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Many complex genetic effects, including epigenetic effects, may be expected to operate via mechanisms in the inter-uterine
environment. A popular design for the investigation of such effects, including effects of parent-of-origin (imprinting),
maternal genotype, and maternal-fetal genotype interactions, is to collect DNA from affected offspring and their mothers
(case/mother duos) and to compare with an appropriate control sample. An alternative design uses data from cases and
both parents (case/parent trios) but does not require controls. In this study, we describe a novel implementation of a
multinomial modeling approach that allows the estimation of such genetic effects using either case/mother duos or case/
parent trios. We investigate the performance of our approach using computer simulations and explore the sample sizes and
data structures required to provide high power for detection of effects and accurate estimation of the relative risks
conferred. Through the incorporation of additional assumptions (such as Hardy-Weinberg equilibrium, random mating and
known allele frequencies) and/or the incorporation of additional types of control sample (such as unrelated controls,
controls and their mothers, or both parents of controls), we show that the (relative risk) parameters of interest are
identifiable and well estimated. Nevertheless, parameter interpretation can be complex, as we illustrate by demonstrating
the mathematical equivalence between various different parameterizations. Our approach scales up easily to allow the
analysis of large-scale genome-wide association data, provided both mothers and affected offspring have been genotyped
at all variants of interest. Genet. Epidemiol. 35:19–45, 2011. r 2010 Wiley-Liss, Inc.
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INTRODUCTION

The current era of genome-wide association studies has
popularized the case/control design for the detection of
genetic variants predisposing to complex diseases. How-
ever, as recently pointed out by Buyske [2008], associations
detected in a case/control study can arise not only from
genetic effects operating in the cases but also from
alternative mechanisms that are statistically confounded
with case genotype effects, such as maternal genotype
effects, maternal-fetal interactions, or parent-of-origin
(imprinting) effects. A variety of diseases, particularly
those related to pregnancy outcomes or complications in
utero, have been hypothesized to operate via such
mechanisms. For example, both maternal and fetal genes,
either individually or in combination, have been impli-
cated in risk of pre-eclampsia [Goddard et al., 2007;
Schneider et al., 1994; Wilson et al., 2003], low birthweight
[Larizza et al., 2005; Ober et al., 1987], spina bifida [Jensen
et al., 2006], and schizophrenia [Palmer et al., 2006]. With

data collected only on cases and controls, these different
types of effect will be indistinguishable. For example, a
strong maternal genotype effect may present the same
pattern of risks as a weak offspring (case) genotype effect,
since cases and mothers of cases share an allele in
common. Given family rather than case/control data,
however—specifically given genotype data for cases plus
their mothers and/or fathers—it may be possible to
distinguish between these different mechanisms [Cordell
et al., 2004; Hsieh et al., 2006; Shi et al., 2008; Sinsheimer
et al., 2003; Weinberg, 1999b; Weinberg et al., 1998;
Weinberg and Shi, 2009].

A popular design for the investigation of maternal
effects and maternal-fetal interactions (operating perhaps
via the inter-uterine environment) is to collect DNA from
offspring and their mothers [Shi et al., 2008]. A compar-
ison of the genotype relative risks in cases (displaying
some disease of interest) vs. controls compared to the
relative risks in mothers of cases vs. mothers of controls
can allow one to investigate the merits of different
competing underlying models. For example, Jamieson
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et al. [2008] found unusual patterns of risk when analyzing
children affected with clinical signs of congenital toxo-
plasmosis vs. controls compared to when analyzing
mothers of affected children vs. mothers of controls, a
result that they interpreted as indicating the presence of a
maternal genotype and/or imprinting effect.

More formally, given genotype data from ‘‘duos’’
consisting of offspring (affected or unaffected) together
with their mothers, one may fit models (via logistic
regression, for example) that incorporate effects of off-
spring genotype, maternal genotype, maternal-fetal inter-
actions, and imprinting [Chen et al., 2009; Li et al., 2009;
Shi et al., 2008; Weinberg and Umbach, 2005]. By
examining the fit of the model with and without the
inclusion of specific terms, one may test formally for their
significance and estimate the magnitude of their effects.
However, collinearities between the parameters represent-
ing the various effects can complicate the interpretation of
such an analysis, as we shall discuss in more detail later.

A number of authors have considered the alternative
approach of using case/parent trios (i.e. affected offspring
and their parents) for the estimation of such effects [Chen
et al., 2009; Cordell et al., 2004; Hsieh et al., 2006;
Sinsheimer et al., 2003; Weinberg, 1999b; Weinberg et al.,
1998]. Case/parent trios are often used in genetic associa-
tion studies because of the robustness to population
stratification they can provide, via use of family-based
tests that examine the transmission of high-risk alleles
from parents to affected offspring [Spielman et al., 1993].
Recently, however, the case/control design has achieved
greater popularity owing to the larger sample size (and
thus greater power) that is achievable [WTCCC, 2007] and
the development of alternative methods to deal with
population stratification [Devlin and Roeder, 1999; Price
et al., 2006; Pritchard et al., 2000]. With case/parent trios,
we can test for association and estimate genotype and
haplotype relative risks using conditional logistic regres-
sion [Cordell and Clayton, 2002; Schaid, 1996; Schaid and
Sommer, 1993] or log-linear modeling [Shi et al., 2009].
More complex effects, such as maternal genotype effects,
maternal-fetal interactions and parent-of-origin effects,
may be estimated through an extension of the conditional
logistic regression approach [Cordell et al., 2004] or
through log-linear modeling [Sinsheimer et al., 2003;
Vermeulen et al., 2009; Weinberg, 1999b; Weinberg et al.,
1998]. One of the merits of the case/parent trio design is
the fact that it does not require control data: essentially the
untransmitted parental alleles or genotypes are used as
‘‘controls’’ for the transmitted alleles or genotypes.
However, greater efficiency can potentially be achieved
by incorporation of one or more additional separate
control samples consisting either of unrelated controls
[Epstein et al., 2005; Nagelkerke et al., 2000], the parents of
unrelated controls [Weinberg and Umbach, 2005], or of
control/mother duos [Vermeulen et al., 2009]. Regardless
of whether or not such additional control samples are
used, most approaches generally assume that both parents
(the mother and the father) of cases are available in at least
a subset of families [Weinberg, 1999a]. Shi et al. [2008],
however, extended their log-linear modeling approach to
apply to case/mother duos (for which no fathers’
genotypes are available), on the assumption that, in
common with logistic regression, there exists a sample of
control/mother duos that can be incorporated into the
analysis. Given such a sample, Chen et al. [2009]

developed an alternative constrained retrospective like-
lihood approach that exploits the Mendelian correlation
between mother’s and child’s genomes under a Hardy-
Weinberg equilibrium (HWE) assumption, allowing the
estimation of maternal and child effects and their
interactions, where the effects in the child and mother
could operate either at the same locus or at different
(separate) loci that are in linkage disequilibrium.

METHODS

NOTATION, PARAMETERIZATION, AND
RELATIONSHIP TO PREVIOUS MODELS

Before describing our approach in detail, we introduce
some notation. Without loss of generality, we denote the allele
(at a particular genetic locus) that is expected to confer high
risk as 2 and the low-risk allele as 1. (If, in fact, it is allele 1
that confers higher risk, the genotype relative risk estimates
associated with allele 2 will turn out to be less than, rather
than greater than, 1.0.) We parameterize the risks as follows: a
corresponds to the baseline probability of disease for an
individual (child) with the low-risk homozygote genotype
(i.e. 11) whose parents are also homozygous 11. The
parameters R1 and R2 correspond to multiplicative factors
by which the child’s probability of disease is multiplied if the
child has one or two copies of the high-risk allele (i.e. has
genotype 12 or 22, respectively). S1 and S2 correspond to
multiplicative factors by which the child’s probability of
disease is multiplied if their mother has one or two copies of
the high-risk allele, respectively. The parameters g11, g12, g21,
and g22 are standard statistical interaction terms for the
interaction between mother’s and child’s genotype (i.e. gij is
the (additional) factor by which the disease risk is multiplied
when the mother has i copies and the child has j copies of the
high-risk allele). The imprinting parameter Im corresponds to
a multiplicative factor by which the probability of disease is
multiplied if the child receives a (maternal) copy of the high-
risk allele from their mother, and the imprinting parameter Ip

corresponds to a multiplicative factor by which the prob-
ability of disease is multiplied if the child receives a (paternal)
copy of the high-risk allele from their father. Note that this
notation for the parent-of-origin effects Im and Ip corresponds
to notation used by Weinberg et al. [1998] rather than to a
later alternative parameterization used by Weinberg [1999b]
(discussed further later). Notation for the other effects
corresponds to the notation used by Weinberg et al. [1998]
and Cordell et al. [2004], except for the parameters gij, which
were not considered by Weinberg et al. [1998] or Weinberg
[1999b] and which were previously denoted aij by Cordell
et al. [2004].

The rationale for the above parameterization and its
relationship to some alternative proposed parameteriza-
tions can be seen by examination of Table I. The
quantitities given in each cell of Table I correspond to
the probability (or odds) of the child developing disease
given the genotype combination (gm, gc) for mother and
child, as might be estimated in a logistic regression
analysis of case/mother duos vs. control/mother duos.
Since only seven genotype combinations are allowable
under Mendelian inheritance, a maximum of seven
parameters will be estimable (in the absence of any
additional information e.g. concerning father’s genotype).

The first illustrative example (shown in the top three
rows of Table I) shows a parameterization where child
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TABLE I. Parameterization of penetrances (if controls are of unknown disease status) or odds (if controls are
unaffected) for logistic regression models using mothers and their offspring

gc

Example Description gm 11 12 22

1 Offspring genotype effects (relative to gc 5 11) 11 a aR1 –
12 a aR1 aR2

22 – aR1 aR2

2 Maternal genotype effects (relative to gm 5 11) 11 a a –
12 aS1 aS1 aS1

22 – aS2 aS2

3 Offspring and maternal genotype effects relative 11 a aR1 –
to (gc, gm) 5 (11, 11) 12 aS1 aR1S1 aR2S1

22 – aR1S2 aR2S2

4 Offspring and maternal genotype effects relative 11 aR2S2 aR1S2 –
to (gc, gm) 5 (22, 22) 12 aR2S1 aR1S1 aS1

22 – aR1 a

5 Example of offspring and maternal genotype effects 11 0.05 0.10 –
12 0.15 0.30 0.60
22 – 0.40 0.80

6 Offspring and maternal genotype effects plus interactions 11 a aR1 –
12 aS1 aR1S1g11 aR2S1g12

22 – aR1S2g21 aR2S2g22

7 Saturated model 11 d00 d01 –
12 d10 d11 d12

22 – d21 d22

8 Sinsheimer et al. [2003] parameterization 1Aa 11 a ar1m0 –
12 aZ1 ar1Z1 ar2Z1

22 – ar1Z2 ar2Z2

9 Sinsheimer et al. [2003] parameterization 1B 11 a ar1m0 –
12 aZ1 ar1Z1 ar2Z1

22 – ar1Z2m2 ar2Z2

10 Palmer et al. [2006] and Sinsheimer et al. [2003] 11 am ar1 –
parameterization 2 12 aZ1m ar1Z1m ar2Z1m

22 – ar1Z2 ar2Z2m

11 Offspring and maternal effects plus imprinting 11 a aR1Ip –
[Weinberg et al., 1998] 12 aS1 aR1S1 (A1Im1A2Ip) aR2S1ImIp

22 – aR1S2Im aR2S2ImIp

12 Offspring1maternal effects plus maternal imprinting 11 a aR1 –
[Weinberg et al., 1998] 12 aS1 aR1S1 (A1Im1A2) aR2S1Im

22 – aR1S2Im aR2S2Im

13 Offspring1maternal effects plus paternal imprinting 11 a aR1Ip –
[Weinberg et al., 1998] 12 aS1 aR1S1 (A11A2Ip) aR2S1Ip

22 – aR1S2 aR2S2Ip

14 Maternal imprinting effects only 11 a a –
12 a a(A1Im1A2) aIm

22 – aIm aIm

15 Paternal imprinting effects only 11 a aIp –
12 a a(A11A2Ip) aIp

22 – a aIp
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genotype effects only are assumed to operate. Relative to
the baseline penetrance a, the penetrance is increased by a
factor R1 if a child has one copy and by a factor R2 if a child
has two copies of allele 2. The second illustrative example
shows a parameterization where maternal effects only are
assumed to operate: relative to the baseline penetrance a,
the penetrance is increased by a factor S1 if the mother has
one copy and by a factor S2 if the mother has two copies of
allele 2. Example 3 in Table I shows a parameterization
where both child and maternal genotypes operate.
Example 4 shows a similar model except that in this case
the maternal and child genotype effects are expressed
relative to the baseline penetrance of the genotype
combination (gm, gc) 5 (22, 22). Suppose the true pene-
trances are as shown in Example 5 of Table I. Then these
penetrances could be precisely modeled using the para-
meterization of Example 3, with parameters (a, R1, R2, S1,
and S2) taking the values (0.05, 2, 4, 3, and 4). Equally,
these penetrances could be precisely modeled using the
parameterization of Example 4, with parameters (a, R1, R2,
S1, and S2) taking the values (0.8, 0.5, 0.25, 0.75, and 0.25).
Either parameterization would provide an equally ‘‘cor-
rect’’ representation of the undelying penetrance structure
and either would provide identical inference (when
applied to observed data) concerning whether child
genotype and/or maternal genotype effects exist. How-
ever, the values of the parameters (and thus the inference
concerning whether these effects increase or decrease risk)
depend on whether one is specifying the problem relative
to the baseline genotype combination (gm, gc) 5 (11, 11) or
to (gm, gc) 5 (22, 22).

Example 6 in Table I attempts to additionally include the
four interaction effects (g11, g12, g21, and g22). This is a
standard statistical parameterization of interaction effects

defined as a departure from multiplicative effects of two
factors on the relative risk or odds scale [Clayton, 2009;
Cordell, 2009; Thomas, 2010]. Such a parameterization
would generally lead to a saturated 9df model; however, in
our example, since only seven categories are allowable
under Mendelian inheritance, a 7df model is already
saturated and not all nine parameters will be identifiable.
We find that a, R1, S1, and g11 are all identifiable. We can
also identify three further ‘‘composite’’ parameters: R2g12,
S2g21, and R2S2g22 (or, equivalently, g22/(g12g21)). If we are
willing to assume that g12 and g21 are in fact equal to 1 (i.e.
these two interation effects do not exist), then we can
identify R2, S2, and g22. However, our interpretation of the
estimates of R2, S2, and g22 we obtain depends crucially on
this assumption. If our assumption is not correct, then the
parameter we call R2 is, in fact, a composite product R2g12

of child genotype and interaction effects, the parameter we
call S2 is, in fact, a composite product S2g21 of maternal
genotype and interaction effects, and the parameter we
call g22 is a composite ratio g22/(g12g21).

In order to avoid these complications of parameter
interpretation, one might prefer to fit a 7df saturated
model as shown in Example 7 of Table I. This fits a
separate parameter dij to each genotype combination
(where the mother has i copies and the child j copies of
allele 2). This model avoids the temptation to attribute any
particular mechanism or meaning to the seven parameters
estimated, but, in fact, we would quite like to be able to
attribute meaning to the parameters estimated! In parti-
cular, we would like to be able to attribute effects as being
due to either the mother’s or the child’s genotype (or
both), as these possibilities lead to very different biological
hypotheses concerning the underlying disease mechanism,
and why it should be that the presence of certain alleles in

TABLE I. Continued

gc

Example Description gm 11 12 22

16 Offspring effects plus maternal imprinting 11 a aR1 –
[Weinberg et al., 1998] 12 a aR1 (A1Im1A2) aR2Im

22 – aR1Im aR2Im

17 Offspring effects plus maternal imprinting 11 a aR1 –
[Weinberg, 1999b] 12 a aR1(A1Im1A2) aR2

22 – aR1Im aR2

18 Offspring effects plus imprinting 11 a aRp –
(alternative parameterization) 12 a a(A1Rm1A2Rp) aR2

22 – aRm aR2

19 Offspring and maternal genotype effects 11 a aR1Ip –
plus interactions and imprinting 12 aS1 aR1S1g11(A1Im1A2Ip) aR2S1g12ImIp

22 – aR1S2g21Im aR2S2g22ImIp

20 Parimi et al. [2008] and Li et al. [2009] paramerizationb 11 a aR1jm jc –
12 aS1 jc aR1S1 (A11A2 jm) aR2S1 jc
22 – aR1S2 jc aR2S2

aThe parameter denoted m0 here was actually denoted m by Sinsheimer et al. [2003].
bThe parameters shown here correspond to the parameters in the notation of Table 1 of Li et al. [2009] as follows: jm 5 exp(im), jm 5 exp(ic),
A1 5p1, A2 5p2, a5 exp(m�am�a0), R1 5 exp(a01d0), R2 5 exp(2a0), S1 5 exp(am1dm), S2 5 exp(2am).
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the mother and/or child lead to an increase or decrease in
disease risk. A further disadvantage of the 7df saturated
model of Example 7 is the large number of df when
comparing against the null hypothesis that all dij are equal.
A more natural approach might be to fit a sequence of
nested models [see Fig. 3 of Cordell et al., 2004] where one
starts by entering child and/or maternal effects before
attempting to include interactions.

The idea of choosing a parameterization that best
represents an underlying biological reality was used by
Sinsheimer et al. [2003]. These authors used the log-linear
modeling framework of Weinberg et al. [1998] and
Weinberg [1999b] to develop a test known as the
maternal-fetal genotype incompatibility (MFG) test, a test
that has recently been extended to apply to more general
family structures than case/parent trios [Childs et al.,
2010]. The parameterizations used by the two versions
(Scenarios 1A and 1B) of the MFG test are shown as
Examples 8 and 9 of Table I. The parameters (r1, r2, Z1, and
Z2) of Sinsheimer et al. [2003] correspond closely in
concept to our parameters (R1, R2, S1, and S2). Sinsheimer
et al. [2003] included up to two interaction parameters
which they denoted as m (or m0) and m2 (slightly
unfortunate notation in view of the fact that Weinberg
[1999b] had already used the notation m1�m6 to refer to six
mating-type stratification parameters, as described later).
In our notation, these interaction parameters would
probably best be denoted as g01 and g21, since they
correspond to effects that operate (in addition to maternal
and child genotype effects) when the child has one
copy, and the mother has either zero or two copies,
of a particular allele of interest. The rationale for inclu-
ding either one (m0) or both (m0 and m2) of these para-
meters is that they encapsulate a biological mechanism
whereby adverse effects (such as increased disease risks)
can result from an incompatibility or ‘‘mismatch’’ between
maternal and fetal genotypes, such as that which occurs
in RhD-induced hemolytic disease [Strachan and Read,
1999].

The parameters used in Scenario 1B of Sinsheimer et al.
[2003] can be shown to be expressible in terms of our
(Example 6) parameters as follows: a5 a, r1 5 R1g11,
r2 5 R2g12, Z1 5 S1, Z2 5 S2g22/g12, m0 5 1/g11, m2 5 g21g12/
(g11g22) (noting that, in practice, we would estimate only
one of g21, g12, g22, allowing us to similarly express our
parameters in terms of those of Sinsheimer et al. [2003]).
The likelihoods induced by the two parameterizations
(ours and Sinsheimer’s) under either the null hypothesis of
no interaction effects or the alternative hypothesis (in
which one or two interaction effects are estimated in
addition to child and maternal genotype effects) are
identical, and either parameterization will thus produce
the same inference with respect to whether interaction
effect(s) exist or not. However, the interpretation of the
parameter estimates obtained will depend on the para-
meterization used. If, for example, our parameterization is
‘‘correct’’ and g12 operates but no other interaction effects
exist, then the parameters estimated under the MFG model
will interpret g12 as an induced incompatibility parameter
m2 5 g12, and the estimates of r2 and Z2 will equal the true
values of R2 and S2 multiplied by and divided by the true
value of g12, respectively. Similarly, if the Sinsheimer et al.
[2003] parameterization is ‘‘correct,’’ then the parameters
estimated under our model will be functions of these
‘‘true’’ parameter values. This point is illustrated in more

detail later through analysis of a particular example data
set (see Results).

Palmer et al. [2006] considered an alternative parameter-
ization (also proposed as Scenario 2 of Sinsheimer et al.
[2003]) in which ‘‘matching’’ rather ‘‘mismatching’’ between
maternal and fetal genotypes increases disease risk in the
offspring. This parameterization was designed for the
multiallelic HLA system, but, when applied to a diallelic
locus, leads to Example 10 of Table I. Comparison of
this model to Example 9 (Scenario 1B of Sinsheimer et al.
[2003]) shows that these models are equivalent if one
makes the restriction m0 5m2, and writes the Palmer et al.
[2006] parameter m as m5 1/m0. As this model is
more restricted than ours, it is complicated to write down
the general relationship between our seven parameters and
the six parameters of Palmer et al. [2006]; however, one
possible equivalence occurs if we set g12 5g21 5 g22 5 1 and
then set (a0,m,r2,r2,Z1,Z2) (in Sinsheimer et al. [2003]
parametrization) to equal (a/g11,g11,R1g11,R2,S1,S2) in our
parametrization.

Example 11 in Table I shows a parameterization
proposed by Weinberg et al. [1998], in which no interac-
tions operate but maternal (Im) and/or paternal (Ip)
imprinting effects are assumed to exist. By imprinting,
we mean a phenomenon whereby the expression of an
allele varies according to parental origin (maternal or
paternal) of the allele [Wilkinson et al., 2007]. For example,
at the gene encoding Insulin-like growth factor II, the only
allele expressed is the one inherited from the father
[DeChiara et al., 1991]. To capture such an effect (in
addition to main effects, operating through other mechan-
isms, of the child’s and mother’s genotype), it seems
reasonable to incorporate parameters that operate only
when a child has received a copy of ‘‘2’’ allele from their
mother and/or father, as shown in Example 11. The
genotype combination where both mother and child are
heterozygous does not allow the parental origin of the ‘‘2’’
allele in the child to be inferred, and so the overall
penetrance in this cell is a weighted combination of the
two underlying possibilities (one in which the child
received the ‘‘2’’ allele from their mother, and one in
which the child received the ‘‘2’’ allele from their father)
[Li et al., 2009]. It can be shown (derivation not given) that,
under Hardy Weinberg Equilibrium (HWE) and random
mating, the relative weights for these two possibilities
correspond to the allele frequencies (A1, A2 5 1�A1) of
alleles ‘‘1’’ and ‘‘2,’’ respectively. Alternatively, given
genotype data from fathers as well as mothers of
affected/control individuals, it may be possible to infer
parental origin, provided the father is not also hetero-
zygous [Weinberg, 1999b].

Although the parameterization of Example 11 makes
intuitive sense, examination of Table I shows that,
regardless of whether parental origin is, or is not,
inferrable, the parameter R2 always occurs in combination
with the product ImIp, and R1 always occurs in combina-
tion with Im or Ip, meaning that we cannot estimate all four
of these parameters: we can only estimate R1Im, R1Ip, and
R2ImIp. Altogether, therefore, we can identify six para-
meters: a, S1, R1Ip, R2ImIp, S2, and Im/Ip. With respect to
pure imprinting, therefore, all we can estimate is the ratio
of maternal to paternal gene expression Im/Ip. If we are
willing to assume that Ip equals 1, then we can estimate Im

(or vice versa) as well as estimating R1 and R2 (see
Examples 12 and 13). However, our interpretation of the
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parameter estimates we obtain again depends on this
assumption. If it does not hold, then the parameter we
call Im really represents the ratio Im/Ip, and the parameters
we call R1 and/or R2 really represent composite effects
of both paternal gene expression and child’s genotype.
This complication in parameter interpretetion does not
arise if one tries to model imprinting within a more
classical (and arguably more natural) framework in
which we do not assume any main effects of child’s or
mother’s genotype, but simply assume there is an allele
in the child, which is expressed when it originates from
one parent, but is silenced when it originates from the
other parent [Wilkinson et al., 2007]. Such arguably more
intuitive models are shown in Examples 14 and 15.

Weinberg [1999b] used an alternative parameterization
to model imprinting. Assuming offspring (but no mater-
nal) genotype effects operate, the Weinberg [1999b]
parameterization is shown in Example 17, in comparison
to the earlier Weinberg et al. [1998] parameterization
(Example 16). Comparing the two, it seems that Weinberg
[1999b] allows the imprinting effect to operate only when
a child is heterozygous, which is biologically rather
unintuitive. This model can be better understood if one
considers the parameter Im not as a parameter that
represents any kind of biological mechanism (such as
over- or under-expression of a particular allele) but, rather,
simply as a statistical device that allows the penetrance for
a heterozygous child to vary according to the parental
origin of the ‘‘2’’ allele. This idea might be more naturally
expressed through the parameterization in Example 18, in
which the baseline penetrance a for a child with genotype
11 is multiplied by a factor Rm if the child inherits an ‘‘2’’
allele from his/her mother, by Rp if the child inherits an
‘‘2’’ allele from his/her father, and by R2 if the child is
homozygous. The testing of whether there is an allele that
operates differentially according to whether it came from
the father or mother is then a test of whether Rm 5 Rp in
Example 18 or, equivalently, of Im 5 1 in Example 17.

Although Weinberg et al. [1998] and Weinberg [1999b]
appear to be modeling imprinting in rather diferent ways,
it can be shown (derivation not given) that the Weinberg
[1999b] parameterization corresponds precisely to the
earlier Weinberg et al. [1998] parameterization if we write
the parameters of the later parameterization (a0, R01, R02, S01,
S02, I0m, I0p) in terms of those of the earlier parameterization
as follows: a05 a, R015R1, R02 ¼ R2ImIp, S01 ¼ S1, S02 ¼ S2,
I0m ¼ Im, I0p ¼ Ip. When fitting a null model of no parent-
of-origin effects, or an alternative model in which parent-
of-origin effects operate, either parameterization will
therefore produce the same likelihood and will thus
provide equivalent inference regarding the presence or
absence of imprinting. Interpretation of the resulting
parameter estimates, however, will depend on which
model one has chosen e.g. is one attempting to model
the over-expression of one parental allele, the under-
expression of the other parental allele or simply using the
imprinting parameter as a statistical device to distinguish
the two heterozygote penetrances. Statistically, there is no
difference between the different models induced by includ-
ing either Im or Ip, or between the models of Weinberg et al.
[1998] and Weinberg [1999b], so any choice between these
must be made a priori e.g. based on some prior scientific
hypothesis, rather than on statistical grounds.

Example 20 of Table I shows a parameterization used by
Li et al. [2009], chosen on the basis of a study by Parimi

et al. [2008], who found this parameterization to give
generally high power over a range of plausible underlying
true models. This parameterization generates a saturated
model with seven parameters representing baseline
penetrance, additive and dominance effects of child’s
genotype, additive and dominance effects of mother’s
genotype, an imprinting parameter that (similar to
Weinberg [1999b]) is included only when a child is
heterozygous, and an interaction effect that (similar to
Sinsheimer et al. [2003]) operates when there is a
‘‘mismatch’’ or ‘‘conflict’’ between maternal and fetal
genotype. Since this results in an identifiable saturated
model, the parameters of Li et al. [2009] must be expres-
sible as a function of our seven parameters and vice versa.
Li et al. [2009] propose using a penalized logistic
regression approach to allow parameter estimation even
when issues of small sample size induce a collinearity
between predictors (even though in theory, given suffi-
cient sample size—leading to observations in all seven
cells—all seven parameters should all be identifiable using
standard (unpenalized) logistic regression).

The above paragraphs illustrate that, given lack of
orthogonality between parameters of a statistical model,
when fitting different parameterizations, interpretation of
the resulting parameter estimates can be complex. Essen-
tially, the interpretation comes down to how one wishes to
define the ‘‘baseline’’ and ‘‘effects’’ of interest. A similar
issue has previously been discussed in relation to model-
ing gene-gene interactions by Cordell [2009]. With respect
to actually fitting the models, convergence can readily be
achieved either by choosing to include a set of parameters
that is known to be identifiable or by using penalization
techniques as proposed by Li et al. [2009]. However,
successful fitting of the model does not resolve the issue of
interpretation of the parameter estimates obtained and
whether they in fact represent the biological effects that
one wishes to encode. This is an issue that is hard (if not
impossible) to resolve statistically; rather one needs to start
a priori with an underlying biological hypothesis that will
dictate the desired form of the model. This might perhaps
be informed (or at least better explored) using data from
other types of experiment such as gene expression studies.
In the Results section, we illustrate some of these
difficulties in interpretation via an analysis of a specific
example data set, which also serves to demonstrate some
unsuspected equivalences between several of the models
described in this section.

RELATIVE RISKS IN CASES VS. CONTROLS,
COMPARED TO MOTHERS OF CASES VS.
MOTHERS OF CONTROLS

As an initial step toward disentangling these kinds of
complex genetic effects in samples of mothers and their
offspring, we investigated the genotype relative risks
arising from various underlying genetic models when
analyzing SNP data in either cases vs. controls or mothers
of cases vs. mothers of controls. Table II gives various
probabilities that are required for the derivation of the
genotype relative risks. In Appendix A, we use Table II to
derive formulae for the apparent genotype relative risks
when analyzing cases vs. controls, or mothers of cases vs.
mothers of controls, under various models. Special cases of
these formulae (when only maternal, fetal or imprinting
effects operate in isolation) were given by Buyske [2008].
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Our results generalize the results of Buyske [2008] to more
complex scenarios, and are consistent with his results for
the special cases he considered.

A MULTINOMIAL LIKELIHOOD MODEL FOR
MOTHER-OFFSPRING DUOS

Next, we extend the approach of Weinberg et al. [1998];
Weinberg [1999b] for case/parent trios to apply instead to
case/mother duos. First, we re-derive the Weinberg model
for case/parent trios. Column 8 of Table II gives the cell
probabilities for the 15 possible outcomes for genotypes
of a mother, father and diseased child, P(gm, gf, gc|dis),
parameterized in terms of the parameters described above,
K (the population prevalance of disease) and m�1 � m�6
(mating-type stratification parameters as given in column
7 of Table II). The cell probabilities in column 8 are
calculated from the probablities in columns 4, 5, and 7
using Bayes’ theorem:

Pðgm; gf; gcjdisÞ ¼
Pðdisjgm; gf; gcÞPðgm; gf; gcÞ

PðdisÞ

¼
Pðdisjgm; gf; gcÞPðgm; gfÞPðgcjgm; gfÞ

K
:

Note that K is not a free parameter but rather is a function
of the parameters m�1 � m�6 and of ða;R1;R2;S1; S2; Im; Ip;
g11; g12; g21; g22Þ (see Appendix B). We may replace the
factor (a/K) that appears in each cell of column 8 by a
divisor S (see Appendix B) that is a function of m�1 � m�6 and
of ðR1;R2; S1; S2; Im; Ip; g11; g12; g21; g22Þ.

If we are willing to assume random mating and Hardy-
Weinberg equilibrium (HWE), the parameters m�1 � m�6 may
be written in terms of the allele frequencies A1 and A2

( 5 1�A1), as shown in Appendix B and column 6 of
Table II. A similar exploitation of an assumption of
random mating and HWE was made by Chen et al.
[2009], while Childs et al. [2010] assumed random mating
but not HWE. Shi et al. [2009] considered several different
assumptions, including HWE and random mating. By
retaining the parameterization in terms of m�1 � m�6, we
make the less restrictive assumption of exchangeability of
parental mating types [Cordell et al., 2004; Weinberg,
1999b; Weinberg et al., 1998]. The parameters m�1 � m�6 are
convenient to work with as they are directly related to the
allele frequencies A1 and A2 under random mating and
HWE; however, they do not correspond precisely to the
mating-type stratification parameters used by Weinberg
et al. [1998] nor to the slightly different parameterization
used by Vermeulen et al. [2009]. By reparameterizing our
model as shown in column 9 of Table II, we obtain the
same parameterization as in Table V of Weinberg et al.
[1998], except that Weinberg et al. [1998] did not consider
maternal-fetal interactions and so the parameters gij do not
appear in their formulation.

The model for the cell probabilities as given in column 9
is overparameterized and thus not all of these parameters
will be statistically identifiable. By reparameterizing as
shown in column 10, we obtain seven identifiable relative
risk parameters ðR�1;R

�
2; S
�
1; S
�
2; I
�
m; g

�
11; g

�
22Þ [Cordell et al.,

2004]. (Note this is one more parameter of interest than is
identifiable using data of the form shown in Table I: in
Table I, we can identify up to seven parameters including
the baseline disease risk, i.e. up to six relative risk
parameters of interest.) This reparameterization can be

thought of as being equivalent to a model in which we
estimate the original parameters ðR1;R2;S1; S2; Im; g11; g22Þ

while setting Ip, g12, and g21 equal to 1. (If this assumption
is not correct, then the parameters we estimate will in fact
correspond to composites of various other parameters, see
earlier discussion). If preferred, we could instead set Im to
1 and estimate Ip, and/or estimate some alternative set of
interaction and main effect parameters. Weinberg et al.
[1998] and Weinberg [1999b] model the cell probabilities in
column 10 via the use of log-linear models. We propose
instead to fit the model by direct maximization of a
multinomial likelihood. The equivalence between log-
linear (Poisson) and multinomial models [Baker, 1994]
implies that these two approaches should provide equiva-
lent inference. Although slightly more computationally
intensive, we find the multinomial modeling approach to
be more convenient for the following reason: Note that the
rows indexed 9a and 9b in Table II correspond to the
situation in which the child and both parents are
heterozygous, and thus the parent-of-origin of the child’s
high-risk allele is unknown. We must therefore fit a
multinomial likelihood model with 15 possible outcomes
(corresponding to the 15 possible observed cells), in which
the probability of outcome 9 is assumed equal to the sum
of the probabilities in cells 9a and 9b. Log-linear models in
which certain cell probabilities correspond to sums of
products (rather than purely products) of parameters of
interest are difficult to fit in standard statistical software.
The log-linear modeling approach to this issue [Weinberg
et al., 1998] therefore considers the true outcome (9a or 9b)
as missing data, and maximizes the likelihood via use of
an EM algorithm. This approach has been implemented in
specialist software packages such as LEM [van Den Oord
and Vermunt, 2000]. By directly maximizing the multi-
nomial likelihood (e.g. via a direct search algorithm), we
avoid the issue of having to fit log-linear models in which
certain cell probabilities correspond to sums of the
parameters of interest (via an EM algorithm or some other
means), an issue that becomes all the more important
when we consider collapsing the table down yet further, as
described below.

If data are available only on mothers and affected
offspring, the 15 observable cells of Table II may be
collapsed down to seven observable cells [Weinberg and
Shi, 2009], as shown in Table III. To fit models and perform
parameter estimation, we propose fitting a multinomial
likelihood to the data in these seven cells, leading to a
maximum of six estimable parameters (since the total of the
cell probabilities must add up to 1). Although ideally one
would like to fit the model as parameterized in columns 3
and 4 of Table III, this model is overparameterized and so
we instead propose assuming HWE and random mating in
order to fit the model as shown in column 5 of Table III. To
reduce the number of parameters to estimate, one possibility
is to fix the allele frequency A2 5 1�A1 at some external
value, estimated, for example, from external population-
based studies or from published data. (In our simulation
study below we assess the sensitivity of our method to
misspecification of this value). Since only six parameters are
estimable from the data in column 5 of Table II, this model is
still over-parameterized and at least one of the parameters
(R�1;R

�
2; S
�
1;S
�
2; I
�
m; g

�
11; g

�
22) must be set equal to 1. We may in

addition choose to set further parameters equal to 1, in order
to allow estimation of the allele frequency A2, rather than
fixing it at some external value.
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In order to avoid making the assumption of HWE and
random mating and/or having to pre-specify a fixed value
for A2, we may assume the additional availability of one or
more additional control samples. We consider three possible
control samples that might be conveniently utilized: a sample
of unrelated controls [Epstein et al., 2005; Nagelkerke et al.,
2000], a separate sample consisting of the parents of
(additional) unrelated controls [Weinberg and Umbach,
2005], and a further separate sample consisting of (additional)
mother-offspring duo controls (i.e. unrelated controls plus
their mothers) [Vermeulen et al., 2009]. Note that unrelated
controls can provide information on the allele frequency A2,
allowing one to fit the model of column 5 in Table III, while
parents of controls and/or mother-offspring duo controls
can be used to provide information on the mating-type
stratification parameters m1�m6, allowing one to fit the
model of column 4 in Table III. The control samples may be
incorporated into the multinomial likelihood approach by
multiplying the original likelihood by an additional
multinomial likelihood for each separate control sample,
in which the observed cell counts (genotypes of controls,
mating types of parents of controls and/or genotype
combinations for mother-offspring duo controls) are
written in terms of the allele frequency A2 (if assuming
HWE and random mating) or else in terms of the
parameters m�1 � m�6 (or, equivalently, m1�m6). Supplemen-
tary Tables I–III show the relevant cell probabilities
corresponding to these multinomial likelihoods, assuming
the control sample comprises a random sample from the
population (i.e. of unknown disease status). Equivalent
results would be obtained from genuinely unaffected
controls on the condition that the disease is rare. (If the
disease is common, unaffected controls would not be
suitable for this analysis as they lead to tables with a
slightly different structure [Weinberg and Shi, 2009].)

Weinberg and Umbach [2005] investigated the incorpora-
tion of parents of controls into their log-linear modeling
approach for case/parent trios (noting that no additional

information for estimation of m1�m6 is provided by
genotyping the controls themselves, once their parents have
been genotyped). They showed that this hybrid design can
improve the efficiency for estimation of the main effects of
maternal and child genotype, compared to using a case/
parent trio or case/mother vs. control/mother approach.
Vermeulen et al. [2009] considered incorporation of control/
mother duos into the log-linear modeling approach when
performing a joint (4 df) test of offspring and maternal
effects; they found this design improved power for testing
the null hypothesis that all effects are equal to 0. However,
Vermeulen et al. [2009] did not investigate parameter
estimation or the issue of testing of more complex
hypotheses (such as the hypothesis that maternal effects
exist but offspring effects do not) nor did they allow for the
existence of parent-of-origin effects or mother-child interac-
tions. Our investigation therefore complements the investi-
gations performed in these earlier studies.

SIMULATION STUDY

We conducted computer simulations to assess the
performance (parameter estimation, type 1 error and
power) of our multinomial likelihood modeling approach
for case/mother duos, with or without the inclusion of a
separate control sample as described above. We consid-
ered ten different scenarios, labeled A–J. The true
parameter values used in each scenario are shown in
Table IV. Data (500 case/mother duos, together with
500 units of any other required data structure e.g.
control/mother duos) were simulated under the relevant
parameter settings and analyzed using our approach
(maximization of the product of the relevant multinomial
likelihoods), incorporating different (full and reduced)
sets of parameters in the model as required. We compared
our results to standard logistic regression analysis of case/
mother duos vs. control/mother duos with the same set of
parameters incorporated as predictor variables. Table V

TABLE III. Multinomial probabilities for genotype combinations in case/mother duos

1 2 3 4 5

Cell
(row)
index

Genotypesa

gm gc P(gm, gc|dis)b

P(gm, gcjdis)b

with reparameterization
R�1 5 R1Ip

R�2 5 R2I2
pg12

S�1 5 S1

S�2 5 S2g21

I�m 5 Im/Ip

g�11 5 g11

g�22 5 g22/g12g21

P(gm, gf, gc|dis)b,c,d

assuming random mating and HWE
(and with reparameterization from column 4)

1 22 22 R2S2ImIpg22(m11m2) R�2S�2I�mg�22(m11m2) R�2S�2I�mg�22A3
2/S

2 22 12 R1S2Img21(m21m3) R�1S�2I�m(m21m3) R�2S�2I�mA2
2A1/S

3 12 22 R2S1ImIpg12(m21m4) R�2S�1I�m(m21m4) R�2S�1I�mA2
2A1/S

4 12 12 R1S1g11(Im(m41m5)1Ip(m21m4)) R�1S�1g
�
11(I�m(m41m5)1m21m4) R�1S�1g

�
11A2A1ðA2

21I�mA11A2A1Þ/S
5 12 11 S1(m41m5) S�1(m41m5) S�1A2A2

1/S
6 11 12 R1Ip(m31m5) R�1(m31m5) R�1A2A2

1/S
7 11 11 m51m6 m51m6 A3

1/S

agm refers to the unordered alleles in the mother. gc refers to the unordered alleles in the child.
bdis indicates the event that the child is affected with disease.
cA1 and A2 are the allele frequencies of allele 1 and 2, respectively.
dFormula for S is given in the Appendix.

27Investigation of Maternal-Fetal Effects

Genet. Epidemiol.



shows the different methods (i.e. parameter restrictions
and availability of control samples) we considered. In
addition, we investigated the performance of our multi-
nomial likelihood approach when applied to 500 case/
parent trios (i.e. assuming fathers were available), either
using the full parameterization as shown in the column 10
of Table II (thus equivalent to Weinberg’s log-linear
modeling approach), or by assuming HWE and random
mating to rewrite the parameters m�i , and thus the mi, in
terms of the allele frequency A2. The advantage of making
these assumptions compared to the original Weinberg
approach (in which mating-type stratification parameters
m1�m6 are freely estimated) is that it reduces the number of
parameters to estimate; however, the resulting method
may not retain its robustness to population stratification.

RESULTS

RELATIVE RISKS IN CASES VS. CONTROLS
COMPARED TO MOTHERS OF CASES VS.
MOTHERS OF CONTROLS

Table VI shows the general formulae for genotype
relative risks in cases vs. controls compared to mothers of

cases vs. mothers of controls, as calculated in Appendix A.
Specific examples of the resulting genotype relative risks
under different scenarios are shown in Supplementary
Table IV. Although only a limited number of scenarios are
examined in Supplementary Table IV, nevertheless we may
make the following observations:

1. If the true model is due to effects of child’s own genotype,
then the relative risks when analyzing mothers of cases vs.
of mothers of controls are attenuated compared to the true
risks, both in absolute value and in their pattern of
inheritance, in the sense that a dominant model in the
child appears closer to a recessive model in the mother,
and a recessive model in the child appears closer to a
dominant model in the mother. This phenomenon is a
classic case of confounding, whereby child genotype
effects are misattributed to the mother, when the child’s
own genotype is not included in the model.

2. If the true model is due to effects of the mother’s
genotype, then the relative risks in cases vs. controls are
attenuated, both in absolute value and in their pattern
of inheritance, in the sense that a dominant model in the
mother appears closer to recessive in the child, and a

TABLE V. Methods evaluated in simulation study

Method Description
Additional control samples

used Assumptions
Parameters estimated in addition to

disease risk parameters

0 Logistic regression of
case/mother duos versus
control/mother duos

Control/mother duos used
(by definition)

None None

1 Multinomial model None HWE1RM1Fixed allele
frequency A2

None

2 Multinomial model None HWE1RM A2

3 Multinomial model Controls HWE1RM A2

4 Multinomial model Parents of controls HWE1RM A2

5 Multinomial model Parents of controls Parental allelic
exchangeability

m1�m6 with m3 5m4

6 Multinomial model Parents of controls Mating symmetry m1�m6

7 Multinomial model Control/mother duos HWE1RM A2

8 Multinomial model Control/mother duos Parental allelic
exchangeability

m1�m6 with m3�m4

9 Multinomial model Control/mother duos Mating symmetry m1�m6

HWE, Hardy-Weinberg equilibrium; RM, random mating.

TABLE IV. Parameter values assumed under simulation
scenarios A–J

Parameter value

Scenario A2 a R1 R2 S1 S2 Im Ip g11 g22

A 0.3 0.1 1.5 2.25 1 1 1 1 1 1
B 0.3 0.1 1 1 1.5 2.25 1 1 1 1
C 0.3 0.1 1.5 2.25 1.5 2.25 1 1 1 1
D 0.3 0.1 1.5 2.25 1 1 1.8 1 1 1
E 0.3 0.1 1.5 2.25 1 1 1 1.8 1 1
F 0.3 0.1 1.5 2.25 1.5 2.25 1.8 1 1 1
G 0.3 0.1 1.5 2.25 1.5 2.25 1 1.8 1 1
H 0.3 0.1 1.5 2.25 1.5 2.25 1 1 0.5 0.5
I 0.3 0.1 1.5 2.25 1.5 2.25 1.8 1 0.5 1
J 0.3 0.1 1.5 2.25 1.5 2.25 1 1.8 0.5 1

TABLE VI. Formulae for GRRs in cases versus controls
and in mothers of cases versus mothers of controls
(GRRs calculated assuming Hardy-Weinberg
Equilibrium and random mating)

GRRs

Sample RR12 RR22

Cases

vs. controls

R1 ½IpðA11S1g11A2Þ1Im ðS1g11A11S2g21A2Þ�

2½A11S1A2 �

R2ImIp ½ðS1g12A11S2g22A2Þ�

½A11S1A2 �

Mothers

of cases

vs. mothers

of controls

S1 ½A1ð11R1 Img11Þ1A2IpðR1g111R2Img12Þ�

2½A11R1IpA2 �

S2Im ½A1R1g211A2R2 Ipg22 �

½A11R1IpA2 �

GRRs, genotype relative risks.
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recessive model in the mother appears closer to
dominant in the child. The power implications of the
attenuation in relative risks are illustrated in the final
two columns of Supplementary Table IV, which show
the resulting power (calculated using the Genetic Power
Calculator [Purcell et al., 2003]) obtained from 500 cases
vs. controls compared to when using 500 mothers of
cases vs. mothers of controls. Analysis under the
incorrect model (e.g. using cases and controls when
the effect is really due to the mother’s genotype) can
lead to a considerable decrease in power e.g. (see row 7)
from 97% under the correct model to only 39% under
the incorrect model.

3. The same pattern of relative risks in a child could arise
from a variety of different mechanisms. For example,
relative risks RR12 5 1.5 and RR22 5 2 in the child could
arise from a mother’s genotype effect (S1 5 2, S2 5 4), a
maternal imprinting effect (Im 5 2), a paternal imprinting
effect (Ip 5 2), or simply from the child’s own genotype
(R1 5 1.5, R2 5 2). These different scenarios could be
distinguished by additionally looking at the genotype
relative risks in mothers of cases vs. of mothers of controls.

4. A maternal imprinting effect (Im41) will be visible (and
will lead to identical genotype relative risks) when
analyzing either cases vs. controls or mothers of cases
vs. of mothers of controls. A paternal imprinting effect,
on the other hand, will be visible when analyzing cases
vs. controls but will lead to no increase in risk when
considering mothers of cases vs. of mothers of controls.

MULTINOMIAL MODELING OF CASE/
MOTHER DUOS

We used computer simulations to investigate the
performance of our multinomial modeling approach. Our
approach has been implemented in a freely available
Fortran program EMIM (Estimation of Maternal, Imprint-
ing and interaction effects using Multinomial modelling).
Data were simulated under scenarios A–J and were
analyzed using either logistic regression (Method 0) or
EMIM (Methods 1�9) under various different assump-
tions concerning the parameters estimated and the avail-
ability of additional control samples (see Table V). In
addition to investigating the performance of the methods
under assumptions of either HWE and random mating or
mating symmetry (which allows estimation of the six
mating-type stratification parameters m1�m6 [Weinberg,
1999b; Weinberg et al., 1998], we also investigated the use
of an alternative parental allelic exchangeability assump-
tion [Shi et al., 2008], which, in context of the parameter-
ization here, corresponds to assuming that m4�m3.

Figures 1–3 show the results (boxplots of the individual
parameter estimates, the sum of the estimated standard
errors for all parameters and the power for testing various
hypotheses) evaluated over 500 simulation replicates for
scenarios C, E, and F. In scenario C, the risk of disease
depends on the maternal and child genotypes but there are
no imprinting or interaction effects. In scenario E, the risk
of disease depends on the child’s genotype together with
an imprinting effect. In scenario F, the risk of disease
depends on maternal and child genotypes together with
an imprinting effect. Results for other scenarios are shown
in Supplementary Figures 1–7 (with interaction effects
included in scenarios H, I, and J).

In all scenarios, we find unbiased estimation of the
parameters, although the variability in the parameter
estimates (over the 500 replicates), along with the total
estimated standard error, increases as the models become
more complex (as larger numbers of parameters are
estimated). As illustrated by Figures 1–3 (and Supplemen-
tary Figures 1–7), Method 0 (logistic regression) and
Method 2 (in which the allele frequency A2 is estimated
from the case/mother duo sample alone) perform the most
poorly of all methods considered, with largest variability
in the parameter estimates, largest total estimated stan-
dard error, and lowest power. Method 1, in which the
allele frequency A2 is fixed to its true value, performs best,
with the lowest variability in the parameter estimates,
smallest total estimated standard error, and the highest
power. Method 3, in which a separate sample of controls is
used to help estimate A2, performs slightly worser than
Method 1. Performance can be improved by using instead
parents of controls (giving a sample size twice as large as
with controls) to help estimate A2 under the assumption of
HWE and random mating (Method 4). Methods 4–6 all use
a sample of parents of controls but under progressively
less restrictive assumptions (HWE and random mating,
parental allelic exchangeability and mating symmetry,
respectively), resulting in a progressively worse perfor-
mance (lower power, higher variability, and total standard
error) as less assumptions are made and more parameters
are estimated. Note, however, that our data were simu-
lated to accord with the assumption of HWE and random
mating, which provides a ‘‘best case’’ scenario for
Method 4. The advantage of Methods 5 and 6 is that they
should be robust to violations of HWE and random
mating, which will not be true of Method 4.

Methods 7–9 all use a sample of control/mother duos to
help estimate either A2 or m1�m6, again under progressively
less restrictive assumptions. Again this results in a
progressively worse (but presumably more robust) perfor-
mance as more parameters are estimated. For a given
assumption (HWE and random mating, parental allelic
symmetry or mating symmetry), parents of controls appear
to provide better performance than an equal number of
control/mother duos, as found by Vermeulen et al. [2009].

Although Method 1 performs best, it makes the very
restrictive assumption that we can fix the allele frequency
A2 at its true value, without allowing for any variability
associated with an estimate of A2. We investigated the
effect of misspecification of A2. We simulated data under
the null hypothesis of no genetic effects ðR1 ¼ R2 ¼ S1 ¼

S2 ¼ Im ¼ Ip ¼ g11 ¼ g12 ¼ g21 ¼ g22 ¼ 1Þ and analyzed the
data using Method 1 with five parameters estimated
ðR1;R2; S1; S2; ImÞ as in scenario F. The true minor allele
frequency A2 was set at 0.3, but in the analysis we assumed
values of A2 between 0.2 and 0.4. Figure 4 shows the
resulting parameter estimation and type 1 error. Provided
A2 was correctly specified at 0.3, parameter estimation was
unbiased and type 1 error remained at nominal levels.
However, misspecification of A2 resulted in biased para-
meter estimation (either upwards or downwards) and high
type 1 error. Therefore, unless the allele frequency is
accurately known, it would seem safer to incorporate an
additional control sample into the analysis to aid in its
estimation (as in Methods 3–9). We checked the type 1
error and parameter estimation of all other methods under
the null for scenarios C and F using a larger number of
simulation replicates (Supplementary Figures 8 and 9) and
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found, as expected from standard statistical theory of
likelihood ratio tests, that nominal significance levels were
maintained. Similar results were found under other
scenarios (data not shown).

We also investigated the effect of sample size on the
different methods, using simulation scenario G, which
aims to estimate five parameters (R1, R2, S1, S2, and Ip).
Our previous simulations assumed the availability of 500

case/mother duos, together with an equal number of
unrelated controls, parents (i.e. 500 units each consisting of
the mother and father) of controls or control/mother duos
(for use in Methods 3–9). Supplementary Figure 10 shows
the total estimated standard error and power for the
different methods as the sample size (number of observa-
tions of each type) varies between 100 and 500. With
respect to power, for the parameter values assumed here, a
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Fig. 1. Results from simulation scenario C. The different methods are denoted m0–m9. Five hundred case/mother duos were simulated,

together with various control samples (500 unrelated controls, 500 units each consisting of the two parents (mother and father) of a control, or

500 control/mother duos) for use in Methods 3–9. The left panels show boxplots of the parameter estimates (logs of the given relative risk

parameter) over 500 simulation replicates. A horizontal line is drawn at the true value of the log of the given parameter. The top three right
panels show the power of likelihood ratio tests of various hypotheses. Power to achieve significance levels (P values) of 0.05, 0.01, and 0.001 are

shown in white, gray, and black, respectively. The top panel shows the power for testing the full model (R1, R2, S1, and S2) against a null model

where all parameters equal 1. The second panel shows the power for testing the full model (R1, R2, S1, and S2) against a null model that includes

R1 and R2 only (i.e. the power for detecting the maternal genotype effects S1 and S2 while allowing for child genotype effects). The third panel
shows the power for testing the full model (R1, R2, S1, and S2) against a null model that includes S1 and S2 only (i.e. the power for detecting the

child genotype effects R1 and R2 while allowing for maternal genotype effects). The bottom right panel shows a boxplot of the total estimated

standard error (SE) (i.e. the sum of the estimated standard errors of all four estimated parameters) over the 500 simulation replicates.
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sample size of around 300 case/mother duos seemed to be
required to give reasonable power for detection of effects.
At lower sample sizes, several of the methods have
occasional problems with estimation of certain parameters
(resulting in a total standard error output value of 0,
indicating that the parameter and/or its variance was not
able to be estimated). These problems generally corre-
sponded to simulation replicates in which one or more of
the cells in the relevant tables of counts (Table II, Supplemen-
tary Tables 1–3) had zero entries. Not surprisingly, given
insufficient data, it is not always possible to fit complex

models with many parameters. To fit the models in this
situation, one would need to reduce the number of parameters
that one tries to estimate, either manually, or perhaps by use of
some kind of penalization approach [Li et al., 2009].

MULTINOMIAL MODELING OF CASE/PARENT
TRIOS

We repeated our simulations assuming the availability
of a sample of case/parent trios rather than case/mother
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Fig. 2. Results from simulation scenario E. See figure legend to Figure 1 for detailed description of plots. Here the top three left hand

panels show boxplots of the relevant parameter estimates (logs of the given relative risk parameter) with a line indicating the true

value, and the top three right hand panels show the power of likelihood ratio tests of various hypotheses (specifically of whether the
given parameter(s) are zero, when allowing for the effects of the other parameters). The lowest left panel shows a boxplot of the total

estimated standard error (SE) over the 500 simulation replicates.
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duos. We found similar sensitivity to the choice of fixed
allele frequency in Method 1 as we had seen in Figure 4
with case/mother duos (data not shown). With case/
parent trios, there is no need to fix the value of the allele
frequency A2 even for complex scenarios (such as
scenarios F–J) when no additional control samples are
available, as all seven parameters of interest are identifi-
able from the counts in the column 10 of Table II. For case/
parent trios, we therefore did not consider Method 1 any
further, but instead we considered two alternative versions
of Method 2: in Method 2a, we assumed HWE and random
mating in order to estimate the parameter A2, while in

Method 2b, we did not assume HWE and random mating
but instead estimated the six mating-type stratification
parameters m1�m6. All other methods remained as shown
in Table V.

Results from scenarios C, E, and F (using a sample size
of 500 trios and an equal number of control observations as
required) are shown in Figures 5–7. Results from the
other scenarios followed a similar pattern (data not
shown). In general, the pattern of results in terms of
comparison of the different methods was similar to what
had been seen with case/mother duos. The performances
of Method 0 (logistic regression) and Methods 2a and 2b
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Fig. 3. Results from simulation scenario F. See figure legend to Figure 1 for detailed description of plots. The different methods are

denoted m0–m9. Method 2 is not shown as the allele frequency A2 was found to be unidentifiable using Method 2 when fitting

scenarios F, G, H, I, and J. The left hand panels show boxplots of the relevant parameter estimates (logs of the given relative risk

parameter) with a line indicating the true value, while the top three right panels show the power of likelihood ratio tests of various
hypotheses (specifically of whether the given parameter(s) are zero, when allowing for the effects of the other parameters). The lowest

right panel shows a boxplot of the total estimated standard error (SE) over the 500 simulation replicates.
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(which use only the case/parent trios) are considerably
worser than those of Methods 3–9. Method 2a, which
assumes HWE and random mating to help estimate A2,
performs better than Method 2b (which makes less
assumptions and estimates the six mating-type stratifica-
tion parameters m1�m6). As with case/mother duos, it
seems that the use of additional control samples (in the
absence of knowledge of the allele frequency A2) can

considerably improve the estimation of the genetic
parameters of interest.

Supplementary Figure 11 shows the results from
Scenario G as the sample size (number of observations of
each type) varies between 100 and 500. Although the
absolute power will clearly depend on sample size, allele
frequency, and genetic effect sizes, comparison of Supple-
mentary Figure 11 to Supplementary Figure 10 (as well as
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0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4

Fig. 4. Sensitivity to misspecification of minor allele frequency A2. See figure legend to Figure 1 for detailed description of plots.

Results are shown for method 1 with minor allele frequency A2 assumed to be either 0.2, 0.225, 0.25. 0.3, 0.325, 0.35, 0.375 or 0.4. The true

value of A2 used in the simulation was 0.3. Three parameters (R1, R2, and Im) were fitted according to scenario E (similar results were

found for other scenarios). Data were simulated under the global null, i.e. the true value of each of these parameters was 1. The top left
panels show boxplots of the parameter estimates (logs of the given relative risk parameter) with a line indicating the true value, the

lowest left panel shows a boxplot of the total estimated standard error (SE) and the three right panels show the type 1 error for

likelihood ratio tests of whether the given parameter or parameters are equal to 1. Type 1 errors for nominal significance levels

(P values) of 0.05, 0.01, and 0.001 are shown in white, gray, and black, respectively.
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comparison of Figs. 5–7 with Figs. 1–3) indicates that case/
parent trios provide substantially higher power and better
parameter estimation than is provided by case/mother
duos.

EFFECT OF POPULATION STRATIFICATION

We also investigated the performance of the different
methods applied to either case/parent trios or case/
mother duos in the presence of population stratification
(Figs. 8 and 9). Data were simulated assuming families
came from one of two (unknown) sub-populations with
differing baseline risks of disease (0.1 and 0.05) and
differing allele frequencies (0.3 and 0.15) respectively. For
case/parent trios, only method 2b maintained nominal
type 1 error in the presence of population stratification
(Fig. 8). For case/mother duos, no method maintained

nominal type 1 error (Fig. 9). Since population stratifica-
tion induces a lack of HWE, we expect all methods that
assume HWE and random mating to be compromised. In
addition, it seems that the use of the various control
samples to help estimate m1�m6 fails, possibly on account
of the different mating-type frequencies (between parents
of cases and parents of controls) induced by population
stratification.

USE OF COMMON CONTROLS

Our simulations thus far assumed the same number of
units of each type (case/mother duos, case/parent trios,
control/mother duos etc.) It is becoming increasingly
common to make use of data from a large external control
sample such as that generated by WTCCC [2007]. (As
illustrated by our simulations above, this approach would
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Fig. 5. Results from simulation scenario C, case/parent trios. See figure legend to Figure 1 for detailed description of plots. Method 1

was not considered, but two different versions of Method 2 (2a and 2b) were considered, as described in the text.
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not be valid if there was population stratification or if the
common controls came from a different population
compared to the cases.) Assuming all individuals are
generated from the same population, Supplementary
Figure 12 shows the results of applying our methods
(together with logistic regression) to a sample consisting of
either 500 case/mother duos or 500 case/parent trios and
3,000 population-based controls. Only Scenarios A and B
were considered, since these are the only scenarios that can
be modeled using logistic regression when no mothers of
controls are available. Even with this larger control
sample, our multinomial modeling approach (assuming
HWE and random mating) shows higher power and
precision of parameter estimation than does logistic

regression. Some slight reduction in power is seen for
our method in Scenario B when analyzing 500 case/parent
trios under the less restrictive assumptions of parental
allelic exchangeability or mating symmetry (as opposed to
HWE and random mating).

EFFECT OF MODEL MISSPECIFICATION

Our simulations thus far have assumed that we analyze
our data using the ‘‘correct’’ parameterization (in other
words, fitting the same set of parameters that were
actually used to generate the data). It is of interest to
examine the performance of the methods when we
generate data under one model but analyze it under
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Fig. 6. Results from simulation scenario E, case/parent trios. See figure legend to Figures 1 and 2 for detailed description of plots.
Method 1 was not considered, but two different versions of Method 2 (2a and 2b) were considered, as described in the text.
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another model. For logistic regression, if only mothers or
childs effects are fitted, the resulting parameter estimates
should take the form calculated in Tables I and II. (Note
that the last four rows of Table II give the expected
parameter estimates as estimated from logistic regression
analysis of either cases vs. controls, or mothers of cases vs.
mothers of controls, under our simulation Scenarios A, B,
D, and E, respectively.)

Supplementary Figures 13–18 show the results for case/
mother duos when a five-parameter model containing
child and maternal genotype effects and an imprinting
effect (Scenario F) is fitted, even though the true model
used for generating the data is smaller (i.e. consists of only
a subset of the parameters). The parameter estimates are
all found to be unbiased, including those parameters that
were not part of the generating model (whose log relative

risks estimates are therefore all centred round zero), and
correct type 1 error is maintained for these parameters.
Method 2 cannot be used to fit a five-parameter model
when case/mother duos (as opposed to case/parent trios)
are the unit of analysis; however, we can illustrate the same
point for Method 2 (as well as all other methods) by fitting
a three- or four-parameter model when the generating
model is actually smaller (i.e. consists of only a subset of
the parameters), see Supplementary Figures 19–21. There-
fore, provided the true model is nested within the analysis
model, all methods provide unbiased parameter estimation
and adequate control of type 1 error, as expected from
standard statistical theory. Similar results were found for
case/parent trios (data not shown).

A more interesting question perhaps is what happens
when the true model is not nested within the analysis
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model. Supplementary Figures 22 and 23 show the results
of analyzing 500 case/parent trios when data are gener-
ated under Scenarios D and E but analyzed assuming
Scenario A or Scenario B. Interestingly, when analyzed
under Scenario A, all methods give the same ‘‘apparent’’
parameter estimates as expected from Table II, but when
analyzed under Scenario B, only logistic regression gives
the expected parameter estimates from Table II: all other
methods give estimates with differing degrees of bias (and
therefore either a decrease or increase in power, depending
on the extent of the bias). To investigate the cause of this
phenomenon in a simpler scenario, we examined the
performance of the methods when applied to either case/
mother duos or case/parent trios, when data were generated

under Scenario B but analyzed under Scenario A (see
Fig. 10). Again, only logistic regression (Method 0) gives the
expected parameter estimates from Table II. Methods 3–9
give slightly attenuated relative risk estimates and Methods 2
(for duos) or 2a and 2b (for trios) give log relative risk
estimates that are essentially centered round 0. Similar
results were found when generating data under Scenario A
but analyzing under Scenario B (data not shown).

The reason for this phenomenon can be discovered from
a closer inspection of the 15 cell probabilities in Table II.
For Method 2b, if data are really generated under Scenario
B (in which effects S1 and S2 operate), but analyzed under
Scenario A (in which effects R1 and R2 operate), the only
data contributing to the estimation of R1 and R2 comes
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from comparing cell counts within each of the six parental
mating types. Mating types 1 and 6 do not contribute to
this comparison. From mating type 2 (comparison of cells
214 to 315), we would estimate that R2/R1 5 (S21S1)/
(S21S1) 5 1. From mating type 4 (comparison of cells 8 to
10 and 9a19b to 10), we would estimate that R2 5 1 and
R1 5 1. From mating type 5 (comparison of cells 11113 to
12114), we would estimate R1 5 (S111)/(S111) 5 1. Thus,
given the chosen parameterization, estimates of R1 5 1 and
R2 5 1 (log relative risk estimates of 0) will indeed provide
the best fit to the data. If, however, there is additional data
helping us to estimate the relative magnitude of the
mating-type stratification parameters (Methods 3–9), we
can borrow information from contrasts across the mating
types. In that case, the estimates of R1 and R2 become

essentially weighted averages of the true parameters
(S1 and S2) and 1, as the model tries to come up with a
set of parameter estimates that best resolve these various
(misspecified) contrasts.

This result might seem at first glance slightly alarming,
as it would suggest that we may be in danger of having no
power to detect any effects under Methods 2/2a/2b, if
we choose an incorrect parameterization. However, in
practice, if there is reason to suspect complex effects of the
kind investigated here, a sensible strategy would be to fit a
series of different (possibly nested) models, as proposed
by Cordell et al. [2004]. For example, one could use a
forward or backward stepwise strategy, or perform model
comparison via the Akaike Information Criterion (AIC), in
order to identify the single best-fitting model. Given that
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our previous simulations showed there should be high
power to estimate effects when they are correctly modeled,
there should be little danger of missing such effects
provided such a strategy is used.

Supplementary Figures 24 and 25 show the results of
analyzing 500 case/parent trios when data are generated
under Scenario G but analyzed assuming Scenario H, or
vice versa. We find (Supplementary Figure 24) that a
true imprinting effect can masquerade as an apparent
interaction effect, as well as altering the estimates of R1, R2,
and S2. Similar results (‘‘apparent’’ interactions induced by
an imprinting effect) were found when modeling the
interaction term(s) via the MFG models of Sinsheimer et al.
[2003] (data not shown). On the other hand, when the true
model involves interaction parameters (Supplementary
Figure 25), this does not generally appear to generate an
apparent imprinting effect (apart from when using logistic
regression) but the estimates of R1, R2, and S1 are again
altered.

DIFFERENT CHOICES OF PARAMETERIZATION

To examine the relationship between our parameteriza-
tion and those previously proposed, and to illustrate some
of the resulting difficulties in interpretation, we analyzed a
single simulated example data set under a variety of
different models. The data set consisted of 4,718 indivi-
duals comprising 500 case/parent trios together with 200
of each of the following units: case/mother duos, case/
father duos, cases, mothers of cases, (both) parents of
cases, (both) parents of controls, control/mother duos,
control/fathers duos, controls, plus an additional 218
fathers of cases. (All of these can be used as input to
EMIM, see Discussion). This relatively large sample size
was chosen to make it easier to compare or distinguish
between different models, rather than being intended
to be especially realistic. Data were simulated assuming
all effects (child’s genotype, mother’s genotype, inter-
actions and imprinting) operated, although details of the
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simulation model used are not particularly relevant, as we
focus here simply on comparing the different models.

Table VII shows the results. All models were fitted in
EMIM. All models include mother and child genotype
effects, but differ with respect to what other parameters
are included and the parameterization used. For all
models, the null log likelihood (with all parameters set
to 1) was identical, as expected. The differences between
null and alternative log likelihoods are much larger than
would generally be expected in complex disease studies
(leading to very small p values for rejecting the null
hypothesis of no effects) on account of the large sample
size and relatively strong effects (relative risks) assumed.
These results are not intended to be particularly realistic
but serve as a useful illustrative example for demonstrat-
ing equivalences between various models.

Rows 1–4 show the parameter estimates and maximized
log likelihoods for models that include a single imprinting
effect in addition to mother and child genotype effects.
The maximized log likelihoods are seen to be identical,
regardless of what parameterization is used for the
imprinting effect, however the parameter estimates for
the imprinting effect and for R1 and R2 vary. Using the
original Weinberg et al. [1998] parameterization (rows 1
and 2), the effects (R1, R2, Im) when imprinting is modeled
as maternal effect (row 1) may be written in terms of the
effects (R01, R02, I0p) when imprinting is modeled as paternal
effect (row 2) as follows: R1 ¼ R01I0p, R2¼R02ðI

0
pÞ

2, Im ¼ 1=I0p.
These relationships are as expected from Table I. Using the
later Weinberg [1999b] parameterization (rows 3 and 4),
we find the parameters to be identical to those in the
earlier parameterization, except for R2 which may be
written as R2 ¼ R02I0p. Although the fit of all four models is
the same, and thus each provides identical inference
concerning the presence (or absence) of an imprinting
effect, the interpretation of the parameter estimates,
particularly with respect to the magnitude of child’s own
genotype effects, is clearly very different.

Row 5 of Table VII shows the results from the
Sinsheimer et al. [2003] MFG test (parameterization 1A),
which includes a single incompatibility parameter g01. For
these data, this model appears to fit better than the models
that include a single imprinting effect, although we have
found in other simulations (data not shown) that an
imprinting effect can often masquarade as an incompat-
ibility effect, and vice versa, suggesting that it may be
difficult to distinguish between these mechanisms in
practice. If we model interaction via the EMIM parameter-
ization using a single parameter g11 (row 6), we get a
slightly different (and, for these data, slightly better
fitting) likelihood. Interestingly, this model appears to
provide equivalent inference to the model (row 7) of
Palmer et al. [2006] applied to SNPs (although note that the
model used by Palmer et al. [2006] was originally designed
for use with the multiallelic HLA system, and so may have
different properties in that application). If we model
interaction via the EMIM parameterization using a single
parameter g22 (row 8), we get a different (and, for these
data, less well-fitting) likelihood.

The MFG test (parameterization 1B) shown in row 9
includes two incompatibility parameters (g01 and g21) and
gives a better fit to these data than any of the single-
interaction models. An identical fit is obtained by our
default EMIM interaction (g11 and g22) parameterization
(row 10), as expected from our previous discussion of

these two parameterizations (see Methods). These models
thus provide identical inference concerning the presence
(or absence) of interactions, however the parameter
estimates for the interactions and main genotype effects
vary, as the models vary with respect to which genotype
categories should be considered as ‘‘baseline’’ and whether
the interaction term is modeled as a ‘‘compatibility’’ or
‘‘incompatibility’’ effect.

Rows 11–13 of Table VII show three models that appear
to provide equivalent inference: the 6 df model used by
Parimi et al. [2008] and Li et al. [2009], the model of Palmer
et al. [2006] with the addition of an imprinting (Ip)
parameter, and the 6 df EMIM model with Ip and g11

included. All of these models include a single imprinting
parameter and a single-interaction parameter, and fit
almost as well as the EMIM saturated 7 df model (rows
16 and 17), which may explain the high power found by
Parimi et al. [2008] for this parameterization. (Note that
this 6 df model would be saturated when modeling data
purely from case/mother vs. control/mother duos, but
case/parent trios allow the estimation of seven parameters
of interest.) Alternative 6 df models shown in rows 14 and
15 (EMIM with Im and g22 included, or the MFG test
(parameterization 1A) with Ip added) appear to fit rather
less well.

Rows 16 and 17 illustrate the fact that a fully saturated
model (containing two interactions and one imprinting
effect) can be obtained either through the default EMIM
parameterization or through the addition of an imprinting
effect to the MFG test of Sinsheimer et al. [2003]
(parameterization 1B). We found that identical results (in
terms of model fit) could be obtained regardless of
whether imprinting was modeled as a term Im or Ip,
however only the MFG test (parameterization 1B) allowed
the imprinting effect to be identifiable when modeled via
the later Weinberg [1999b] parameterization (in which
case, an identical fit was obtained). Although our default
EMIM parameterization is based on the usual statistical
approach to modeling interactions, for biological inter-
pretability the MFG parameterization would seem more
intuitive, as well as having this advantage of allowing
imprinting to be modeled via either the original [Weinberg
et al., 1998] or later [Weinberg, 1999b] parameterization.
We have seen in this example that, where identifiable, the
different imprinting parameterizations generally provide
equivalent inference, but the different interaction para-
meterizations do not necessarily provide equivalent
inference, unless both interaction terms are included. To
distinguish between interaction and imprinting effects,
both types of effect would need to be included in the
model.

DISCUSSION

In this study, we have presented a method for testing
and estimation of maternal effects, maternal-fetal interac-
tions and parent-of-origin effects (imprinting), using data
from either case/parent trios or case/mother duos. Our
multinomial modeling approach considerably outper-
forms logistic regression, even when fitting models with
child genotype effects alone (simulation scenario A) or
maternal genotypes alone (simulation scenario B), which
are straightforward to fit using logistic regression. The
improvement of our method over logistic regression is
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even greater when fitting more complex models that
include parent-of-origin effects and/or interactions. We
speculate that the extra power/efficiency provided by our
approach comes from the extra information that is
incorporated into the modeling via Mendelian inheritance
assumptions (allowing the estimation of either allele
frequency or mating-type frequencies), information that
is not used in logistic regression. This is consistent with the
results of Chen et al. [2009] who also found that improved
power could be found over standard methods by exploit-
ing the Mendelian correlation between mother’s and
child’s genomes.

Similar improvements in power for log-linear models
(equivalent to multinomial modeling) over logistic regres-
sion have been found previously [Shi et al., 2008;
Vermeulen et al., 2009; Weinberg and Shi, 2009; Weinberg
and Umbach, 2005]. However, these previous investiga-
tions did not include the full range of parameters of
interest (e.g. maternal-fetal genotype interactions were not
considered) and power was calculated using theoretical
arguments based on non-centrality parameters rather than
by computer simulation, making it impossible to examine
key properties of the methods such as bias, precision, and
uncertainty in parameter estimation. Parimi et al. [2008]
used computer simulations to compare logistic regression
with log-linear models under various underlying scenar-
ios, and also found log-linear models to give higher power,
although their results were somewhat hard to interpret in
view of the fact that they used different sample sizes for
the different types of analysis (50 case/mother and 50
control/mother duos for logistic regression, compared to
either 67 or 100 case/parent trios).

To our knowledge, ours is the first approach that allows
the estimation of these kinds of complex effects using data
from case/mother duos alone (without the incorporation
of fathers or control samples of various types), although
we note that the performance of our approach is
considerably improved by the incorporation of either
fathers or various types of control sample. In particular,
case/parent trios provide substantially higher power and
better parameter estimation than is provided by case/
mother duos, suggesting that the collection of fathers,
where possible, can add considerable value to a study.
Although in our simulations we considered the two
extreme cases of no fathers being available (the data set
consisting solely of case/mother duos) or all fathers
available (the data set consisting solely of case/parent
trios), in practice one may combine these data structures
by multiplying together the relevant likelihood contribu-
tions. In a similar fashion one may also include other data
structures such as case/parent trios where the mother is
missing (i.e. case/father duos), where the child is missing
(i.e. parents of cases) or where only one parent is available
(i.e. mothers or fathers of cases), simply by collapsing the
rows of Table II appropriately and fitting the resulting
multinomial likelihood. Our approach thus provides a
general framework for analysis of case/parent trios
even when one (or more) individuals within a trio are
missing (via direct maximization of the product of
multinomial likelihoods rather than by using an EM
algorithm), allowing one to maximize information from
all available data.

In our computer simulations, we assumed a relatively
common disease (baseline penetrance a5 0.1) and disease
allele frequency (A2 5 0.3) in order to reduce the

computational time required to generate sufficient simula-
tion replicates. We therefore simulated population-based
control samples rather than unaffected controls. This is an
important distinction as the control samples are used to
help estimate the allele frequencies or mating-type
frequencies in the population; for a common disease, these
frequencies will be distorted if estimated conditional on
(unaffected) disease status in the child [Weinberg and Shi,
2009]. We found similar results to those presented here
when we varied the disease allele frequency and/or
simulated a rare disease together with known unaffected
controls (data not shown), indicating that, for a rare
disease, either unaffected or population-based (of un-
known disease status) controls can be used.

One appealing property of family-based designs is the
robustness they often provide to population stratification.
We found only one method (Method 2b, applied to case/
parent trios) that provided complete robustness to
population stratification. This is not unexpected since
population stratification will generally induce departure
from HWE, meaning that methods that make a HWE and
random mating assumption are likely to be compromised
when these assumptions do not hold. Methods that make
use of additional control samples (even without assuming
HWE and random mating) also suffer in the presence of
population stratification on account of the fact that the
underlying mating-type frequencies and thus parameters
m1�m6 will differ between parents of cases and parents of
controls. In case/control studies, alternative methods have
been developed to deal with population stratification [Devlin
and Roeder, 1999; Price et al., 2006; Pritchard et al., 2000].
However, incorporation of covariates (for example principal
component scores from an eigenvector analysis [Price et al.,
2006] as is often carried out in case/control studies [WTCCC,
2007]) is problematic in a multinomial or log-linear modeling
framework, and so it is unclear whether this approach would
be feasible here, in preference to simply sampling from an
ethnically homogenous population.

Method 2b, applied to case/parent trios, is formally
equivalent to the original log-linear model approach of
Weinberg et al. [1998] and Weinberg [1999a,b] and is closely
related to the case/pseudocontrol approach proposed by
Cordell and Clayton [2002] and Cordell et al. [2004] [based
on previous work by Schaid, 1996; Schaid and Sommer,
1993; Self et al., 1991]. The case/pseudocontrol approach
loses some efficiency by conditioning both on parental
genotypes and sufficient statistics for parameters of interest
(such as parent-of-origin effects) [Cordell et al., 2004].
However, the approach does have the advantage that comes
with being embedded in a (conditional logistic) regression
framework of allowing the incorporation of covariates (such
as other genetic or environmental factors) as well as factors
such as gene-gene and gene-environment interactions.
Thus, the case/pseudocontrol approach may be worth
considering if inclusion of covariates (including those
related to adjusting for population stratification) is an
important consideration in a given study.

Our method has been implemented in a freely available
software package, EMIM. EMIM is a Fortran program that
has been most extensively tested under Linux, although in
theory should work on any operating system (e.g.
Microsoft Windows, Apple Macintosh) that has a Fortran
compiler available. EMIM makes use of a subroutine
MAXFUN, originally written as part of the S.A.G.E. [1994]
package. EMIM allows the user to specify several different
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input files containing data from different types of
structures (e.g. case/parent trios, case/mother duos,
parents of controls, etc.) and also allows the user to
specify which parameters to estimate or fix, and what
parameter restrictions or modeling assumptions (e.g.
Hardy-Weinberg and random mating) are to be used.
Competing software that can be used to fit similar models
includes a set of SAS macros available from the Weinberg
website (http://www.niehs.nih.gov/research/atniehs/labs/
bb/staff/weinberg/index.cfm). These macros fit the spe-
cific models described in Weinberg [1999a] and Weinberg
and Umbach [2005] but could presumably be adapted by
an experienced SAS user to implement alternative models
and parameter restrictions. R code is available for
implementing the approaches of Li et al. [2009] and Chen
et al. [2009]. The MFG test of Sinsheimer et al. [2003] has
been implemented in the software package Mendel [Lange
et al., 2001, 2005]. We have also included functionality for
fitting the parameters of the MFG test and the tests of Li
et al. [2009] and Palmer et al. [2006] (applied to diallelic
systems) in our package EMIM. Models that do not
include consideration of missing parents or imprinting
effects (such as the MFG test) could also be fit in standard
statistical software for log-linear modeling but, as
discussed previously, missing data (e.g. with respect to
the father’s genotype or the parental origin of the child’s
alleles) create problems associated with the fact that
certain cell probabilities will correspond to sums of
products (rather than purely products) of the parameters
of interest, making these models difficult to fit in practice.

Probably, the most convenient software package that has
been used previously [Shi et al., 2008; Vermeulen et al., 2009;
Weinberg and Shi, 2009] for fitting these kinds of model is
the program LEM [van Den Oord and Vermunt, 2000]. LEM
allows fitting of log-linear models via an expectation
maximization algorithm. LEM scripts for fitting various
models are available from the Weinberg website (http://
www.niehs.nih.gov/research/atniehs/labs/bb/staff/weinberg/
index.cfm); again the experienced user could presumably
use these as a basis for fitting alternative models. We
found LEM to give identical results to our program EMIM
when applied to the same data sets using the same
parameter restrictions (data not shown). Since LEM is a
Microsoft Windows ‘‘point and click’’ type program, it is
not especially convenient for performing many repeated
analyses (e.g. when performing a computer simulation
with a large number of replicates, or when applying the
method to large numbers of SNPs such as are generated in
a genome-wide association study). However, in theory one
could invoke LEM through the MS-DOS prompt, which
would allow more convenient scripting capabilities when
performing large numbers of repeated analyses.

Although the methodology (and software) for investi-
gating effects of imprinting, maternal genotype, and
maternal-fetal genotype interactions is now available,
interpretation of the parameter estimates obtained can be
quite complex, owing to collinearities and lack of identi-
fiability between various sets of parameters. In particular,
the parameterization used for imprinting and interaction
effects requires some care, as this can affect the inter-
pretation of other estimated parameters. For modeling
interactions, the MFG parameterization of Sinsheimer et al.
[2003] or the more restricted models used by Palmer et al.
[2006], Parimi et al. [2008] and Li et al. [2009] would seem
most biologically intuitive, although we note that all of

these models are essentially captured via our default
(statistically based) EMIM parameterization. Such com-
plexities in parameter definition and interpretation sug-
gest that this kind of modeling should perhaps be best
considered as a first step toward disentangling such
complex effects, in order to generate more focused hypo-
theses that may be further investigated experimentally.
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APPENDIX A: DERIVATION OF
APPARENT GENOTYPE RELATIVE

RISKS

Here, we use Table II to derive formulae for the apparent
genotype relative risks in cases vs. controls, or in mothers
of cases vs. mothers of controls. The genotype relative risks
for cases vs. (population) controls can be derived from the
penetrances P(dis|gc) where ‘‘dis’’ indicates the event that
a child is affected with disease and gc denotes the child’s
genotype (22, 12, 21 or 11). Let gm and gf denote the
unordered genotypes in the mother and father, while for
now we consider ordered (maternal/paternal) genotypes
for the child (i.e. we distinguish between gc 5 12 and
gc 5 21). The penetrances may be written as:

PðdisjgcÞ ¼
X

gm ;gf

Pðdis; gm; gfjgcÞ

¼
X

gm ;gf

Pðdisjgm; gf; gcÞPðgm; gfjgcÞ

¼
X

gm ;gf

Pðdisjgm; gf; gcÞPðgcjgm; gfÞPðgm; gfÞ=PðgcÞ:

Now Pðdisjgm; gf; gcÞ and Pðgcjgm; gfÞ are given in columns 4
and 5 of Table II. Assuming random mating and Hardy-
Weinberg equilibrium (HWE), P(gm, gf) is given in column
6 of Table II and P(gc) can be calculated similarly as A2

1,
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A1A2, A2A1, and A2
2 for genotypes gc 5 11, 12, 21, 22,

respectively. Thus, by multiplying together the appropri-
ate columns (4, 5, and 6) of Table II, dividing by gc and
summing the resulting 16 quantities, we obtain:

Pðdisjgc ¼ 11Þ ¼ a½A2
11A2A11S1A2A11S1A2

2�

¼ a½A11S1A2�;

Pðdisjgc ¼ 12Þ ¼ a½R1IpA2
11S1R1Ipg11A2A11R1IpA1A2

1S1R1Ipg11A2
2�

¼ aR1Ip½A11S1g11A2�;

Pðdisjgc ¼ 21Þ ¼ aR1Im½S1g11A11S2g21A2�;

Pðdisjgc ¼ 22Þ ¼ aR2ImIp½S2g22A21S1g12A1�:

Thus, the relative risks RR12 and RR22 for the unordered
case genotypes 12 and 22 (relative to genotype 11)
may be calculated as RR12¼½Pðdisjgc ¼ 12Þ1Pðdisjgc ¼

21Þ�= Pðdisjgc ¼ 11Þ and RR22¼Pðdisjgc¼22Þ=Pðdisjgc¼11Þ.
A similar approach may be used to derive formulae for

the apparent genotype relative risks in mothers of cases vs.
mothers of controls. The penetrances for mothers corre-
spond to P(mother has diseased child|gm), where gm

denotes the mothers (unordered) genotype (22, 12, or 11).
This may be written as:

Pðmother has diseased childjgmÞ

¼
X

gc ;gf

Pðdis; gc; gfjgmÞ

¼
X

gc ;gf

Pðdisjgm; gf; gcÞPðgc; gfjgmÞ

¼
X

gc ;gf

Pðdisjgm; gf; gcÞPðgcjgm; gfÞPðgm; gfÞ=PðgmÞ:

Again by multiplying together the columns 4, 5, and
6 of Table II, dividing by gm (which takes values A2

1,
2A1A2, and A2

2 for genotypes gm 5 11,12, and 22, respec-
tively) and summing the resulting 16 quantities, we
obtain:

Pðmother has diseased childjgm ¼ 11Þ

¼ a½A11R1IpA2�;

Pðmother has diseased childjgm ¼ 12Þ

¼ 0:5aS1½A1ð11R1Img11Þ1A2IpðR1g111R2Img12Þ�;

Pðmother has diseased childjgm ¼ 22Þ

¼ aS2Im½A1R1g211A2R2Ipg22�:

Thus, the relative risks RR12 and RR22 for the unordered
mother-of-case genotypes 12 and 22 (relative to geno-
type 11) may be calculated as RR12 5 P(dis|gm 5 12)/
P(dis|gm 5 11) and RR22 5 P(dis|gm 5 22)/P(dis|gm 5 11).
Formulae for these relative risks, together with
those previously calculated for the cases, are shown in
Table VI.

APPENDIX B: FORMULAE FOR K
AND R

K ¼ PðdisÞ

¼
X

gm ;gf ;gc

Pðdisjgm; gf; gcÞPðgm; gf; gcÞ

¼
X

gm ;gf ;gc

Pðdisjgm; gf; gcÞPðgcjgm; gfÞPðgm; gfÞ

¼
X

gm ;gf

Pðgm; gfÞ
X

gc

Pðdisjgm; gf; gcÞPðgcjgm; gfÞ

¼ ðfrom Table IIÞ

m�1aR2S2ImIpg22

10:5m�2aR2S2ImIpg2210:5m�2aR1S2Img21

10:5m�2aR2S1ImIpg1210:5m�2aR1S1Ipg11

1m�3aR1S2Img211m�3aR1Ip10:25m�4aR2S1ImIpg12

10:25m�4aR1S1Ipg1110:25m�4aR1S1Img1110:25m�4aS1

10:5m�5aR1S1Img1110:5m�5aS110:5m�5aR1Ip

10:5m�5a1m�6a:

� a�; say:

So

�¼K=a

¼ m�1R2S2ImIpg22

þ0:5m�2ðR2S2ImIpg22þR1S2Img21þR2S1ImIpg12þR1S1Ipg11Þ

1m�3ðR1S2Img211R1IpÞ

10:25m�4ðR2S1ImIpg121R1S1Ipg111R1S1Img111S1Þ

10:5m�5ðR1S1Img111S11R1Ip11Þ1m�6:

If HWE and random mating are to be assumed, the terms
m�1�m�6 in the above equations may be replaced by functions
of the allele frequency A2 (and A1 5 1�A2) as follows:

m�1 ¼A4
2;

m�2 ¼ 2A3
2A1;

m�3 ¼A2
2A2

1;

m�4 ¼ 4A2
2A2

1;

m�5 ¼ 2A2A3
1;

m�6 ¼A4
1:

WEB RESOURCES

Software implementing the proposed approach (the
EMIM program) will be made available on publication
from our website: http://www.staff.ncl.ac.uk/heather.cor-
dell/software.html
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