)

R2 —0.286 —0.289 0.153 0.148
(0.019) (0.018) (0.009) (0.009)

R/C R1 1.425' 1.120 0.155 0.195 —0.443 —0.402 0.249 0.225
(0.040) (0.055) (0.032) (0.039) (0.016) (0.018) (0.006) (0.008)

C1 —0.413 —0.381 0.213 0.192
(0.015) (0.015) (0.008) (0.009)

c/C C1 1.135 1.140 0.085 0.125 —0.469 —0.458 0.246 0.238

(0.044) (0.050) (0.020) (0.025) (0.011) (0.012) (0.006) (0.007)

c2 —0.458 —0.453 0.241 0.236

(0.012) (0.012) (0.007) (0.007)

Recessive R/R R1 1.980 1.960 0.050 0.025 —0.911 —0.911 0.833 0.833
(0.010) (0.014) (0.015) (0.011) (0.004) (0.004) (0.005) (0.005)

R2 —0.913 —0.905 0.834 0.823

(0.003) (0.005) (0.004) (0.007)

R/C R1 1.890 1.910 0.045 0.025 —0.913 —0.913 0.836 0.836

(0.023) (0.017) (0.015) (0.011) (0.003) (0.003) (0.004) (0.004)

C1 —0.902 —0.895 0.819 0.809

(0.005) (0.006) (0.007) (0.009)

c/C C1 1.730 1.740 0.045 0.050 —0.910 —0.907 0.830 0.826

(0.032) (0.020) (0.016) (0.017) (0.003) (0.004) (0.005) (0.006)

C2 —0.906 —0.901 0.824 0.818

(0.005) (0.006) (0.007) (0.008)

?Additive analysis means an additive model is adopted in the analysis when the underlying genetic mode is not.

PFalse negatives are counts out of 2 and false positives are counts out of 8.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype.

IR refers to a rare risk haplotype and C refers to a common risk haplotype.

“Measures in this table are found by averaging over 1,000 simulated datas ets; standard errors (SE) are shown in parentheses.
fBolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).

TABLE XII. Analysis of GAW15-RA data SNPs 1626 to 1632°

Prospective analysis Retrospective analysis

Model® Haplotype Unpenalized (p-value) BIC-penalized AIC-penalized Unpenalized (p-value) BIC-penalized AIC-penalized

Additive 1121111 0.016 0.000 0.000 0.028 0.000 0.000
(0.883) (0.784)
1121112 0.069 0.000 0.000 0.076 0.000 0.000
(0.883) (0.871)
1121121 —2.028 —2.023 —2.023 —1.979 —1.978 —1.978
(0.000) (0.000)
2212222 —0.016 0.000 0.000 —0.016 0.000 0.000
(0.919) (0.922)
Dominant 1121111 —0.039 0.000 0.000 0.126 0.000 0.000
(0.797) (0.335)
1121112 0.043 0.000 0.000 0.110 0.000 0.000
(0.927) (0.814)
1121121 —2.022 —2.018 —2.018 —1.967 —1.861 —1.861
(0.000) (0.000)
2212222 —0.026 0.000 0.000 0.018 0.000 0.000
(0.880) (0.914)

“SNPs in high LD (i.e. D' >0.99) with SNPs 1631 and 1632, a significant region identified by Browning and Thomas [2007].
PModel refers to genetic model adopted in the analysis.
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TABLE XIII. Analysis of GAW15-RA data SNPs 1621 to 1630°

Prospective analysis

Retrospective analysis

Model® Haplotype Unpenalized (p-value) BIC-penalized AIC-penalized Unpenalized (p-value) BIC-penalized AIC-penalized
Additive 1221211211 0.175 0.000 0.120 0.173 0.000 0.152
(0.096) (0.098)
2112122122 0.098 0.000 0.000 0.070 0.000 0.000
(0.539) (0.656)
2211211211 —0.368 0.000 0.000 —0.451 0.000 —0.407
(0.355) (0.224)
2221211211 —0.762 0.000 —0.522 —0.767 0.000 —0.729
(0.100) (0.094)
Dominant 1221211211 0.283 0.000 0.225 0.246 0.000 0.226
(0.042) (0.052)
2112122122 0.128 0.000 0.000 0.072 0.000 0.000
(0.461) (0.660)
2211211211 —0.356 0.000 0.000 —0.446 0.000 —0.398
(0.371) (0.231)
2221211211 —0.739 0.000 —0.506 —0.768 0.000 —0.727
(0.111) (0.094)

?A haplotype block that is next to SNPs 1631 and 1632 and is in gene CCBE1.

PModel refers to genetic model adopted in the analysis.

on our simulations, we found that the difference between
a prospective and retrospective approach is often negli-
gible when the haplotype effect size is large under
additive and dominant genetic modes.

Browning and Thomas also found that individuals with
the haplotype “21” at SNPs 1631 and 1632 also share the
sequence “11211” at SNPs 1626 to 1630. When analyzing
the LD block (a) defined by SNPs 1626 to 1632, we
replicated the exact haplotype using the article’s four
methods. Motivated by this finding, we analyzed the
second LD block (b), which is a 10-SNP haplotype block
covering SNPs 1626 to 1630 and is located in gene CCBEI.
The unpenalized methods (at significance level 0.01) and
penalized methods tuned with BIC did not find any
significant signals. However, in practice, the significance
level is often set more liberally at 0.05; at these levels, one
haplotype (“1221211211") sits at the border of significance.
More interestingly, the penalized method tuned with AIC
identified some of the haplotypes in the sample with the
shared sequence “11211” under a prospective analysis and
all of them under a retrospective analysis. Although it is
unknown whether these findings are true signals or false
positives, it is promising that penalized methods are able
to detect other haplotypes containing the sequence
“11211”7, and that a retrospective penalized approach is
able to find all haplotypes with the sequence “11211”
significant.

DISCUSSION

Like other haplotype-based methods developed to
assess haplotype-phenotype association, the success of
penalized regression methods depends on the underlying
data likelihood. For unpenalized methods, prospective
analyses are valid but less efficient than their retrospective
counterparts for hypothesis testing, and can result in
substantial bias when estimating the haplotype effects.
Based on our simulation studies, the same can be said for
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penalized methods, which combine testing and estimation
into one procedure. We found that the impact of using a
prospective likelihood in the analysis depends on the
underlying genetic mode of the associated genetic variant
and the genetic model adopted in the analysis. When the
genetic mode of the haplotypes is known and the correct
inheritance model is imposed, using a prospective analysis
in place of the more appropriate retrospective analysis is
detrimental when the associated haplotypes act domi-
nantly or recessively with respect to disease risk. These
results agree with the findings for non-penalized like-
lihood methods [Satten and Epstein, 2004]. Because the
genetic mode of a genetic variant is usually unknown,
researchers often analyze the data additively. When
dominant or recessive data are analyzed under an additive
genetic model, the performance of the prospective and
retrospective analyses become comparable. Both methods
suffer from an increase in FNs and bias for using an
incorrect genetic model. The retrospective analysis appears
to be more sensitive to model misspecification and exhibits
a larger degree of performance loss, thus making its
performance gain over the prospective analysis negligible
or slight.

While our simulations focused on penalized methods
using the ALASSO penalty with the prospective likelihood
of haplo.glm and the retrospective likelihood of HAPSTAT,
we hope our findings can provide insight when coupling
other penalized approaches with a prospective or a
retrospective likelihood for case-control studies. If the
main consideration is the relative performance of the
retrospective versus prospective penalized method, then
our results suggest that the negative impact of developing
haplotype-based penalized methods based on a prospec-
tive likelihood for case-control data is non-trivial only
when the risk haplotypes act non-additively and the
correct genetic model is adopted in the analysis. However,
we think a more appropriate way to summarize our
findings is to note that a careful haplotype-based
penalized analysis of case-control data requires the use
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TABLE XIV. Unpenalized results of Sim I (one-risk haplotype) for Distribution 1—correct analysis®

Model selection results Parameter estimation results
False negatives® False positives

Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Additive Rare 1.3 0.9344 0.934 0.030 0.028 0.013 0.010 0.049 0.048
(0.008) (0.008) (0.006) (0.005) (0.007) (0.007) (0.002) (0.002)
1.5 0.865° 0.785 0.050 0.050 0.012 0.005 0.050 0.048
(0.012) 0.011) (0.008) (0.007) (0.007) (0.008) (0.001) (0.002)
1.7 0.677 0.680 0.040 0.042 0.005 —0.003 0.047 0.046
(0.016) (0.016) (0.007) (0.007) (0.007) (0.007) (0.002) (0.002)
2.0 0.249 0.253 0.032 0.028 0.021 0.013 0.045 0.044
(0.013) (0.013) (0.006) (0.005) (0.007) (0.007) (0.002) (0.002)
Common 1.3 0.823 0.820 0.026 0.024 0.011 0.009 0.024 0.023
(0.012) (0.012) (0.005) (0.005) (0.005) (0.005) (0.001) (0.001)
1.5 0.575 0.550 0.035 0.035 —0.004 —0.009 0.022 0.022
(0.01) (0.011) (0.006) (0.005) (0.005) (0.005) (0.002) (0.001)
1.7 0.168 0.167 0.033 0.032 0.009 0.003 0.023 0.022
(0.012) (0.012) (0.006) (0.006 (0.005) (0.005) (0.001) (0.001)
2.0 0.012 0.011 0.028 0.029 0.001 —0.009 0.021 0.020
(0.003) (0.003) (0.005) (0.005) (0.005) (0.005) (0.001) (0.001)
Dominant Rare 1.3 0.938 0.930 0.034 0.030 0.011 0.007 0.062 0.058
(0.008) (0.008) (0.006) (0.005) (0.008) (0.008) (0.003) (0.003)
15 0.850 0.820 0.020 0.025 0.024 0.008 0.054 0.048
(0.011) (0.012) (0.006) (0.007) (0.007) (0.008) (0.003) (0.002)
1.7 0.678 0.656 0.028 0.025 0.016 0.003 0.052 0.047
(0.015) (0.015) (0.005) (0.005) (0.007) (0.007) (0.002) (0.002)
2.0 0.332 0.292 0.036 0.035 0.013 —0.005 0.053 0.048
(0.015) (0.014) (0.006) (0.006) (0.007) (0.007) (0.003) (0.002)
Common 1.3 0.888 0.857 0.026 0.025 —0.004 —0.01 0.032 0.028
(0.010) (0.011) (0.005) (0.005) (0.006) (0.005) (0.001) (0.001)
15 0.670 0.600 0.045 0.030 —0.011 —0.022 0.028 0.023
(0.011) (0.011) (0.005) (0.006) (0.007) (0.006) (0.001) (0.001)
1.7 0.328 0.262 0.024 0.023 0.012 —0.002 0.031 0.026
(0.015) (0.014) (0.005) (0.005) (0.006) (0.005) (0.001) (0.001)
2.0 0.080 0.052 0.036 0.040 0.016 —0.006 0.031 0.025
(0.009) (0.007) (0.007) (0.007) (0.006) (0.005) (0.002) (0.001)
Recessive Rare 2.0 1.000 0.920 0.010 0.020 —0.256 —0.328 0.686 0.537
(0.000) (0.019) (0.007) (0.010) (0.056) (0.106) (0.066) (1.128)
2.5 1.000 0.865 0.010 0.005 —0.270 —0.333 0.622 0.868
(0.000) (0.024) (0.007) (0.005) (0.053) (0.094) (0.062) (1.019)
3.0 1.000 0.800 0.010 0.015 —0.240 —0.218 0.641 0.457
(0.000) (0.030) (0.007) (0.009) (0.054) (0.045) (0.071) (0.049)
3.5 1.000 0.730 0.010 0.010 —0.386 —0.271 0.711 0.404
(0.000) (0.032) (0.007) (0.007) (0.053) (0.041) (0.075) (0.046)
Common 2.0 0.945 0.780 0.000 0.025 0.016 —0.080 0.165 0.092
(0.016) (0.033) (0.000) (0.011) (0.029) (0.021) (0.017) (0.010)
2.5 0.755 0.395 0.000 0.015 0.096 —0.086 0.281 0.095
(0.032) (0.034) (0.000) (0.009) (0.037) (0.021) (0.033) (0.010)
3.0 0.485 0.105 0.010 0.015 0.083 —0.076 0.163 0.065
(0.035) (0.022) (0.007) (0.009) (0.028) (0.017) (0.015) (0.008)
3.5 0.340 0.055 0.015 0.010 0.061 —-0.122 0.229 0.073
(0.034) (0.016) (0.009) (0.007) (0.034) (0.017) (0.034) (0.008)

Correct analysis means the genetic model adopted in the analysis is the same as the underlying genetic mode.

PFalse negatives are counts out of 1 and false positives are counts out of 6.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk

haplotype.

4Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.
“Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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of a retrospective likelihood and the correct genetic mode.
In practice, a major concern about using retrospective
likelihoods is that they are difficult to implement. When
using penalized likelihood methods, optimizing the retro-
spective likelihood can become even more intractable
when the penalty term is incorporated. Use of the exact
likelihood coupled with the EM algorithm due to the
unknown phase, with the penalization, and tuning on a
dense grid of tuning parameters, requires a computation-
ally intensive iterative procedure.

To overcome the computational burden, the least
squares objective function provides a promising alterna-
tive for implementing penalized retrospective methods. By
using the least squares objective function, the need to
directly optimize the penalized retrospective likelihood is
bypassed. Instead, the unpenalized likelihood is optimized
once for the centering value in the objective function;

hence, implementing prospective and retrospective pena-
lized methods have similar computational costs. The
spared computational efforts can be put into exploring
and identifying the correct genetic mode for potential risk
haplotypes.

Penalized likelihood methods can have higher power
than unpenalized methods in detecting important haplo-
typic factors [Guo and Lin, 2009]. Our simulations agree
with their findings and reveal that the methods considered
here can have better power to identify risk haplotypes (i.e.
fewer FNs) than the unpenalized version (e.g. Tables XIV
and XV vs. Tables IV and V, respectively). However, the
power enjoyed by penalized likelihood methods comes at
the expense of obtaining effect estimates with relatively
larger bias than their unpenalized likelihood counterparts.
As observed in our simulations, the bias on the effect
estimates obtained by the penalized method can remain

TABLE XV. Unpenalized results of Sim I (one-risk haplotype) for Distribution 1—additive analysis®

Model selection results

Parameter estimation results

False negatives® False positives Bias MSE

Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Dominant Rare 13 0.954¢ 0.953 0.036 0.035 —0.008 —0.014 0.055 0.052
(0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.002) (0.002)

15 0.850 0.855 0.025 0.030 —-0.013 —0.023 0.048 0.046
(0.010) (0.009) (0.006) (0.006) (0.008) (0.007) (0.002) (0.003)

17 0.700 0.687 0.029 0.032 —0.019 —0.036 0.048 0.046
(0.015) (0.015) (0.005) (0.006) (0.007) (0.007) (0.002) (0.002)

2.0 0.367 0.361 0.031 0.033 —0.032 —0.059 0.049 0.047
(0.015) (0.015) (0.006) (0.006) (0.007) (0.007) (0.002) (0.002)

Common 13 0.904 0.908 0.022 0.022 —0.047 —0.052 0.028 0.027
(0.009) (0.009) (0.005) (0.005) (0.005) (0.005) (0.001) (0.001)

15 0.735 0.750 0.035 0.030 —-0.074 —0.088 0.028 0.028
(0.010) (0.009) (0.005) (0.006) (0.006) (0.005) (0.001) (0.002)

1.7 0.386 0.414 0.026 0.031 —0.076° —0.098 0.031 0.032
(0.015) (0.016) (0.006) (0.006) (0.005) (0.005) (0.001) (0.001)

2.0 0.120 0.135 0.038 0.037 —0.096 —0.134 0.035 0.040
(0.010) (0.011) (0.007) (0.006) (0.005) (0.005) (0.002) (0.002)

Recessive Rare 2.0 0.990 0.990 0.040 0.050 —0.671 —0.665 0.497 0.491
(0.007) (0.007) (0.014) (0.015) (0.015) (0.016) (0.021) (0.021)

2.5 0.995 0.990 0.020 0.030 —0.871 —0.865 0.810 0.805
(0.005) (0.007) (0.010) (0.012) (0.016) (0.017) (0.028) (0.028)

3.0 0.970 0.965 0.040 0.040 —0.995 —0.989 1.045 1.039
(0.012) (0.013) (0.014) (0.014) (0.017) (0.018) (0.034) (0.036)

3.5 1.000 0.985 0.010 0.015 —1.148 -1.14 1.357 1.345

(0.000) —0.009 —0.007 —0.011 —0.014 —0.015 —0.032 —0.035

Common 2.0 0.985 0.980 0.010 0.030 —0.560 —0.557 0.335 0.332
(0.009) (0.010) (0.007) (0.012) (0.010) (0.011) (0.012) (0.013)

2.5 0.910 0.890 0.015 0.025 -0.722 —0.708 0.542 0.526
(0.020) (0.022) (0.009) (0.011) (0.010) (0.011) (0.015) (0.016)

3.0 0.865 0.835 0.025 0.040 —0.867 —0.845 0.771 0.739
(0.024) (0.026) (0.011) (0.014) (0.010) (0.011) (0.018) (0.020)

3.5 0.775 0.725 0.025 0.025 —0.979 —0.947 0.978 0.920
(0.030) (0.032) (0.011) (0.013) (0.010) (0.011) (0.020) (0.021)

?Additive analysis means an additive model is adopted in the analysis when the underlying genetic mode is not.

PFalse negatives are counts out of 1 and false positives are counts out of 6.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk

haplotype.

4Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.
“Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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sizeable, particularly when there is very little power coefficient is zero. In contrast, for the MLE, the estimate is
to detect the effect. Part of this is due to the fact that still non-zero even though it is not significantly different
non-detection of the effect implies that the estimated from zero.

TABLE XVI. AIC-penalized results of Sim I (one-risk haplotype) for Distribution 1—correct analysis®

Model selection results Parameter estimation results
False negatives® False positives Bias MSE

Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Additive Rare 13 0.605¢ 0.600 1.010 1.090 —-0.110 —0.106 0.059 0.058
(0.015) (0.015) (0.089) (0.094) (0.015) (0.015) (0.003) (0.003)

15 0.320 0.330 1.095 1.145 —0.106 —0.109 0.074 0.074
(0.015) (0.015) (0.088) (0.089) (0.018) (0.018) (0.005) (0.005)

17 0.100 0.105 0.975 0.990 —-0.079 —0.082 0.060 0.060
(0.009) (0.010) (0.078) (0.077) (0.016) (0.016) (0.006) (0.006)

2.0 0.025 0.025 1.000 1.000 —0.070 —0.067 0.055 0.055
(0.005) (0.005) (0.082) (0.081) (0.016) (0.016) (0.006) (0.006)

Common 13 0.350 0.325 1.010 1.050 —-0.077 —0.073 0.032 0.030
(0.015) (0.015) (0.082) (0.082) (0.011) (0.011) (0.002) (0.002)

15 0.080 0.070 1.125 1.130 —0.060 —0.062 0.030 0.030
(0.009) (0.008) (0.085) (0.082) (0.011) (0.011) (0.003) (0.003)

17 0.015 0.005 1.060 1.035 —0.016 —0.018 0.022 0.020
(0.004) (0.002) (0.084) (0.083) (0.010) (0.010) (0.003) (0.002)

2.0 0.000 0.000 0.910 0.900 —0.041 —0.046 0.022 0.021

(0.000) (0.000) —0.077 —0.076 —0.010 —0.010 —0.002 —0.002

Dominant Rare 13 0.630 0.625 0.885 0.940 —0.116 -0.117 0.057 0.057
(0.015) (0.015) (0.082) (0.086) (0.015) (0.015) (0.003) (0.003)

15 0.355 0.345 0.855 0.855 —0.128 —0.122 0.078 0.076
(0.015) (0.015) (0.080) (0.079) (0.018) (0.018) (0.006) (0.005)

17 0.175 0.170 0.905 0.945 —0.102 —0.109 0.088 0.083
(0.012) (0.012) (0.072) (0.079) (0.020) (0.019) (0.008) (0.007)

2.0 0.025 0.020 1.080 1.075 —0.070 —0.070 0.064 0.058
(0.005) (0.004) (0.083) (0.086) (0.017) (0.016) (0.007) (0.006)

Common 13 0.435 0.425 0.950 0.875 —0.087 —0.097 0.038 0.036
(0.016) (0.016) (0.078) (0.075) (0.012) (0.012) (0.002) (0.002)

15 0.105 0.115 1.045 1.065 —0.085 —0.089 0.040 0.038
(0.010) (0.010) (0.080) (0.081) (0.013) (0.012) (0.004) (0.004)

17 0.015 0.015 1.010 0.940 —0.033 —0.037 0.034 0.029
(0.004) (0.004) (0.084) (0.079) (0.013) 0.012) (0.004) (0.003)

2.0 0.000 0.000 0.935 0.915 —-0.018 —0.027 0.026 0.024
(0.000) (0.000) (0.083) (0.088) (0.011) (0.011) (0.002) (0.002)

Recessive Rare 2.0 0.900° 0.570 0.450 0.545 —0.563 —0.233 0.506 0.383
(0.009) (0.016) (0.049) (0.057) (0.031) (0.041) (0.015) (0.017)

25 0.835 0.505 0.515 0.565 -0.717 —0.386 0.771 0.507
(0.012) (0.016) (0.049) (0.052) (0.036) (0.042) (0.031) (0.027)

3.0 0.765 0.360 0.500 0.480 -0.779 —0.381 0.965 0.511
(0.013) (0.015) (0.052) (0.048) (0.042) (0.043) (0.032) (0.038)

3.5 0.670 0.330 0.500 0.565 —0.804 —0.403 1.101 0.617
(0.015) (0.015) (0.050) (0.056) (0.048) (0.048) (0.048) (0.049)

Common 2.0 0.435 0.270 0.380 0.450 —0.202 —0.176 0.290 0.162
(0.016) (0.014) (0.043) (0.047) (0.035) (0.026) (0.019) (0.014)

2.5 0.180 0.060 0.425 0.430 —0.130 —0.121 0.259 0.117
0.012) (0.008) (0.047) (0.048) (0.035) (0.023) (0.023) (0.014)

3.0 0.095 0.025 0.505 0.435 —-0.135 —0.164 0.273 0.107
(0.009) (0.005) (0.051) (0.047) (0.036) (0.020) (0.026) (0.015)

35 0.020 0.000 0.375 0.400 —0.056 —0.101 0.193 0.072

(0.004) (0.000) —0.041 —0.041 —0.031 —0.018 —0.024 —0.008

“Correct analysis means the genetic model adopted in the analysis is the same as the underlying genetic mode.

PFalse negatives are counts out of 1 and false positives are counts out of 6.

“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk haplotype.
4Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.

“Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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The power and bias is also affected by the model
selection criterion used to select the tuning parameter. In
our analysis, we used BIC to choose the final model
because it can achieve consistent model selection [Shao,
1997; Yang, 2005], and although estimation accuracy was
of interest, our primary goal was to identify the true model
structure. To achieve selection consistency, BIC penalizes
degrees of freedom more heavily, which can place a larger
amount of shrinkage on the effect estimates and increase
their bias. Alternatively, AIC could be used to select the
final model. (See Tables XVI and XVII for the AIC-based
results for Tables IV and V, respectively.) This selection
criterion targets prediction error rather than finding the
true model structure [Shao, 1997; Yang, 2005] and imposes
a smaller penalty on the degrees of freedom. As a result,
models selected via AIC will incur less shrinkage on the
effect estimates, which can decrease their bias, but also

increases the chance of including non-important predic-
tors in the final model. In our analyses, when tuning with
AIC instead of BIC, the FN count stays relatively similar,
while the FP count often increases and the bias/MSE
decreases. This is a direct result of placing less shrinkage/
penalty on the final estimates.

Throughout this paper, we assume that the sample size
is larger than the number of predictors (n>p), which is
consistent with typical case-control data sets. However, if
the investigator wishes to consider the situation in which
the number of candidate haplotypes exceeds the sample
size (n<p), the analysis can be extended by replacing the
initial estimates B; in the adaptive LASSO penalty with an
L, penalized solution, i.e. ridge regression. The initial ridge
step would then need to be tuned; we suggest the use of
AIC, so that less shrinkage occurs in the initial estimate.
However, the use of the least squares objective function

TABLE XVII. AIC-penalized results of Sim I (one-risk haplotype) for Distribution 1—additive analysis®

Model selection results

Parameter estimation results

False negatives® False positives Bias MSE

Mode® Freq OR Pro Retro Pro Retro Pro Retro Pro Retro
Dominant Rare 13 0.6407 0.635 0.870 0.860 —0.128 —0.132 0.055 0.053
(0.015) (0.015) (0.078) (0.079) (0.014) (0.013) (0.003) (0.003)

15 0.385 0.395 0.815 0.840 —0.145 —0.154 0.081 0.081
(0.015) (0.015) (0.081) (0.077) (0.017) (0.017) (0.005) (0.005)

17 0.215 0.210 0.895 0.920 —0.141 —0.155 0.092 0.092
(0.013) (0.013) (0.069) (0.072) (0.019) (0.019) (0.008) (0.008)

2 0.030 0.035 1.115 1.095 —0.106 —0.132 0.065 0.067
(0.005) (0.006) (0.082) (0.082) (0.017) (0.016) (0.007) (0.007)

Common 13 0.460 0.470 0.840 0.815 —0.121 —0.128 0.037 0.038
(0.016) (0.016) (0.072) (0.071) (0.011) (0.010) (0.002) (0.002)

15 0.170 0.170 1.120 1.100 —0.142 —0.153 0.049 0.049
(0.012) (0.012) (0.084) (0.085) (0.012) (0.011) (0.004) (0.004)

1.7 0.025 0.025 0.980 1.040 —-0.116 —0.134 0.039 0.041
(0.005) (0.005) (0.081) (0.088) (0.011) (0.011) (0.004) (0.004)

2 0.005° 0.000 0.885 1.015 —0.118 —0.153 0.037 0.043
(0.002) (0.000) (0.083) (0.092) (0.011) (0.010) (0.004) (0.004)

Recessive Rare 2 0.795 0.800 0.405 0.775 —0.653 —0.657 0.449 0.453
(0.013) (0.013) (0.047) (0.072) (0.011) (0.010) (0.013) (0.013)

2.5 0.845 0.840 0.455 0.765 —0.883 —0.887 0.796 0.803
(0.011) (0.012) (0.047) (0.069) (0.009) (0.009) (0.015) (0.015)

3 0.805 0.780 0.555 0.930 —1.047 —1.041 1.121 1.108
(0.013) (0.013) (0.056) (0.085) (0.011) (0.011) (0.022) (0.021)

3.5 0.780 0.785 0.455 0.815 —1.198 -1.195 1.462 1.456
(0.013) (0.013) (0.050) (0.080) (0.012) (0.012) (0.026) (0.026)

Common 2 0.695 0.700 0.480 0.900 —0.623 —0.622 0.405 0.405
(0.015) (0.014) (0.050) (0.078) (0.009) (0.009) (0.011) (0.010)

2.5 0.500 0.460 0.540 1.050 —-0.783 —0.776 0.635 0.624
(0.016) (0.016) (0.053) (0.082) (0.011) (0.011) (0.016) (0.016)

3 0.430 0.420 0.535 1.020 —0.944 —0.933 0.915 0.897
(0.016) (0.016) (0.049) (0.085) (0.011) (0.012) (0.020) (0.021)

3.5 0.240 0.210 0.590 1.070 —1.036 —1.015 1.095 1.055
(0.014) (0.013) (0.052) (0.080) (0.011) (0.011) (0.022) (0.023)

?Additive analysis means an additive model is adopted in the analysis when the underlying genetic mode is not.
PFalse negatives are counts out of 1 and false positives are counts out of 6.
“Mode refers to underlying genetic mode of data; Freq refers to frequency of risk haplotype; OR refers to the odds ratio of the risk

haplotype.

4Measures in this table are found by averaging over 1,000 simulated data sets; standard errors (SE) are shown in parentheses.
“Bolded measures (pro vs. retro) are statistically significantly different at 0.05 level (i.e. the +2SE intervals do NOT overlap).
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would no longer be possible, as the maximum likelihood
estimator is no longer necessarily unique.
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