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MOST: detecting cancer differential gene expression

HENG LIAN∗

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371

henglian@ntu.edu.sg

SUMMARY

We propose a new statistics for the detection of differentially expressed genes when the genes are activated
only in a subset of the samples. Statistics designed for this unconventional circumstance has proved to be
valuable for most cancer studies, where oncogenes are activated for a small number of disease samples.
Previous efforts made in this direction include cancer outlier profile analysis (Tomlins and others, 2005),
outlier sum (Tibshirani and Hastie, 2007), and outlier robust t-statistics (Wu, 2007). We propose a new
statistics called maximum ordered subset t-statistics (MOST) which seems to be natural when the number
of activated samples is unknown. We compare MOST to other statistics and find that the proposed method
often has more power then its competitors.
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1. INTRODUCTION

The most popular method for differential gene expression detection in 2-sample microarray studies is to
compute the t-statistics. The differentially expressed genes are those whose t-statistics exceed a certain
threshold. Recently, many researchers have come to the realization that in many cancer studies, many
genes show increased expressions in disease samples, but only for a small number of those samples. The
study of Tomlins and others (2005) shows that t-statistics has low power in this case, and they introduced
the so-called “cancer outlier profile analysis” (COPA). Their study shows clearly that COPA can perform
better than the traditional t-statistics for cancer microarray data sets.

More recently, several progresses have been made in this direction with the aim to design better statis-
tics to account for the heterogeneous activation pattern of the cancer genes. In Tibshirani and Hastie
(2007), the authors introduced a new statistics, which they called outlier sum. Later, Wu (2007) proposed
outlier robust t-statistics (ORT) and showed it usually outperformed the previously proposed ones in both
simulation study and application to real data set.

In this paper, we propose another statistics for the detection of cancer differential gene expression
which have similar power to ORT when the number of activated samples is very small, but perform better
when more samples are differentially expressed. We call our new method the maximum ordered subset
t-statistics (MOST). Through simulation studies, we found the new statistics outperformed the previously
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proposed ones under some circumstances and never significantly worse in all situations. Thus, we think it
is a valuable addition to the dictionary of cancer outlier expression detection.

2. MAXIMUM ORDERED SUBSET t -STATISTICS

We consider the simple 2-class microarray data for detecting cancer genes. We assume there are n normal
samples and m cancer samples. The gene expressions for normal samples are denoted by xi j for genes
i = 1, 2, . . . , p and samples j = 1, 2, . . . n, while yi j denote the expressions for cancer samples with
i = 1, 2, . . . , p and j = 1, 2, . . . m. In this paper, we are only interested in 1-sided test where the activated
genes from cancer samples have a higher expression level. The extension to 2-sided test is straightforward.

The usual t-statistics (up to a multiplication factor independent of genes) for 2-sample test of differ-
ences in means is defined for each gene i by

Ti = x̄i − ȳi

si
, (2.1)

where x̄i = ∑
j xi j/n is the average expression of gene i in normal samples, ȳi = ∑

j yi j/m is the
average expression of gene i in cancer samples, and si is the usual pooled standard deviation estimate

s2
i =

∑
1� j�n(xi j − x̄i )

2 + ∑
1� j�m(yi j − ȳi )

2

n + m − 2
.

The t-statistics is powerful when the alternative distribution is such that yi j , j = 1, 2, . . . , m, all come
from a distribution with a higher mean. Tomlins and others (2005) argues that for most cancer types,
heterogeneous activation patterns make t-statistics inefficient for detecting those expression profiles. They
defined the COPA statistics

Ci = qr ({yi j }1� j�m) − medi

madi
, (2.2)

where qr (·) is the r th percentile of the data, medi = median({xi j }1� j�n, {yi j }1� j�m) is the median of
the pooled samples for gene i , and madi = 1.4826 × median({xi j − medi }1� j�n, {yi j − medi }1� j�m) is
the median absolute deviation of the pooled samples.

The choice of r in (2.2) depends on the subjective judgement of the user. The use of medi and madi to
replace the mean and the standard deviation in (2.1) is due to robustness considerations since it is already
known that some of the genes are differentially expressed.

In (2.2), only one value of {yi j } is used in the computation. A more efficient strategy would be to use
additional expression values. Let

Oi = {yi j : yi j > q75({xi j }1� j�n, {yi j }1� j�m) + IQR({xi j }1� j�n, {yi j }1� j�m)} (2.3)

be the outliers from the cancer samples for gene i , where IQR(·) is the interquartile range of the data. The
OS statistics from Tibshirani and Hastie (2007) is then defined as

OSi =
∑

yi j ∈Oi
(yi j − medi )

madi
. (2.4)

More recently, Wu (2007) studied ORT statistics, which is similar to OS statistics. The important dif-
ference that makes ORT superior is that outliers are defined relative to the normal sample instead of the
pooled sample. So in their definition,

Oi = {yi j : yi j > q75({xi j }1� j�n) + IQR({xi j }1� j�n)}. (2.5)
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By similar reasoning, medi in OS is replaced by medi x and mad j by median({xi j − medi x }1� j�n, {yi j −
mediy}1� j�m), where medi x and mediy are the medians of normal and cancer samples, respectively.

In both OS and ORT statistics, the outliers are defined somewhat arbitrarily with no convincing rea-
sons. To address this question, we propose the following statistics that implicitly considers all possible
values for outlier thresholds.

Suppose for notational simplicity that {yi j }1� j�m are ordered for each i :

yi1 � yi2 � · · · � yim .

If the number of samples where oncogenes are activated is known, we would naturally define the statis-
tics as

Mik =
∑

1� j�k(yi j − medi x )

median({xi j − medi x }1� j�n, {yi j − mediy}1� j�m)
. (2.6)

When k is not known to us, one would be tempted to define

Mi = max
1�k�m

Mik .

But this does not quite work since obviously Mik for different values of k are not directly comparable
under the null distribution that xi j , yi j ∼ N (0, 1). For example, when m = 2, we have E[yi1−medi x ] > 0,
while E

[ ∑
j=1,2(yi j − medi x )

] = 0. This observation motivates us to normalize Mik such that each
approximately has mean 0 and variance 1. This can be achieved by defining µk = E

[∑
1� j�k z j

]
and

σ 2
k = Var

( ∑
1� j�k z j

)
, where z1 > z2 > · · · > zm is the order statistics of m samples generated from

the standard normal distribution. Then, we can define Mik as

Mik =
( ∑

1� j�k(yi j − medi x )

1.4826 × median({xi j − medi x }1� j�n, {yi j − mediy}1� j�m)
− µk

)/
σk (2.7)

so that Mik has mean and variance approximately equal to 0 and 1, respectively.
Finally, we can define our new statistics (called MOST) as

Mi = max
1�k�m

Mik . (2.8)

With MOST, we practically consider every possible threshold above which yi j are taken to be outliers. In
this formulation, the number of outliers is implicitly defined as

arg max
1�k�m

Mik . (2.9)

3. SIMULATION STUDIES AND APPLICATION

Some simulations are carried out to study MOST and compare its performance to OS, ORT, COPA, and
t-statistics. For COPA, we choose to use the 90th percentile in its definition as in Tibshirani and Hastie
(2007). We generate the expression data from standard normal with n = m = 20. For various values
k, 1 � k � m, which is the number of differentially expressed cancer samples, a constant µ is added for
differentially expressed genes. We simulated 1000 differentially and nondifferentially expressed genes and
calculated the receiver operating characteristic (ROC) curves from them by choosing different thresholds
for gene calls.

Figures 1 and 2 plot the ROC curves for some combinations of k and µ. For µ = 2 and k small, all
5 statistics behave similarly with t-statistics performing the worst. As k increases, t becomes better and
OS and COPA begin to lose power. For µ = 1 and medium to large k, the performance of MOST is only
worse than t and better than other statistics. Smaller k in this case basically leads to ROC curve that is
close to a 45◦ line for all statistics since the signal µ = 1 is too weak in this case, so we do not show these
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Fig. 1. ROC curves estimated based on simulation. The number of normal/cancer sample is n = m = 20. Various
combinations of µ and k’s are chosen. Other uninteresting results where all statistics have close to perfectly good or
bad performances are excluded as explained in the main text.
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Fig. 2. More ROC curves.

results. For µ = 4 and small k, MOST is better than ORT, COPA, and t , and in this situation, only OS
is competitive with MOST. Larger k in this case will produce nearly perfect ROC curves for all statistics,
and thus those results are also omitted. Besides ROC curves, we have also tried examining the possibility
of using (2.9) for estimating the number of differentially expressed samples k but so far have been unable
to get a reasonable estimate out of it.

From the above simulations, we judge that our new estimate MOST is at least as good as other previ-
ously proposed statistics, sometimes much better. Thus, it is a valuable tool for detecting activated genes
in many situations.

As an example of real data application, the data from West and others (2001) is publicly available
from http://data.cgt.duke.edu/west.php. The microarray used in the breast cancer study contains 7129
genes and 49 tumor samples, 25 of which with no positive lymph nodes identified and the other 24 with
positive nodes. Similar to Wu (2007), we take the log transformation of the expressions after normalizing
the data. We apply all the above mentioned statistics to the data. For real data application, we need to use
2-sided test. The modification for MOST required is straightforward. We just use

mik =
∑

1� j�k(yi j − medi x )

median({xi j − medi x }1� j�n, {yi j − mediy}1� j�m)
. (3.1)

http://data.cgt.duke.edu/west.php
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This time with yi j ordered such that yi1 � yi2 � · · · � yim . We also need to normalize mik as in (2.7) and
then mi = min1�k�m mik . This test will detect downward-regulated genes in disease samples. The 2-sided
test will be the maximum of the absolute values of Mi and mi , but the sign is kept. A search of PubMed
returns 908 genes related to breast cancer, and these are mapped to 655 probe sets on the Affymetrix
HuGeneFL microarray used in this experiment. The ranking of these are computed for all the 5 statistics.
The differences in ranking between MOST and other statistics are plotted in Figure 3 as histograms.
Negative values in the histograms show the superiority of the MOST statistics since they imply higher
ranking to these breast cancer related genes given by MOST. The histograms show that for this data, the
performance of MOST is superior to t-statistics (shown by the heavy left tail in the histogram) and similar
to others.

In a second example, we consider a subset of acute lymphoblastic leukemia (ALL) data consisting 79
samples patients with B-cell acute lymphoblastic leukemia, available from the Bioconductor project. The
comparison is between 37 samples with the BCR/ABL fusion gene resulting from a translocation and 42
normal samples. In total, 358 probe sets on the array are annotated with the gene ontology term tyrosine

Fig. 3. Comparison between MOST and other statistics on breast cancer data. The histogram shows the difference in
ranking on 655 probe sets. In these figures, left-skewed histogram implies superiority of MOST.
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Fig. 4. Comparison between MOST and other statistics on ALL data.

kinase activity, which is believed to mediate many of the effects due to BCR/ABL translocation. After
a simple filtering to remove probe sets that are not expressed, 94 of those 358 probe sets remain. The
differences in ranking between MOST and other statistics are shown as histograms in Figure 4. For this
data, t-test and MOST seem to be superior to other methods.

The R implementation of MOST statistics as well as sample code for simulation is available at
http://www.ntu.edu.sg/home/henglian/most.htm.
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