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Abstract

In this paper we first investigate the robustness of the SIMCA method for classifying high-dimensional observations. It turns out that
both stages of the algorithm, the estimation of principal components and the construction of a classification rule, can be highly
disturbed by the presence of outliers. Therefore we propose a robust procedure RSIMCA which is based on a robust Principal
Component Analysis method for high-dimensional data (ROBPCA). Various simulations and real examples reveal the robustness of our

approach.
D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

So far many different classification rules have been
proposed and studied in the literature. In the 1970s, Wold
[1] introduced an interesting classification method labelled
as SIMCA, which stands for Soft Independent Modelling of
Class Analogies. This method is very useful for classifying
high-dimensional observations because it incorporates PCA
for dimension reduction (see, e.g. Ref. [2]). As PCA is
applied to each group separately, SIMCA provides addi-
tional information on the different groups such as the
relevance of the different variables and measures of
separation. In contrast with this approach, one can also
apply PCA once to the full set of observations, and then
continue the analysis by performing a classification rule for
low-dimensional data (e.g. Fisher’s discriminant rule, Bayes
rule, etc.) This method can be very successful and it can be
robustified in a straightforward way by combining a robust
PCA method with a robust classification rule based on
robust covariance matrices, see, e.g. Refs. [3,4]. As in this

case all the groups are merged, the preprocessing step with
PCA is mainly used as an overall dimension reduction
technique. If additionally more information is wanted about
the individual group structures, the SIMCA strategy is
preferred.

In Section 2 we describe the SIMCA method in detail
and point out some weaknesses of the method when
abnormal observations are present in the data. This can for
example easily occur when some measurements are badly
recorded or when an observation is assigned to the wrong
class. Another interesting type of outliers are those samples
which form an unknown cluster or group, and, after
detection, can lead to new knowledge about the population
under study. In Section 3 we derive our robust SIMCA
(RSIMCA) classifier, based on the ROBPCA method [5] for
robust PCA. In our implementation, this robust classifica-
tion method assigns each observation to one group, and it
labels abnormal measurements as outliers. Our RSIMCA
method is thus no longer soft in the sense that it does not
allow a datum to be classified into several groups, but it can
easily be modified to allow this additional feature. A
comparison between SIMCA and RSIMCA is conducted
in Section 4 by means of a simulation study. Section 5
overviews the application of both methods for some real
examples, whereas Section 6 concludes.
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2. The SIMCA method

2.1. Construction of the classification rules

In the SIMCA method the goal is to obtain a
classification rule for a set of m known groups in such a
way that additionally more information about the group
structures is revealed. We will denote the m groups by Xj

where j indicates the class membership, so j =1, 2,. . ., m.
The observations of group Xj are denoted by xi

j for
i =1,. . ., nj with nj the number of observations in this jth
group. Note that we print column vectors in bold. Further
we denote p as the number of variables for each object, so
xi
j=(xi1

j, xi2
j,. . ., xip

j)¶. The dimension p can be very large
(some hundreds or thousands) which is typically the case
for spectra. We will label these sets Xj as training sets
because they will be used to set up the model. The
classification performance will be evaluated on validation
sets Yj (for j =1,. . ., m) which contain new observations of
each group. If validation sets are not available, e.g.
because the sample sizes are too small, we will use
leave-one-out cross-validation on the sets Xj to evaluate
the classification rule. This approach is discussed in detail
in Section 3.

Because the interest of SIMCA not only lies in the
classification itself but also in the properties of each group
separately, PCA is first performed on each group Xj. This is
done to reduce the large dimension p of the original
observations. It provides a matrix of scores Tj and loadings
Pj for each group. The most striking advantage of this
analysis is that each group can be summarized in a different
dimension. We denote the retained number of principal
components by kjNp for group j. This part clearly explains
the origin of the term FIndependent Modelling of Class
Analogies_ in SIMCA.

In the original SIMCA method discussed in Refs. [1,6]
new observations are then classified by means of their
deviations to the different PCA models. We will call this
deviation the orthogonal distance (OD) because it represents
the Euclidean distance of an observation to the PCA
subspace. To define this distance more thoroughly we have
to introduce some more notations. Let y be a new
observation to be classified, so y belongs to a validation
set, and let ŷ(l) represent the projection of this observation
on the PCA model of group l:

ŷy lð Þ ¼ x̄ l þ Pl Pl
! "¶

y% x̄ l
! "

where x̄l is the mean of the training observations in group l.
The OD to group l is then defined as the norm of the
deviation of y from its projection ŷ(l):

OD lð Þ ¼ jjy% ŷy lð Þjj:

To classify this new object one then proceeds by
comparing its deviation (OD(l))2 when it would be assigned
class membership l to a variance of the lth training group,

sl
2. More precisely, for l ranging from 1 to m, an F-test is
performed by looking at (s(l) / sl)

2 [7,8] with:

s lð Þ
# $2

¼
OD lð Þ! "2

p% kl
s2l ¼

~
nl

i¼1
ODl

i

! "2

p% klð Þ nl % kl % 1ð Þ
: ð1Þ

Here ODi
l stands for the orthogonal distance to group l

of the ith observation in the training set Xl. If the
observed F-value is smaller than the critical value
Fp%kl ,ðp% klÞðnl % kl % 1Þ;0.95, the 95% quantile of the F-
distribution with (p%kl, ( p%kl)(nl%kl%1)) degrees of
freedom, the new observation y is said to belong to the lth
group. An observation can thus be classified into many
different groups which clarifies the term FSoft_ in SIMCA.
The opposite can also occur, namely that observation y does
not belong to any group. It is then labelled as an outlier.

Because this approach does not completely exploit the
benefit of applying PCA in each group separately, it was
already suggested in Refs. [1,6] to include another distance
in the classification rule, namely the distance to the
boundary of the disjoints PCA models. For each of the m
groups, a multidimensional box is constructed by taking into
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Fig. 1. (a) The SIMCA approach with boxes; (b) the RSIMCA approach

with ellipsoids.
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account the scores ti
l for i =1, 2,. . ., nl. Here ti

l =(tli1, t
l
i2,. . .,

tlikl)¶ represents the kl-dimensional score of the ith observa-
tion in the training set Xl. The boundary for each set of
scores is defined by looking at the minimal and maximal
value of the scores componentwise:

min
i¼1;...;nl

tlij

# $

% cdlj ; max
i¼1;...;nl

tlij

# $

þ cdlj

%&

: ð2Þ

Here dj
l is the standard deviation of the jth component of

the ti
l:

dlj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nl % 1
~
nl

i¼1
tlij %

1

nl
~
nl

a¼1
tlaj

%& 2
s

:

The parameter c can vary but is usually taken equal to 1.
An example for a simulated three-dimensional data set with
three groups is shown in Fig. 1(a). In each of the three
groups a different number of components is retained. If only

one component is kept, the boundary is just a line segment.
Two components give a quadrilateral and finally for three
components we get a box. In higher dimensions this idea is
expanded to multidimensional boxes.

A new distance BD(l), which stands for FBoundary
Distance_, is then defined as the distance of a new
observation y to the boundary of the lth PCA model. If
the observation falls inside the boundaries, BD(l) = 0.
Finally, assigning y to any of the m classes is again done
by means of an F-test based on a linear combination of
(BD(l))2 and (OD(l))2.

2.2. An example: the forest soil data

We will now investigate how outliers can affect the
outcome of SIMCA. First, we illustrate on a real data set
how outlying cases can affect the PCA model(s). The
forest soil data set [9] contains measurements on 58 soil

-2
0

2
4

6
8

-10
0

(a) (b)

(c) (d)

10
20

30
40

-10

0

10

20

30

40

50

60

MgK

N
a

-2
0

2
4

6
8

-10
0

10
20

30
40

50
-20

0

20

40

60

80

Mg

SIMCA

K

N
a

-2
0

2
4

6
8

-10
0

10
20

30
40

50
-30
-20
-10

0
10
20
30
40
50

Mg

SIMCA

K

N
a

-2
0

2
4

6
8

-10
0

10
20

30
40

-10

0

10

20

30

40

50

60

Mg

RSIMCA

K

N
a

Fig. 2. The boundaries for the forest soil data with k1=2, k2=1 and k3=2. The & represents class 1, the ? represents class 2, and the 0 represents class 3. (a)

The forest soil data; (b) the SIMCA boundaries for the forest soil data; (c) the new SIMCA boundaries for the forest soil data; (d) the RSIMCA boundaries for

the forest soil data.
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pits in the Hubbard Brook Experimental Forest in north-
central New Hampshire of 1983. The soil samples were
analyzed for the exchangeable cations of magnesium,
potassium and sodium. The pit locations can be classified
by the type of the forest (spruce-fir (11 samples), high
elevation hardwood (23 samples) and low elevation hard-
wood (24 samples)). We want to find out if these
measurements can be separated thoroughly according to
the type of forest. Of course, here the dimension p =3 is
very small and no dimension reduction would be required,
but this example is only used as an introductory one as it
offers nice graphical possibilities.

In Fig. 2(a) we have plotted the measurements of the
three groups in a 3D scatter plot. On this figure we can see
three strongly overlapping classes. There are also some
outlying observations in the different groups. For group 1
(represented by a &) and group 3 (represented by a 0) these
abnormal samples are visible on the figure. In class 1, one
observation has a much higher sodium level (57.95 for
observation 7) than the other samples. In the third class there
seem to be outliers in each direction. Also in the second
group there are some unusual samples. Performing PCA on
the three classes separately shows that two components are
sufficient for the first and the third class, whereas one
component suffices for the second group. This yields more
than 90% explanation of variance for all classes.

In Fig. 2(b) we have plotted the corresponding bounda-
ries (2) with c =1.We already spot the pernicious effect of
the outliers on the boundaries of the groups. Especially the
boundaries for the first and third class are affected in size
and direction. A similar effect is visible in Fig. 3(a) when
we retain two principal components in the first group, and
three in the last two groups (more than 99% of the variance
is then explained for all groups). The boxes are enlarged by
the presence of the unusual soil samples.

These disturbances of the boundaries and thus also of the
PCA models are a first effect an outlier can possess on the
SIMCA method. As a consequence also the classification
rule of the F-test is affected. When k1=2, k2=1 and k3=2
the F-test described in (1) assigns soil samples 1–3, 5, 8–
14, 16–23, 25–36, 38–39, 41–42, 45–56 and 58 to all
three groups. Sample 7 is detected as an overall outlier,
whereas all other observations are classified to two types.
Samples 15, 24, 37, 40 and 44 are wrongly classified to
group 1 and to group 3. In class 3 no outliers are identified.
Note that we cannot evaluate the classification rule when
k1=2, k2=3 and k3=3, as depicted in Fig. 3. Because no
dimension reduction is applied to the last two groups, the F-
test becomes undefined with (0,0) degrees of freedom.

This simple example already indicates that the SIMCA
method is not always able to detect outlying values, and if it
does detect an outlier, the output can be completely
disturbed. Hence we do not fully agree with Ref. [6] where
SIMCA is categorized as a level 2 method which means that
it operates at level 1 (classification in either of a number of
predefined classes) with the extra ability of outlier detection.
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3. A robust SIMCA method

3.1. Robust PCA in high dimensions

In order to construct a classification rule that can detect
outliers and that behaves stable when outliers are present in
the data, we will first apply a robust PCA method for high-
dimensional data [5] called ROBPCA. Secondly, we will not
use the boundary distance to construct a classification rule
as this distance is based on the minimal and maximal value
of the scores which is clearly not very robust.

For j=1, 2,. . ., m, the ROBPCA method starts with an
initial dimension reduction by applying classical PCA on the
data of group j. All principal components are retained such
that there is no loss of information. This yields a huge
dimension reduction because nj observations can at most
span an (nj%1)-dimensional subspace. In this lower dimen-
sional subspace one then searches for an optimal kj-dimen-
sional subspace by applying a projection pursuit technique.
More precisely, for an observation xj its outlyingness is
defined as outl(xj)=maxrZB(n ¶xj% tMCD(n ¶xij)) /sMCD(n ¶xij)
where B is a subset of all directions through two data points.
The set xi

j runs over the observations in Xj, and tMCD and
sMCD are the robust univariate MCD location and scale
estimators [10]. The robust PCA subspace is then deter-
mined as the kj-dimensional PCA subspace of the hj
observations with smallest outlyingness. This value hj
represents a lower bound of the number of clean observa-
tions in the jth group and is commonly taken between
approximately 0.5nj and 0.75nj. The choice hj!0.5nj
(respectively, 0.75nj) is selected if at most 50% (respec-
tively, 25%) of outliers are expected in the jth group. When a
smaller amount of outliers is likely, the value hj can be
increased which will lead to more precise estimates. Finally,
the principal components and the center of the data are
estimated in this low dimensional subspace using the multi-
variate MCD estimator of location and scatter [10]. The best
choice for kj is determined by means of a fast robust leave-
one-out cross-validation method [11].

Remark that throughout the ROBPCA algorithm, the
MCD estimator could be replaced with a more efficient
estimator of center and covariance, such as an MM-
estimator [12]. Here, we prefer the MCD estimator for
several reasons. First of all, the MCD method is defined
explicitly and it does not require the choice of tuning
parameters. This makes MCD more accessible for applied
statisticians and chemometricians. Secondly, the FAST-
MCD algorithm is, to the best of our knowledge, the only
algorithm that can handle exact fit situations. This means
that if hj or more observations are lying on a subspace, the
FAST-MCD algorithm is able to find this subspace. Next,
the implementation of MCD is available in Matlab whereas
for MM-estimators we could not find any Matlab code.
Moreover, the ROBPCA subspace is determined by the hj
points with the smallest outlyingness. Applying the MCD
estimator in the next step only affects the eigenvectors and

the eigenvalues, but not the subspace itself. Hence, the
orthogonal distance will not change if another robust
covariance estimator is applied. Finally, we prefer to work
with the MCD estimator as it allows the use of the same hj-
value (and thus the same resistance towards outliers)
throughout the whole algorithm.

Note that for low-dimensional data (n >p), robust PCA
can be obtained by replacing the empirical covariance
matrix of the data by a robust covariance matrix, such as the
MCD-estimator [13]. This is however not an option here, as
we want to focus on high-dimensional data for which
typically p is much larger than n.

3.2. Robust classification rules

ROBPCA is the first step in the RSIMCA approach. We
will apply it on all training sets and use the outcome in the
classification stage. Similarly to SIMCA we could apply an
F-test to obtain a soft classification method. There are
however some problems with this approach. As indicated in
(1), the variance is considered over all orthogonal distances,
so also outlying distances are taken into account. The
method that also uses the boundary distances is already
more appropriate, but still, it uses a coordinate-wise
approach and it depends on the minimal and maximal value
of the scores. We suggest a slightly different procedure to
obtain the classification results which is based on two
popular distances arising from PCA. The first distance is the
OD which is already discussed in Section 2. The second one
is the score distance SD. It is a robust version of the
Mahalanobis distance measured in the PCA subspace. For a
new observation y, the score distance with respect to the lth
group is given by:

SD lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t lð Þð Þ¶L%1t lð Þ
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

kl

a¼1

t
lð Þ
a

# $2

k lð Þ
a

v

u

u

u

t :

Here t(l)= (Pl)¶(y% x̄l)= (t1
(l),t2

(l),. . .,tkl
(l))¶ is the score of y

with respect to the lth group, ka
(l) for a =1, 2,. . ., kl stands

for the largest robust eigenvalues in the lth group, and L is
the diagonal matrix of the eigenvalues. This score distance
has the advantage that it also includes information on the
eigenvalues and it eliminates the choice of an extra
parameter c for the boundary distance.

We will include both the SD and the OD in our
classification rule. However, to ensure that neither one of
these distances dominates the other in magnitude, we first
apply a standardization of both distances by means of two
reference values, or cut-off values. The cut-off value for the
score distance in group l, denoted by clSD, is already well
established because the squared score distances follow
asymptotically a v2-distribution with kl degrees of freedom
if the projected observations are i.i.d. and normally
distributed. Hence we set clSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2kl ;0:975
q

: By introducing
this score distance and its cut-off value, we can redefine the
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boundaries of our samples: the boundary set of each group
is now defined as the set of kl-dimensional vectors in Rkl for
which the score distance equals clSD . This boundary
corresponds to a line segment (kl=1), an ellipse (kl=2),
an ellipsoid (kl =3) or otherwise a multidimensional
ellipsoid (see Fig. 1(b)).

To obtain a cut-off value for the orthogonal distances, we
rely on Ref. [15], where it is shown that a scaled chi-squared
distribution g1v

2
g2

gives a good approximation for the
unknown distribution of the squared orthogonal distances.
This approach is used in Ref. [16] where the two unknown
parameters g1 and g2 are estimated by the method of
moments. A robust cut-off value is determined in Ref. [5]
using the Wilson–Hilferty approximation for a chi-squared
distribution. This implies that the orthogonal distances to the
power 2/3 are approximately normally distributed with mean
l¼ g1g2ð Þ1=3ð1% 2

9g2
Þ and variance r2 ¼ ð2g2=31 Þ=ð9g1=32 Þ.

The estimates for l̂ and r̂2 are obtained by means of the uni-
variateMCDapplied to the orthogonal distances of the training
samples from group l. The cut-off value for the orthogonal
distances then equals clOD=(l̂ + r̂z0.975)

3/2 with z0.975=
U%1 (0.975) the 97.5% quantile of the Gaussian distribution.

Classification of new observations is now done based on
a linear combination of the scaled orthogonal and scaled
score distances. We will thus look at the values OD(l)/clOD
and SD(l)/clSD for each class l. Our first classification rule
(R1) now classifies an observation y to group j if

c
OD lð Þ

clOD

! 

þ 1% cð Þ SD lð Þ

clSD

! 

ðR1Þ

is minimal for l = j. The tuning parameter c Z [0,1] is added
for two reasons. If the user a priori judges that the OD (resp.
the SD) is the most important criterion to build the classifier,
the parameter c can be chosen close to (resp. far away from)
one. Otherwise, c can be selected such that the misclassi-
fication percentage is minimized, or such that for example
the sensitivity or the specificity is maximized. This will
require the evaluation of the classifier for a range of c values
(by means of a test set, or cross-validation), but this hardly
increases the computation time. We also consider a second
classification rule (R2) where observation y is given class
membership j if

c
OD lð Þ

clOD

! 2

þ 1% cð Þ SD lð Þ

clSD

! 2

ðR2Þ

is minimal for l = j. Because we now do not allow multiple
assignments, the proposed RSIMCA is not really soft
anymore. However, it can easily be seen as a soft method
by stating that an observation is classified in more than one
group if the expression in (R1) or (R2) is smaller than 1 for
these classes. We however prefer to work with the one-
assignment-rule because this simplifies the calculation of
the misclassification percentages, and consequently the
choice of c, and it offers an unambiguous final result.

The classification rules (R1) and (R2) also allow to
define an adapted SIMCAmethod, with the OD(l) and SD(l)

based on the classical PCA. For clSD we can again use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2kl ;0:975
q

, whereas for clOD we compute the mean l̂ and the
standard deviation r̂ of the orthogonal distances from group
l and set clOD =(l̂ + r̂z0.975)

3/2. In the following sections we
will always use these modified SIMCA rules. A similar
approach is implemented in the SIMCA function from the
PLS Toolbox [17] in which the cut-off value for the
orthogonal distance is taken as in Ref. [16].

Besides the use of the cut-off values in the classification
rule, they also define a critical region which can be
visualized in a diagnostic plot as introduced and discussed
in Ref. [5] for the ROBPCA method. For each training
group l, this figure plots the (SDi

l,ODi
l) (for i=1,. . ., nl)

together with the above defined cut-off values. The vast
majority of the regular observations falls inside the region
defined by the observations for which SDl'cSD

l
and

ODl'cOD
l

. Moreover, this plot also allows the identifica-
tion of a set of orthogonal outliers (large OD), bad leverage
points (large OD and large SD) and good leverage points
(large SD). More information on these different categories
can be found in Ref. [5]. The distinction between these sets
is made by comparing the two distances of an observation to
the two cut-off values. Observations with distances larger
than these cut-off values are then labelled as outlying values
with respect to the lth group. If a new observation is
outlying with respect to every group, it can be classified as
an overall outlier. The benefit of assigning an observation to
one of the four defined groups, is that, if it is an outlier, one
can interpret more thoroughly the reason for its abnormal
behaviour. Classifying observations in these categories thus
allows for a better understanding and interpretation. See
Ref. [4] for an example on NMR spectra.

Remark that these cut-off values use the 0.975 quantile of
the vkl

2-distribution and of the Gaussian distribution. Even if
there are no outliers, this approach includes a 2.5%
probability of declaring good observations as outliers. This
might be considered as being large, in which case the cut-off
value should be increased. We use these cut-off values in
our Matlab implementation in order to provide an automatic
classifier where no user input during the whole computation
process is requested. Therefore we prefer to work on the
safe side in the spirit of Hampel [14]:

It is much more important not to miss any potential outlier
(which may give rise to interesting discoveries) then to
avoid casting any doubt on ‘‘good’’ observations.

In practice however such an automated procedure is not
recommended. Hence we strongly advise to carefully
investigate the diagnostic displays for each group, and to
study training points with a very high OD or SD (relative to
the other cases) more thoroughly. When they are not
informative about the group to which they are supposed to
belong, they can be considered as severe outliers and
eventually removed from further computations.
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Moreover, this diagnostic plot allows to evaluate whether
the PCA model yields a good approximation of the training
data. If not, the RSIMCA method is likely not to yield very
good results. It could for example occur that the PCA model
is not consistent for one or more groups, because they are
better summarized through a non-linear subspace. Or a non-
coherent structure might show up in the diagnostic display.
This could then point to the existence of one or several
subgroups in the training group, which would require
further investigation.

3.3. An example: the forest soil data

Let us illustrate the diagnostic display to the forest soil
data. For each of the three groups we have constructed the
diagnostic plots as discussed above for k1=2, k2=1 and
k3=2. These are shown in Fig. 4 for RSIMCA. First of all
we see that for all groups, a PCA model seems appropriate.
Next, for each group we see that some observations lie
above the cut-off values. There are some boundary cases
(e.g. point 13 in group 2, point 5 in group 3) and a few good
leverage points with a small OD but larger SD. As we do not
have more information about this data set, we only consider
the observations which greatly exceed the cut-off values as
outliers: observation 7 from group 1, observations 4, 11 and
16 from group 2 and cases 3, 4, 6, 9 and 21 from group 3.

We have already illustrated that the SIMCA boundaries
are attracted by these outliers. If we however look at the
RSIMCA boundaries in Fig. 2(d) and in Fig. 3(c), we
immediately spot a striking difference with the plots from
SIMCA. Outliers have no significant effect on the outcome
of ROBPCA, and the PCA loadings and scores thus remain
interpretable. The boundaries for RSIMCA therefore nicely
surround the regular data points in its group. The SIMCA
boundaries do not share this property as they are enlarged,
shifted or turned towards the outliers. This can also be seen
in the new SIMCA boundaries based on the classical score
and orthogonal distance in Fig. 2(c) and in Fig. 3(b).

3.4. Misclassification percentage

In this section we report how we compute misclassifi-
cation percentages for a given data set. As usual, if a
training set and a validation set are available, the PCA
models are constructed for the training set, whereas the
classification rules are evaluated for the validation set. If any
preprocessing was done on the training set, the same
transformations are applied on the validation set. Then we
need to check whether the validation set has the same
characteristics as the training set. This implies that we
should verify whether the same PCA models, as those
constructed from the training data, are appropriate. This can
be done by looking at the diagnostic plot. On the training
diagnostic display, we can now also plot the (SDi

(l),ODi
(l)) of

the validation data. That is, for each validation point from
group l, we compute its score distance within and its

orthogonal distance to the PCA subspace estimated from the
lth training group. If the lth validation set is a representative
sample from the lth population, these distances should be
comparable with those of the training set. If not, for example
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because many observations exceed the cut-off values, and/or
because some systematic deviations are seen, it should be
questioned whether the validation set is obtained under the
same experimental conditions as the training data.

Next, we eliminate extreme outliers from the validation
set. This is recommended as they can alter the misclassi-
fications unnecessarily. Assume for example that the class
membership of an observation in the validation set is
wrongly recorded, and, although it belongs to the first
group, it is accidentally denoted as a sample from the
second group. It is then very likely that RSIMCAwill detect
this case as outlying to the second group, and on the other
hand it will assign it to the first group according to the
robust classification rule. Thus although the rule gives the
correct answer, it will not correspond with its (incorrect)
membership. Consequently, including this outlying case in
the misclassification percentages would not correctly
represent the behaviour of the classifier.

In this paper we have applied this manual procedure for
every data set under study, as it is also our recommendation
for practical data analysis. However, if an automatic
classification procedure is required and graphical displays
cannot be consulted, we advise to remove all the outliers
from the validation set. It is then the user’s choice which
cut-off values for the SD and OD to consider. The values
that we use in our implementation are the ones introduced in
Section 3.2. They will rather eliminate too many cases,
which might lead to an underestimate of the unknown
probability of misclassification. However, including too
many observations (e.g. all observations) could result in
estimates which are difficult to interpret and which do not
clarify whether misclassifications are due to the incapacity
of the classification method, or rather due to outlying cases
which are not well classified. This problem will be
illustrated in our examples.

We denote by ñv the total number of retained observa-
tions from the validation set, and by ñl

v those that belong to
the lth class. The misclassification percentage MPl in the lth
validation set is then calculated as the number of wrongly
assigned observations of the lth validation set divided by ñl

v.
The overall misclassification percentage is defined as:

MP ¼ ~
m

l¼1
plMPl ð3Þ

with pl a weight for the lth group such that p1+p2+. . .
+pm =1. In this paper we take pl= ñl

v / ñv such that the total
misclassification percentage represents the number of
misclassified validation observations divided by their total
number. Of course the weights pl can be changed according
to the importance of each group or the cost of misclassi-
fication. If, for example, more emphasis needs to be placed
on misclassifying observations in group 1, the weight p1 can
be increased. As we want to compare RSIMCA and
SIMCA, it is important that the two classifiers are evaluated
on exactly the same set of observations. Hence, for SIMCA
we use the same validation sets and the same pl values as for

RSIMCA. As suggested by a referee, we will also discuss
the use of pl =nl

v /nv in the examples with nv the total
number of validation samples.

If a validation set is not available and the given data set is
small, it is recommended not to split the data into a training
set and a validation set. Therefore we first estimate the PCA
models from the full data set, and evaluate the classification
rules by means of leave-one-out cross-validation. Similarly
to the determination of the number of components in PCA
we use a very fast robust cross-validation method as
described in [11]. The idea here is to retain a lot of
information from the ROBPCA method on the complete data
set and to use this extra knowledge when one observation is
left out of the data. This speeds up the computations
drastically because otherwise we have to perform the
ROBPCA method ñ times (with ñ the number of retained
observations in the full data). The misclassification percent-
age is then calculated as in (3) but now with pl= ñl / ñ. Also
here, deciding whether or not a training observation is
outlying or not, can be based on the diagnostic plot.

3.5. An example: the forest soil data

Let us again take a look at the forest soil data. Besides
the attraction of the SIMCA boundaries to the outliers, also
the misclassification percentages are in favor of RSIMCA.
We demonstrate this advantage for some c’s and the case
k1=2, k2=1 and k3=2. Table 1 is obtained by cross-
validation and by applying classification rules (R1) and (R2)
on either all observations (see Fall_), or all retained
observations (see Foutlier-free_) as discussed in Section
3.3. First we see that when c =0 (classification solely based
on SD) very bad results are obtained for both methods as
more than half of the data are then misclassified. If c(0.25,
the misclassifications for RSIMCA decrease significantly,
and they are much smaller than those of SIMCA. The
orthogonal distances thus provide useful information on the
separation between the three groups. We will look more
closely at this effect in the next section and in Section 5
where we consider a more realistic example in higher

Table 1

The misclassification numbers for the forest soil data set based on RSIMCA

and SIMCA

c 0 0.25 0.5 0.75 1

SIMCA (R1) All

outlier-free

39 40 41 39 38

32 33 34 32 32

(R2) All

outlier-free

39 40 40 37 38

32 33 33 30 32

RSIMCA (R1) All

outlier-free

33 32 26 25 25

27 24 17 16 18

(R2) All

outlier-free

33 26 27 25 25

27 18 18 16 18

FAll_ represents the misclassification numbers for the complete data set

(n =58), whereas Foutlier-free_ represents the misclassification numbers for

the retained data (ñ =49).
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dimensions. In all four situations, we see that the mis-
classification numbers for the complete data set are much
larger than those for the retained data. Hence, almost all the
severe outliers are badly classified. This shows again that
the performance of the classification rule can be better
evaluated on outlier-free data. Moreover the SIMCA
classification rules are clearly affected by the outliers and
even incorrectly classify a large number of good observa-
tions. Overall the RSIMCA classifier shows the best
performance.

4. Simulation study

To study our robust classifier more adequately, we
performed the following simulation study. In p =500
dimensions we generated m =3 groups of observations.
The first group has its center around 0p= (0,0,. . .,0)¶Z R

p

and it has three dominant directions, namely in the direction
of the first, third and fifth canonical vector yielding 98%
explanation of the variance. For the second group we have
simulated points around (0, 5, %2, 0p% 3)¶ with two
important directions (first and second canonical vector)
which results in 94% explained variance. Finally for the last
group the center is (0, 0, %2, 0, %2, 0p% 5)¶ with four
important directions (second, third, fourth and fifth canon-
ical vector) such that 95% of the variance is explained. The
sample sizes differ with n1=50, n2=80 and n3=100.

For each training set we generated an outlier-free
validation set with size proportional to the training sizes,
namely nl / 5. For this validation set we calculated the
misclassification percentages as outlined in Section 3 (as no
outliers were generated we considered the whole validation
set, so ñl

v =nl / 5). We repeated this procedure 100 times and
in Table 2 (first half) we report the mean misclassification
values for classification rules (R1) and (R2). The standard
errors are not reported here as they ranged between 0.003
and 0.009, and thus are very low. We see that the results for
both methods and both rules are very comparable. The most
striking result is the high percentage of misclassifications
when c =0 which we also observed in Table 1 for the forest
soil data. It is thus important to include the orthogonal
distances in the classification rule. The lowest misclassifi-
cation results, printed in bold, are found with (R2) and
c =0.2.

In the upper right half of Table 2, we introduced 10% not
concentrated bad leverage points in each group. This means
that we changed the centers of the outliers into (0, 4, %12,
0p% 3)¶ for group 1, 0p for group 2 and (2, 8, %2, 0, %2,
0p% 5)¶ for group 3, whereas the same variance–covariance
matrix as for the regular data points was used. These
Fshifted_ outliers are known to be the most difficult ones to
detect [18]. We see that RSIMCA performs similarly to the
uncontaminated setting, whereas the misclassification per-
centages for SIMCA increase for all values of c. Con-
sequently, the minimal value has changed from 5.59 to 9.85.

In the lower left half of Table 2, we included 10%
orthogonal outliers in each group by changing the center of
these observations in (0, 4, 0p% 2)¶ for group 1, (0, 5, %6,
0p% 3)¶ for group 2 and (4, 0, %2, 0, %2, 0p% 5)¶ for group 3.
The large effect of the orthogonal outliers on SIMCA can be
explained as follows: these contaminated cases cause the
classical PCA subspaces to be lifted towards the outliers.
The way we have generated these orthogonal outliers, makes
the three subspaces to be more overlapping, and conse-
quently to yield a worse separation. The bad leverage points
have the effect of tilting the PCA subspace, which for this
situation, has a smaller impact on the misclassification
results. Other simulation settings (e.g. concentrated bad
leverage points with center (0, 15, %10, 0p% 3)¶ for group 1,
(0, %5, 10, 0p% 3)¶ for group 2 and (10, 5, %10, 0, %2,
0p% 5)¶ for group 3) raised the misclassification percentages
of SIMCA much more and even resulted in 50% misclassi-
fication, whereas RSIMCA always yielded stable results.

In the last setting we constructed one group of outliers
with mean 0p an Ip (identity matrix) as variance–covariance
matrix. Proportional to the sizes of the training set, we
randomly assigned observations from this group to the
training sets. Each of the three groups thus has the same
outlying distribution. The misclassification percentages for
this setting can be found in the lower right half of Table 2.
The results for SIMCA are now much worse than for

Table 2

The misclassification percentages for the simulation study of RSIMCA and

SIMCA for regular observations, bad leverage points, orthogonal outliers,

and outliers with the same outlying distribution

c No contamination Bad leverage points

(R1) (R2) (R1) (R2) (R1) (R2) (R1) (R2)

RSIMCA SIMCA RSIMCA SIMCA

0 51.61 51.61 52.70 52.70 52.85 52.85 59.24 59.24

0.1 15.91 7.43 14.43 6.43 15.61 6.78 27.52 15.46

0.2 8.70 6.09 7.48 5.59 8.17 6.15 17.26 10.83

0.3 6.80 6.17 6.26 6.04 6.39 6.17 12.89 9.85

0.4 6.50 6.61 6.17 6.70 6.41 6.50 11.15 10.09

0.5 6.76 7.57 6.78 7.91 6.89 7.28 10.43 11.48

0.6 7.98 8.48 8.35 9.59 7.50 8.61 11.37 12.85

0.7 9.26 10.78 10.39 12.33 9.15 10.93 13.20 13.98

0.8 12.30 13.20 13.54 14.52 12.20 13.50 14.24 15.17

0.9 14.83 15.17 15.50 16.09 14.50 15.04 16.35 16.63

1 16.17 16.17 16.80 16.80 16.02 16.02 18.04 18.04

c Orthogonal outliers Same outlying distribution

RSIMCA SIMCA RSIMCA SIMCA

0 52.15 52.15 38.28 38.28 50.24 50.24 64.87 64.87

0.1 15.74 7.00 23.54 17.26 17.22 8.13 55.33 41.57

0.2 8.41 6.09 17.22 14.37 9.30 6.76 43.93 35.11

0.3 6.52 6.11 15.09 13.48 7.41 6.72 37.17 30.13

0.4 6.26 6.50 14.83 13.83 7.02 6.76 31.93 25.37

0.5 6.85 7.02 15.91 15.24 7.17 7.22 26.09 21.43

0.6 7.37 7.83 17.85 17.52 7.72 8.00 21.63 19.50

0.7 8.63 10.33 21.85 20.41 8.46 10.07 19.37 18.87

0.8 11.85 13.04 27.74 24.87 11.70 12.74 18.61 18.91

0.9 14.35 14.85 34.80 31.52 14.41 14.85 18.91 19.41

1 15.93 15.93 42.11 42.11 16.02 16.02 19.67 19.67
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RSIMCA. This is caused by the attraction of the classical
principal components for all groups to this single group of
outliers. Therefore the SIMCA classification rule is troubled
by more overlap.

From Table 2 we see that (R1) and (R2) behave very
similarly. We only notice a rather large difference at c =0.1.
For the other cases, there is no strict difference between
these two rules and hence no favorite rule can be picked out,
although the smallest misclassification percentages are
always obtained for (R2). We also note that there is no
clear effect of the tuning parameter. We can only reject the
classification rules with a small c (=0, 0.1) where the
emphasis is solely placed on the score distances. Also
approaches with a large c (=0.8, 0.9, 1), where the
orthogonal distances dominate, are not appropriate here.

When a validation set is not available, an optimal value
for c can be found by cross-validation. In Table 2 we have
underlined those c’s that give the lowest misclassification
percentage based on leave-one-out cross-validation (of the
training set). We see that this automatic rule often selects the
optimal c for the test set (in bold), and otherwise it is very
close to it.

5. Examples

In this section we will illustrate the performance of our
robust classification method on two real examples. In high
dimensions we study the fruit data [3]. The second example
is the low-dimensional wine recognition data [19] available
at the UCI machine learning repository [20].

5.1. The fruit data

The high-dimensional fruit data was previously studied in
Ref. [3]. This data set contains 1096 observations in 256
dimensions which represent spectra measured on three
cultivars of the same fruit named D, M and HA. The sample
sizes are relatively large (n1=490, n2=106 and n3=500) and
therefore analogously as in Ref. [3] we decided to split these
data in a training set that contains 60% of the observations
and we assigned the other samples to the validation set.

In a first step we analyzed the three training groups with
ROBPCA for hj!0.5nj and with CPCA and decided to take
k1=3, k2=5 and k3=4. Next, for each cultivar, we looked at
its diagnostic plot exposing both the training and validation
samples. As explained in Section 3.4, this allows to check
whether extreme outliers should be removed from the
validation set. Only for the third cultivar a peculiar pattern
appeared. For cultivar D and M we therefore rerun
ROBPCA with hj!0.9nj. In Fig. 5(a) for cultivar HA we
first notice that the training and the validation samples
overlap nicely, which illustrates the good random sampling.
Further we can distinguish two main groups. The first one is
situated inside or close to the boundaries, whereas a second
cluster of points has a much larger OD and SD. We have

included a dashed line in Fig. 5(a) to separate both groups.
On the diagnostic display of SIMCA in Fig. 5(b) this second
cluster is less visible because it lies close to the regular
points, and it is more scattered. An automatic outlier rule
would certainly not detect these values.

A better investigation revealed that this second cluster
contains 180 out of the 500 cases, and that it corresponds to
a subgroup of the measurements which were obtained with a
different illumination system. RSIMCA is thus able to
detect this subgroup, and the resulting principal components
are not influenced by these 180 deviating cases.

Hence, to estimate the misclassification percentages, we
did not use the 73 observations out of these 180 which were
assigned to the validation set. Table 3 lists the obtained
misclassification percentages for varying values of c. In bold
we have again highlighted those values of c that give the
smallest misclassification percentage, whereas the optimal c
based on cross-validation on the training set is underlined.
Note that we removed the 107 cases from the training
subgroup to compute the cross-validated misclassification
percentages. For this example the best c for the training data
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Fig. 5. The diagnostic plots for cultivar HA for (a) RSIMCA; (b) SIMCA.

The > represents the training samples, and the & the validation samples.
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(c =0.6, 0.7) and the validation data (c =0.9, 1) for RSIMCA
differ somewhat, but the misclassification percentages are
hardly different (e.g. 5.46% compared to 4.92% for (R1)).

The results for SIMCA are clearly much worse than those
of RSIMCA. To find out more precisely what went wrong
with SIMCA, we investigated the misclassification percen-
tages of each cultivar separately. The result for (R2) and c=0.7
is shown in Table 4. We see that both RSIMCA and SIMCA
are not able to classify verywell the observations from cultivar
M. This could indicate that there is an overlap with another
group. Whereas RSIMCA assigns many of them to the first
cultivar D, SIMCAmoves them to the third cultivar HA. Even
so classifies SIMCA many cases from cultivar D to the third.
This does not really come as a surprise if we reconsider the
diagnostic plots of Fig. 5. We see that the classical PCA
loadings are highly influenced by the outlying group and tries
to accommodate all observations. But as the subgroups of
cultivar HA are distant, this implies that group HA receives a
large weight in the classification procedure of SIMCA.
Consequently, many samples are assigned to this group.

The last row of Table 4 shows how (R)SIMCA treats the
deviating subgroup. RSIMCA assigns the 73 validation
samples to cultivar D, whereas SIMCA classifies them to
cultivar HA. If we would now compute the misclassification
percentages based on all validation samples, we obtain
MP1=0.51%, MP2=34.88%, MP3=38.5%, and overall
MP= 21.18% for RSIMCA, whereas MP1 = 22.45%,
MP2=74.42%, MP3=0%, and overall MP=17.31% for
SIMCA. These numbers give the impression that SIMCA
does a better job, certainly for cultivar HA. But as we have

explained before, this is an artefact of the high impact this
cultivar has on SIMCA.

To conclude our analysis, we finally split up cultivar HA
into his two subgroups, leading to a classification based on
four groups: D, M, HA1 and HA2. The resulting misclassi-
fication percentages for (R2) and c =0.7 are presented in the
cross table in Table 5. Now we did not have to remove any
observation from the validation sets, and we set hj!0.9nj.

We see that the misclassifications of RSIMCA and
SIMCA are comparable, and for D, M, and HA1, they
correspond very well with those obtained by RSIMCA
before the split into the subgroups. Similar results were
obtained with (R1) and other c’s. This illustrates very well
that, contrary to SIMCA, the first RSIMCA analysis already
found the special structure in the data and it made use of it
to build its classification rule.

5.2. The wine recognition data

To conclude, the wine recognition data [19] contain
results on a chemical analysis of 178 Italian wines from
three different cultivars. For each wine 13 measurements are
observed such as the level of alcohol, the level of
magnesium, the color intensity, etc. We first performed
ROBPCAwith hj!0.5nj on the three groups separately and
selected k1=2, k2=3 and k3=4. As no abnormal samples
could be detected we used the complete data set to obtain
the misclassification percentages. These misclassification
percentages based on cross-validation for RSIMCA and
hj!0.9nj and for SIMCA are shown in Table 6. We see that

Table 4

Cross table of the misclassification numbers for the fruit data for (R2) and

c =0.7 (three groups)

RSIMCA SIMCA

Assigned to

D M HA D M HA

D 195 0 1 152 0 44

M 14 28 1 4 11 28

HA 4 0 123 0 0 127

Outliers HA 73 0 0 0 0 73

Table 5

Cross table of the misclassification numbers for the fruit data for (R2) and

c =0.7 (four groups)

RSIMCA SIMCA

Assigned to

D M HA1 HA2 D M HA1 HA2

D 192 0 3 1 193 0 2 1

M 12 27 4 0 17 25 1 0

HA1 0 0 127 0 0 0 127 0

HA2 0 0 0 73 0 0 0 73

Table 3

Misclassification percentages for the fruit data

c RSIMCA SIMCA

(R1) (R2) (R1) (R2)

0 22.13 22.13 32.24 32.24

0.1 18.03 15.30 27.05 25.96

0.2 14.75 12.02 25.68 25.14

0.3 12.02 10.11 24.59 25.41

0.4 10.11 8.47 23.50 25.14

0.5 8.74 6.56 22.40 24.04

0.6 7.65 5.74 20.49 21.86

0.7 5.46 5.46 19.13 20.77

0.8 5.46 5.46 19.13 19.67

0.9 5.19 4.92 20.22 19.94

1 4.92 4.92 20.22 20.22

Table 6

Misclassification percentages for the wine recognition data

c RSIMCA SIMCA

(R1) (R2) (R1) (R2)

0 20.79 20.79 26.97 26.97

0.1 16.29 11.80 21.35 14.04

0.2 11.24 8.43 13.48 8.99

0.3 8.43 6.74 10.11 6.18

0.4 6.18 6.74 6.18 5.06

0.5 6.18 6.74 4.49 3.37

0.6 5.06 5.62 3.93 5.06

0.7 5.06 4.49 6.18 5.62

0.8 7.30 6.74 7.87 7.30

0.9 10.11 10.67 11.80 11.24

1 13.48 13.48 12.92 12.92
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there are some differences, mostly in favor of RSIMCA. The
minimal percentages are slightly in favor of SIMCA,
although they are attained at different values of c. Again
we notice that a classification rule solely based on the score
distances is not very powerful.

6. Conclusions

In this paper we have illustrated the benefit of introduc-
ing a robust PCA method in the SIMCA procedure. Various
examples and a simulation study favor RSIMCA above
SIMCA when it comes to contaminated cases. RSIMCA
additionally offers good outlier detection tools. The method
can thus also be seen as a kind of cleaning technique, after
which more sophisticated classification rules can be applied.

All programs used in this paper are electronically
available. The Matlab m-file rsimca.m and additional m-files
can be downloaded from our web site www.wis.kuleuven.
ac.be/stat/robust.html as part of LIBRA: a MATLAB Library
for Robust Analysis [21].
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