
A Test for Partial Differential Expression
Wessel N. VAN WIERINGEN, Mark A. VAN DE WIEL, and Aad W. VAN DER VAART

Even in a single-tissue type cancer is often a collection of different diseases, each with its own genetic mechanism. Consequently, a gene
may be expressed in some but not all of the tissues in a sample. Differentially expressed genes are commonly detected by methods that
test for a shift in location that ignore the possibility of heterogeneous expression. This article proposes a two-sample test statistic designed
to detect shifts that occur in only a part of the sample (partial shifts). The statistic is based on the mixing proportion in a nonparametric
mixture and minimizes a weighted distance function. The test is shown to be asymptotically distribution free and consistent, and an efficient
permutation-based algorithm for estimating the p value is discussed. A simulation study shows that the test is indeed more powerful than the
two-sample t test and the Cramér–von Mises test for detecting partial shifts and is competitive for whole-sample shifts. The use of the test
is illustrated on real-life cancer datasets, where the test is able to find genes with clear heterogeneous expression associated with reported
subtypes of the cancer.
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1. INTRODUCTION

Knowledge of the human genome and its expression may
greatly enhance our understanding of cancer (Brown and Bot-
stein 1999). Microarrays are devices that can be used to mea-
sure the expression level of many genes simultaneously and
have shown to be a promising means to acquire this knowl-
edge. The reader is referred to Nguyen, Arpat, Wang, and Car-
roll (2002) for an excellent overview of the biological and tech-
nological aspects of microarrays.

In this article we focus on comparative microarray experi-
ments carried out to identify genes that are differentially ex-
pressed between two conditions (e.g., normal tissue vs. cancer-
ous tissue). Examples of such experiments are described, for
example, in Schummer et al. (1999) and LaPointe et al. (2004).
Knowing the differentially expressed genes may help us to un-
derstand the genetic mechanism underlying the disease.

The problem of finding differentially expressed genes is com-
monly restated as a problem of hypothesis testing (cf. Dudoit,
Shaffer, and Boldrick 2003): A gene is said to be differentially
expressed if the null hypothesis that the gene’s expression level
is unaffected by the condition is rejected. This null hypothesis
is tested for each gene on the array. Multiple testing corrections
are used to control the false discovery rate (FDR) or family-
wise error rate (FWER).

Here we are interested in detecting genes that are possibly
expressed in only a part of the cases or expressed at different
levels among the cases. A well-known example is the ErbB2
gene, which is “over-expressed (with respect to normal tissue)
in only 9–30% of ovarian carcinomas” (Pejovic 1995). Standard
tests for differential expression (such as the t test) are designed
to be sensitive to a general shift in location between two groups
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and are less suitable for detecting genes with partial differential
expression. In this article we propose a new test statistic, mo-
tivated by a nonparametric mixture model. This statistic mini-
mizes a weighted distance function.

Our mixture model is on a gene-by-gene basis and plays a
very different role than the mixture models used in earlier ar-
ticles on microarray studies (see, e.g., Broët, Richardson, and
Radvanyi 2002; Efron, Tibshirani, Storey, and Tusher 2001).
In previous studies the mixture components reflect the differen-
tially expressed and nonexpressed genes, and the mixture model
is used to calculate the (posterior) probability of a gene being
differentially expressed. In our case the gene-specific mixture
proportions are metrics for differential expression.

We derive the asymptotic distribution of the test statistic
in Appendix A. This shows that for certain weight functions
the test is approximately distribution free. We obtain an exact
null distribution of the test statistic by permutation resampling,
where we discuss a technique to speed up computation of the p
values. The asymptotic results also show that the permutation
test is consistent.

The power of our test is investigated in an extensive simula-
tion study. We compare the proposed test with the two-sample
permutation t test and the Cramér–von Mises test. We conclude
that the proposed test is more powerful than those two tests
when the alternative is a partial shift, and it is competitive for
whole-sample shifts. Moreover, as opposed to the t test, it is
robust against outliers and heavy tails.

Finally, we apply the technique to the datasets of Schummer
et al. (1999) and LaPointe et al. (2004). The proposed test finds
genes whose expression in the sample is clearly bimodal, indi-
cating a partial shift, which are not found by the t test. It is also
more powerful in detecting these genes than the Cramér–von
Mises test.

2. MODEL

Consider a comparative microarray experiment involving a
sample of n, say, normal tissues and m, say, cancerous tis-
sues. Associated with each tissue is a gene expression profile
Xi = (Xi1, . . . ,Xip), where Xij is a random variable represent-
ing the expression level of gene j, j = 1, . . . ,p, of tissue i,
i = 1, . . . ,N = n + m. Together the expression profiles of all
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tissues make up X, the (N × p) expression matrix, with its real-
ization x, the outcome of the experiment.

We are interested in the situation that the expression in can-
cerous tissues may be heterogeneous, with only part of the sam-
ple being differentially expressed relative to expression in the
normal tissues. This part may be different for different genes.
The (population) proportion of cancerous tissues that is differ-
entially expressed is modeled by a parameter τj. In Section 4
we extend our approach to the situation that normal tissues may
also have heterogeneous expression.

Let the expression levels of gene j in normal tissue be distrib-
uted according to a density fj(xij). We assume that the expres-
sion levels in the cancerous tissue follow a mixture density:

hj(xij) = (1 − τj)fj(xij) + τjgj(xij). (1)

Here gj(xij) is an unspecified density modeling the expression
level of gene j if it is differentially expressed. In the above we
modeled the marginal densities; hence, we base the test statis-
tic, related to τj, only on data for gene j. We discuss the effect
of dependency between genes later on. The cumulative distri-
bution functions of hj, fj, and gj are denoted by capital letters:
Hj, Fj, and Gj.

3. THE TEST STATISTIC

Model (1) will serve as the alternative in testing the differ-
ential expression of gene j. It is different from the null model
fj(xij) only if both τj > 0 and gj �= fj. To motivate our test sta-
tistic, we first assume that fj and gj are known and consider
potential candidates for the value of τj. Initially, we assume
positive shifts, that is, Gj(x) ≤ Fj(x). As a population para-
meter that reflects the degree of partial differential expression
we use the value θj ∈ [0,1] that minimizes a weighted distance
δ((1 − θj)Fj(x),Hj(x);wj(x)) between (1 − θj)Fj(x) and Hj, for
suitably chosen nonnegative weights wj(x). This population pa-
rameter is inspired by the theory on the estimation of mixing
proportions using minimum distance estimators (Titterington,
Smith, and Makov 1985). It is based on shrinking to the left
mixture component of Hj(x) (see Fig. 1).

For the L2 distance, a natural choice for a distance, the pop-
ulation parameter θj is given by

arg min
θ∈[0,1]

∫ ∞

−∞
(
(1 − θ)Fj(x) − Hj(x)

)2
wj(x)dx

= 1 −
∫ ∞
−∞ Fj(x)Hj(x)wj(x)dx∫ ∞

−∞ F2
j (x)wj(x)dx

. (2)

As a comparison we consider two robust distance measures, the
L1 distance and the Hellinger distance. The Hellinger distance
has been shown to be quite robust and efficient when used in
the estimation of finite mixture models (see, e.g., Cutler and
Cordero-Braña 1996). For an overview of distances δ(·, ·), in-
cluding other choices, we refer to Titterington et al. (1985).

In the absence of (partial) differential expression, we have
Hj(x) = Fj(x); clearly, the population parameter equals 0. Given
positive partial differential expression, that is, (1) with τj > 0
and Gj(x) ≤ Fj(x), the population parameter, using the L2 dis-
tance, equals

τj − τj

∫ ∞
−∞ Fj(x)Gj(x)wj(x)dx∫ ∞

−∞ F2
j (x)wj(x)dx

. (3)

Figure 1. Cumulative distributions of Fj ( ) and Hj ( ). The
dotted vertical line separates the supports of fj and gj.

We would like to choose the weights wj(x) such that this ex-
pression is large in this case. In the ideal situation where the
supports of fj and gj are disjoint, we could choose the weight
wj(x) equal to 0 if x is the support of gj, and positive if x is the
support of fj, in which case the second term in (3) is 0, and the
population parameter is maximized to τj. We refer to Figure 1
for an illustration of restricting the weights to the support of fj.

Of course, in practice, we do not know Fj and Gj or their
supports. We study several feasible weights that are nonzero
on the support of fj and almost zero on the support of gj: the
empirical distribution corresponding to fj(x), denoted w1,j(x);
a kernel density estimator (normal kernel with a normal opti-
mal smoothing parameter; see Bowman and Azzalini 1997) of
fj(x), denoted w2,j; w3,j(x) = Fj(x)(1 − Fj(x)), whose support
contains that of fj(x); and w4,j(x) = (1 − Fj(x))/(1 − Hj(x)),
motivated by the fact that w4,j(xij) ∝ P(Zij = 0|Xij > xij) if
Zij is a binary variable indicating whether cancerous tissue i
is differentially expressed on gene j. The supplementary ma-
terial (http://www.amstat.org/publications/jasa/supplemental_
materials) shows the behavior of the population parameter
(with every combination of proposed distances and weights)
under various degrees of partial and gradual differential expres-
sion.

The population parameter θj becomes a test statistic, denoted
�j, by replacing Fj(x) and Hj(x) by the empirical cumulative
distribution functions Fm(x) and Hn(x) of expression on the
jth gene in the normal and cancer group, respectively. We also
use these estimates to obtain empirical versions of the weights
w3,j(x) and w4,j(x). [We have chosen to set w4,j(x) equal to 0
if 1 − Hn(x) equals 0 and 1 − Fm(x) does not.] For the L2 and
Hellinger distances the minimum of (2) can be calculated ex-
plicitly (for L2 see Sec. 4). For the test statistics involving the
L1 distance, the distance measure in (2) is evaluated on a fine
grid of values for �j ∈ [0,1]. The value of �j that yields the
minimum distance is the test statistic for gene j. If multiple �j’s
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minimize the distance measure, the average over these �j’s is
taken as the test statistic.

4. ONE– AND TWO–SIDED, SYMMETRIC AND
ASYMMETRIC TEST STATISTICS

In this section we generalize the test statistic to deal with
positive as well as negative shifts, two-sided alternatives, and
the case that both samples are heterogeneous.

For the L2 distance and weight w1 the test statistic resulting
from minimization problem (2) is

�(Fm,Hn) = 1 − min

{
1,

∑
x∈S(dFm) Fm(x)Hn(x)∑
x∈S(dFm) Fm(x)Fm(x)

}
, (4)

where S(dFm) denotes the support of the empirical density
dFm.

This is the one-sided statistic designed for detecting positive
partial shifts [Gj(x) ≤ Fj(x)] in model (1). Negative shifts can
be detected by replacing Fm and Hn by 1 − Fm and 1 − Hn,
respectively. The corresponding two-sided statistic is

�2(Fm,Hn) = max{�(Fm,Hn),�(1 − Fm,1 − Hn)}. (5)

This statistic is designed to detect both under- and overexpres-
sion.

So far we have concentrated on the asymmetric case, with
one supposedly homogeneous “normal” group and one possi-
bly heterogeneous “cancer” group. In the symmetric case, for
example, with two distinct cancer groups, one wishes to detect
partial expression in either of the groups. This can be accom-
modated by swapping the roles of f and h in model (1) and also
in the statistic (4). This leads to the statistic:

�s
2(Fm,Hn) = max{�2(Fm,Hn),�2(Hn,Fm)}. (6)

5. A TEST FOR PARTIAL
DIFFERENTIAL EXPRESSION

The test statistic �j is used to decide on the partial differen-
tial expression of gene j. We implement the test as a permuta-
tion test, determining the null distribution of �j (conditional on
the data) by permutation resampling. To this end the columns
of the gene expression matrix are permuted, thus preserving the
dependency structure between the genes. For each permutation
the test statistic �j is calculated, resulting in �1

j , . . . ,�
P
j , where

P is the number of permutations. The (unadjusted) p value cor-
responding to gene j is given by

{#�|�j < ��
j for � = 1, . . . ,P}/P,

the proportion of the permutation null distribution that exceeds
the observed value of the test statistic. The resulting test, which
we will call the PDE test, is asymptotically distribution free and
consistent, as is shown in Appendices A and B, respectively.

6. EFFICIENT p VALUE CALCULATION

A multiplicity correction is necessary to take account of the
fact that we perform the test on all genes. Proper adjustment
of the p values requires that the null distributions, which may
be different for different genes, are sufficiently precise, partic-
ularly in the tails. For our permutation procedure this means
that the number of permutations needs to be huge, so that suf-
ficiently small p values can be reached (say, .001 or smaller).

Table 1. Noise distributions used in the simulation

Noise distribution

1 N(0,1)

2 Double exponential
3 t5
4 (1 − τ ) N(0,1) + τ N(0,3)

5 (1 − τ ) N(0,1) + τ N(0,10)

8 (1 − τ ) double exponential + τ N(0,10)

7 (1 − τ ) t5 + τ N(0,10)

8 Cauchy

NOTE: The mixing proportion is set at τ = 1/40.

This has serious practical consequences for the computing time,
which runs into hours because of the large numbers of genes
(∼10,000) and permutations.

To reduce the computing time, we found the following pro-
cedure to be useful. First, we assume that genes with a mar-
ginal unadjusted p value larger than .01 will not be called sig-
nificant after the multiple testing correction, although it is not
determined a priori what effect the BH (Benjamini–Hochberg)
multiple testing correction will have on the marginal p values.
Given that the majority of the genes are probably not differen-
tially expressed, we observe after a relatively small number of
permutations (say 100) that most estimated marginal p values
will highly exceed .01. The idea is to exclude those noninter-
esting genes from further calculations.

To make this more rigorous, we decide upon a cutoff for the
estimated marginal p value after P permutations, denoted p̂j,P

for gene j. By the formula for proportions in binomial models,
the approximate left 99.9% confidence bound can be written as

Lj,P = p̂j,P − z.001 ×
√

p̂j,P(1 − p̂j,P)

P
,

where z.001 = 3.09 is the .001 upper quantile of the standard
normal distribution. As it is very unlikely that the true p value
will be smaller than .01 when Lj,P > .01, we exclude such genes
from further permutations.

The procedure may be repeated for various values of P,
which may lower the confidence level (of the entire procedure)
somewhat. We found that, depending on the number of truly
significant genes, use of this bounding rule speeds up computa-
tions between 5 and 50 times. Note that if the assumption were
violated, one would notice this after the BH correction: If the
largest adjusted p value is still smaller than the specified FDR
cutoff (say .05), it is likely that more genes need to be included.
In that (unlikely) case, one may simply increase the marginal
unadjusted p value cutoff to, for example, .05, and repeat the
procedure.

7. SIMULATION

In this section we compare the tests proposed in Section 5
to the Cramér–von Mises and the permutation t tests, two other
commonly used methods for the detection of differentially ex-
pressed genes. All methods are applied to artificial datasets,
which cover a wide range of situations: various degrees of
differential expression (datasets 1 and 2 in Table 2), depen-
dence between genes with a resultant correlation coefficient of
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Table 2. Description of the datasets

Differentially Number of Differentially Number of
Noise expressed signal Signal Noise expressed signal Signal

Dataset distribution genes samples size Dataset distribution genes samples size

1 1 1–50 20 3 17 5 1–50 20 3
2 1 1–50 20 .06–3 18 3 1–50 20 3
3∗ 1 1–50 20 3 19 3 1–50 10 .06–3
4∗ 1 1–50 20 .06–3 20 7 1–50 20 3
5 4 1–50 20 3 51–100 10 .12–6
6 5 1–50 20 3 21 2 1–50 10 3
7 4 1–50 20 .06–3 22 8 1–5 ±20 3
8 5 1–50 20 .06–3 6–10 ±19 3
9 2 1–50 20 3 11–15 ±18 3

10 8 1–50 20 3 · · · – · · ·
11 1 1–50 10 3 96–100 ±1 3
12 1 1–50 10 .12–6 23 4 1–50 20 3
13 1 1–50 20 3 51–100 10 3

51–100 10 3 24 5 1–5 ±20 3
14 1 1–50 20 .06–3 6–10 ±19 3

51–100 10 .12–6 11–15 ±18 3
15 1 1–5 ±20 3 · · · – · · ·

6–10 ±19 3 96–100 ±1 3
11–15 ±18 3 101–150 20 3
· · · – · · · 25 6 1–5 ±20 3
96–100 ±1 3 6–10 ±19 3

16 1 1–5 ±20 3 11–15 ±20 3
6–10 ±19 3 · · · – · · ·

11–15 ±18 3 96–100 ±1 3
· · · – · · · 3 101–150 20 3
96–100 ±1 3

NOTE: Each dataset consists of 20 normal and 20 cancerous tissue samples and 1,000 genes. The coding for the noise distribution is given in Table 1. Datasets 3 and 4 have a random chip
effect added: A vector of 40 N(0, .25) random variables is added to every gene. The next column specifies which genes are differentially expressed. In the “Number of signal samples”
column the number of samples with differential expression is given. In the “Signal size” column the size of the signal is given. If a signal range is specified the signal linearly increases
with the number of the differentially expressed gene.

.1 (datasets 3 and 4 in Table 2), presence of outliers (datasets 5–
8 in Table 2), heavy-tailed distribution for expression (datasets
9 and 10 in Table 2), partial differential expression (datasets
11 and 12 in Table 2), and combinations of the aforementioned
(datasets 13–25 in Table 2).

The design of the simulation study is as follows. Expression
data (in accordance with the descriptions in Table 2) are simu-
lated. Each dataset consists of 40 samples (20 for each group)
and 1,000 genes. The group labels are permuted 5,000 times
(cf. Klebanov, Gordon, Xiao, Land, and Yakovlev 2006, for a
motivation of the number of permutations). All proposed tests
(all distances with all combinations of weights), the two-sample
Cramér-von Mises test (as given in Xiao, Gordon, and Yakovlev
2006), and the t test are applied to each gene in all 5,000 permu-
tations. The 5,000 permutation values of the test statistic form
the marginal null distribution for the gene. The observed statis-
tic for each gene is compared to its marginal null distribution,
and the corresponding p value is estimated by the proportion of
the null distribution that exceeds the test statistic.

For ease of comparison the rejection level α for the BH-
adjusted p values is set such that the FDR is controlled at 1/6.
Here the FDR is defined as the number of rejected true null
hypotheses divided by the number of rejected null hypothe-
ses. A gene is considered “truly” differentially expressed if it
has a nonzero mean difference between the two groups; for ex-

ample, in dataset 9 there are 50 “truly” expressed genes. This
approach facilitates the comparison of the power of each test:
One only has to compare the false negative rate (FNR). For
each aforementioned dataset this is repeated 10 times. The av-
erage α, FDR, and FNR are calculated for each test statistic and
dataset.

We first summarize the simulation results of the proposed
PDE tests (given in the supplementary material). The test based
on the L2 distance in general outperforms (when combined with
the same weight) tests based on the L1 and Hellinger distances.
The performances of the latter are comparable, except that the
Hellinger distance is preferred for heavy-tailed distributions.
Tests with any distance and weight w1 outperform tests with
the same distance but another weight. Weight w4 is the worst
choice of all weights (in particular, when combined with L1).
This is probably due to the fact that it is unstable if H(x) is
close to 1. Finally, tests with weight w2 perform better than
tests with weight w3, especially in the presence of heavy tails.
In short, the test with the L2 distance and weight w1 performs
best. This is convenient, because of the simplicity of w1, the an-
alytical form of the test statistic (Sec. 4), and the tractability of
the asymptotic distribution (App. A).

Next, we compare simulation results of the proposed PDE
test (using L2 and w1) with the Cramér–von Mises and two-
sample t tests. Results are displayed in Table 3. In datasets 1–
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Table 3. Simulation results

PDE CvM with L2 t

Dataset # DEG α F̂DR F̂NR s.e. F̂NR α F̂DR F̂NR s.e. F̂NR α F̂DR F̂NR s.e. F̂NR

1 50 .17 .15 .00 .000 .19 .15 .00 .000 .19 .15 .00 .000
2 50 .22 .15 .29 .042 .23 .15 .29 .044 .20 .15 .30 .043
3 50 .20 .15 .00 .000 .19 .15 .00 .000 .19 .15 .00 .000
4 50 .25 .15 .30 .049 .24 .15 .31 .059 .21 .15 .28 .050
5 50 .19 .15 .00 .000 .16 .15 .00 .000 .15 .15 .00 .000

6 50 .20 .15 .00 .000 .18 .15 .00 .000 .20 .15 .06 .030
7 50 .27 .15 .30 .059 .26 .15 .29 .053 .22 .15 .31 .031
8 50 .22 .15 .29 .033 .24 .14 .29 .027 .27 .15 .42 .065
9 50 .18 .15 .00 .063 .15 .15 .00 .061 .17 .15 .00 .040

10 50 .19 .15 .13 .044 .21 .15 .06 .032 .40 .15 .73 .056

11 50 .20 .15 .23 .084 .27 .14 .45 .098 .21 .15 .27 .092
12 50 .27 .15 .43 .067 .30 .14 .54 .082 .27 .15 .39 .041
13 100 .21 .16 .05 .019 .20 .16 .12 .036 .20 .16 .06 .032
14 100 .23 .16 .29 .024 .29 .16 .31 .033 .23 .16 .28 .037
15 100 .27 .16 .35 .026 .26 .16 .40 .023 .24 .16 .34 .034

16 150 .25 .16 .21 .016 .26 .16 .24 .020 .21 .16 .21 .027
17 100 .21 .15 .13 .033 .24 .16 .16 .031 .22 .16 .22 .038
18 100 .22 .14 .12 .064 .22 .15 .17 .050 .23 .14 .13 .054
19 150 .23 .16 .25 .029 .23 .16 .26 .025 .26 .16 .31 .025
20 50 .22 .16 .32 .038 .24 .16 .46 .023 .21 .16 .36 .018

21 50 .27 .15 .46 .105 .31 .14 .61 .118 .28 .15 .49 .117
22 100 .33 .16 .59 .032 .33 .16 .58 .035 .61 .14 .85 .043
23 100 .20 .16 .07 .029 .20 .16 .14 .040 .23 .16 .09 .033
24 150 .22 .16 .21 .015 .22 .16 .24 .018 .25 .16 .28 .038
25 150 .23 .16 .26 .019 .25 .16 .27 .016 .25 .16 .33 .027

NOTE: The “Dataset” column is the number of the corresponding dataset, the “# DEG” column is the number of “truly” differentially expressed genes, the “α” column is the actual
rejection criterion used to control the FDR, the “F̂DR” column is the estimated FDR corresponding to rejection criterion α, the “F̂NR” column is the estimated false negative rate
corresponding to rejection criterion α, and the “s.e. F̂NR” column is the standard error of the estimated false negative rate.

4 with differential expression (with and without dependence)
there is hardly any difference between the three methods. The
datasets containing outliers (datasets 5–8) show that the PDE
test is rather robust, as opposed to the t test, which performs
somewhat worse than the other two. The t test also suffers most
from the presence of heavy tails (datasets 9 and 10), whereas
the PDE test is slightly outperformed by the Cramér–von Mises
test. The proposed PDE test performs best for partial differen-
tial expression (datasets 11 and 12). Moreover, this test per-
forms at least equally well in the remaining datasets (datasets
13–25), which are combinations of special cases.

For datasets 11, 12, 19, and 22, all containing some form of
partial differential expression, we have also plotted the unad-
justed p values of the differentially expressed genes (i.e., those
with nonzero mean), against their order (Fig. 2). The perfor-
mance of the Cramér–von Mises test falls behind in datasets
11 and 12; the t test performs less well in datasets 19 and 22.
The PDE test performs best in all four cases, on a par with the
Cramér–von Mises test in datasets 19 and 22 and with the t test
in datasets 11 and 12.

We conclude that the proposed test with the L2 distance and
the empirical density weight w1 performs particularly well in
the situations that it was designed for: partial differential ex-
pression. Moreover, it is equally (if not more) powerful than
traditional methods like the Cramér–von Mises and t tests for
many other standard situations.

8. REAL–LIFE DATASETS

8.1 Ovarian Data

The ovarian cancer data (Schummer et al. 1999) consist of 53
tissue samples, of which 23 are normal and 30 are ovarian can-
cer tissues. The expression of 1,536 genes has been measured
in each tissue using microarrays. Schummer et al. (1999) inves-
tigated differential expression between normal and cancerous
ovarian tissue. Expression in the normal ovarian tissue serves
as a reference. Because cancer of a particular tissue type is of-
ten a collection of different diseases, each with its own genetic
mechanism, it is likely that the group of ovarian cancers is het-
erogeneous. This legitimates our interest in partial differential
expression in the ovarian cancers: A part of the group may be
shifted with respect to the normal while the rest remains un-
changed. Although the group of normal ovarian tissues may be
heterogeneous as well, this heterogeneity sheds no light on the
genetic mechanism under study (that of ovarian cancer). Rather,
one could even consider this heterogeneity as unwanted sam-
pling variation. Therefore, we are not interested in partial dif-
ferential expression in the normal group and use the two-sided
asymmetric version of our statistic, that is, formula (5).

The number of permutations is set at 5,000 Table 4 gives the
number of differentially expressed genes found by each method
at several rejection levels. We observe that the PDE test detects
more genes than its classical counterparts, in particular the t
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Figure 2. Ordered raw p values of the differentially expressed genes for the PDE test with weights w1 ( ), the L2 Cramér–von Mises test
( ), and the t test ( ), for four datasets with partial differential expression.

test. Those genes for which the PDE test conflicts with either
the Cramér–von Mises test or the t test are of special interest.
Here we focus on a comparison with the Cramér–von Mises test
at FDR ≤ .01. A cross-tabulation of differentially and nondif-
ferentially expressed genes according to the PDE and Cramér–
von Mises tests is given in Table 5.

We produced violin plots for the 28 + 21 = 49 “conflicting
genes” (see the supplementary material). A specific feature of
those plots for genes detected by the PDE test and not detected
by the Cramér–von Mises test is the concentration of expres-
sion values of the normal class within either the left or right
half of the expression values of the cancer class. In quite a num-
ber of cases bimodality in the cancer class is clearly observed.
Such genes may further distinguish groups of individuals within
the class of ovarian cancer tissues. For genes detected by the
Cramér–von Mises test and not detected by the PDE test, dis-
persion within each of the two classes is often comparable, and
the mean shift between the two classes is quite small. Moreover,
the Cramér–von Mises test detects some genes displaying (pos-

Table 4. Number of differentially expressed genes in the ovarian
cancer dataset for the �, Cramér–von Mises, and t tests

Method FDR # DEG FDR # DEG

� .05 673 .01 501
CvM.L2 .05 667 .01 494
t .05 638 .01 480

sibly spurious) heterogeneity in the normal group when com-
pared to the cancer group. Such genes may be of minor interest
to biologists. A similar story holds for the comparison of the
“conflicting genes” of the PDE and t tests.

We have studied the well-known oncogene ErbB2, known to
be upregulated in 9–30% of the ovarian carcinomas (Pejovic
1995) and the new, promising biomarker for ovarian cancers
mesothelin (e.g., Bast 2003; Hassan et al. 2006; Hellstrom et al.
2006) in more detail, investigating which test is most powerful
in detecting the (partial) differential expression of these genes.
To this end smaller versions of the original dataset were created
by resampling and reanalyzed. We chose a set of percentages
(40%,45%, . . . ,95%, and 100%) and randomly selected (with-
out replacement) for each percentage a corresponding number
of samples from the normal and cancer groups, leaving the ra-
tio between the group sample sizes unchanged. For the newly
created dataset we calculated the marginal p value for the three

Table 5. Number of differentially and nondifferentially expressed
genes in the ovarian cancer dataset for the � and Cramér–von Mises

tests, with FDR controlled at .01

CvM.L2

� # NDEG # DEG

# NDEG 1,014 21
# DEG 28 473
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Figure 3. Violin plots of the well-known oncogene ErbB2 and the new, promising ovarian cancer biomarker mesothelin, with their median
(and 75% quantile: thinner line) p values for reduced sample sizes. The expression data of ErbB2 contain two outliers in the cancer group. For
the violin plot they were shrunk and plotted as “X.” ( , PDE; , Cramér–von Mises; , t.)

tests of the selected genes using 5,000 permutations. We re-
peated this procedure 25 times. The resulting median marginal
p values are plotted against the percentage (next to their violin
plots) in Figure 3. The PDE and t tests perform equally well,
with the Cramér–von Mises test a little behind in power.

8.2 Prostate Data

The prostate cancer data (LaPointe et al. 2004) consist of 103
tissue samples, 41 of which are normal and 62 of which are can-
cerous. The expression of 5,153 genes was measured for each
tissue.

We summarize the results of our analysis. The PDE test de-
tects 2,775 and 2,690 genes at FDR ≤ .05 and FDR ≤ .01, re-
spectively. Again, this is more than the Cramér–von Mises test
(2,659 and 2,557) and the test t (2,578 and 2,478). Genes de-
tected by the PDE test and not by one of the other two tests
often exhibit the same characteristics as the conflicting genes in
the ovarian cancer dataset (see the supplementary material).

We use the prostate cancer dataset of Dhanasekaran et al.
(2001) as a validation dataset for genes found by the PDE test
and not by the Cramér–von Mises test and the t test in the
LaPointe et al. (2004) prostate cancer dataset. Violin plots of
two genes, IGF-1R and RPN2, present on both arrays, are plot-
ted in Figure 4. In the LaPointe et al. (2004) data set a small
group of the cancer samples exhibits up-regulated expression
for IGF-1R, which is confirmed in the cancer samples of the
Dhanasekaran et al. (2001) dataset. Overexpression of the IGF-
1R gene is associated with tumor growth in prostate cancer

(Hellawell et al. 2002), and silencing IGF-1R can make prostate
cancer cells more sensitive to radiotherapy and certain kinds
of chemotherapy (Rochester, Riedemann, Hellawell, Brewster,
and Macaulay 2005). For the other gene, RPN2, there is some
form of bimodality present in the cancer group of the LaPointe
et al. (2004) dataset, a phenomenon that is more pronounced in
the Dhanasekaran et al. (2001) dataset. RPN2 has already been
found to be differentially expressed in prostate cancer (Cov-
ell, Wallqvist, Rabow, and Thanki 2003). RPN2 has also been
found to be overexpressed in other cancers (e.g., colorectal can-
cer; Hufton et al. 1999) and reported to be involved in apoptosis,
programmed cell death (Sun et al. 2004). This makes a promis-
ing candidate oncogene for prostate cancer found by the PDE
test.

One of the objectives of LaPointe et al. (2004) was to find
biologically and clinically relevant gene expression tumor sub-
types. Three subtypes are found by means of hierarchical clus-
tering and principal component analysis. Having chosen the
subtypes, the expression heat map is used to visually select
genes associated with the three subtypes, which may function
as “surrogate markers” for the prostate cancer subtypes.

We investigated which test is most powerful in detecting the
claimed partial differential expression in these genes. In the
“regular” analysis, comparing the normal and cancer group and
not exploiting the subtype information, most of these genes
were found by all three tests at FDR = .01, with the PDE test
finding more of the genes reported by LaPointe et al. (2004)
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Figure 4. Violin plots of the IGF-1R and RPN2 genes in the datasets of LaPointe et al. (2004) and Dhanasekaran et al. (2001).

than the Cramér–von Mises and t tests. Heterogeneity within
the cancer group is thus detected without knowledge of the sub-
types. Notably, some genes were not found by any of the three
tests. This is due to the fact that the genes (e.g., MUC1) have
been selected primarily for their discriminative power between
the tumor subtypes and not for their discriminative power with
the normal samples, whose expression distribution is some-
times rather diffuse, making it difficult to detect the partial dif-
ferential expression.

In addition, we studied the RPL13 and NRP1 genes, associ-
ated with tumor subtype III and subtypes II and III (as defined
by LaPointe et al. 2004), respectively, in a similar fashion as
ErbB2 and mesothelin for the ovarian cancer dataset. The re-
sults are given in Figure 5. The PDE test performs best for both
genes, outperforming both the t test and the Cramér–von Mises
test.

We also assessed the association of the sets of (partial) dif-
ferentially expressed genes found by each method and the clin-
ically relevant subgroups as reported by LaPointe et al. (2004)
by means of the global test of Goeman, Van de Geer, De Kort,
and Van Houwelingen (2004). The set of genes found by the
PDE test has a stronger association with these subgroups than
the set of genes found by the other two methods. This remains
true if we limit ourselves to the “conflicting” genes. This is vi-
sually confirmed by the heat maps of the PDE and Cramér–von
Mises “conflicting” genes as given in the supplementary mater-
ial. They show that the genes found by the PDE test and not by
the Cramér–von Mises test relate very well with the LaPointe et
al. (2004) subgroups, even though LaPointe et al. (2004) used
all genes to construct these subgroups.

More details of the analyses can be found in the supplemen-
tary material.

9. CONCLUSION AND DISCUSSION

We developed a test that is specifically designed to detect par-
tial shifts of one population versus another. The test is applica-
ble to a wide range of data, because it is based on a nonparamet-
ric mixture model, thereby avoiding parametric assumptions.
We show that the statistic is asymptotically distribution free and
the corresponding permutation procedure consistent. We supply
efficient procedures for the calculation of the marginal p values.

We discuss a possible extension of our test, which incorpo-
rates ideas to use the multiplicity of genes more effectively in
testing procedures. Several authors have proposed using shrink-
age to borrow information across genes. This may be beneficial,
especially when group sizes are small (Allison, Cui, Page, and
Sabripour 2006). In general, we do not recommend using the
PDE test for very small group sizes (say ≤ 7). The test still has
power comparable to the permutation t test and Cramér–von
Mises test for whole-group shifts, but its ability to reliably de-
tect heterogeneity in the cancer group is lost. Shrinkage may be
useful but cannot be applied to the variance parameters, as is
commonly done (e.g., Tusher, Tibshirani, and Chu 2001), be-
cause this would require unwanted parameterization of Fj and
Hj. In the case with few normal tissues and relatively many can-
cerous tissues (which is not uncommon in practice), the follow-
ing approach deserves further study. We may assume without
loss of generality that Fj is located at 0, because the � statis-
tic is invariant to common shifts in Fj and Hj. Then, shifting
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Figure 5. Violin plots of two “surrogate markers” for subgroups found by LaPointe et al. (2004), with their median (and 75% quantile: )
p values for reduced sample sizes. ( , PDE; , Cramér–von Mises; , t.)

all values for each gene such that the median equals 0, we use
instead of the edf Fj in (2) the estimate:

F̃j = λFj + (1 − λ)F̂,

where F̂ is the overall empirical distribution function (also with
location 0), constructed from all genes. Among other tech-
niques, cross-validation could be used to find an optimal λ.

To conclude, this new asymptotically distribution-free test is
shown to share robustness properties with nonparametric tests
such as the Cramér–von Mises two-sample test while remaining
competitively powerful with respect to the two-sample permu-
tation t test for simple whole-sample shifts. Moreover, it de-
viates from such conventional tests in two ways. First, it has
specific power for detecting partial shifts, an alternative that is
very biologically relevant in gene expression studies. Second,
the asymmetric version of the test is able to deal with asym-
metric interest in two populations (e.g., normal and cancerous
tissues). Therefore, we believe it to be a strong competitor for
conventional tests in gene expression studies.

APPENDIX A: ASYMPTOTIC DISTRIBUTION

Here the asymptotic distribution of the � statistic under the null
hypothesis H0 :� = 0 is derived. The asymptotic distribution is not to
be used for the calculation of the p value in the test for partial differ-
ential expression, as the approximation of the tail probabilities by the
asymptotic distribution is often crude. In the derivation of the asymp-
totic distribution, we use the theory developed in van der Vaart (1998).

We limit ourselves to the L2 distance with weights w1(x), the empirical
density.

Let X1, . . . ,Xm be iid random variables with distribution function
F and empirical distribution function Fm. Similarly, Y1, . . . ,Yn are iid
random variables with Hτ = (1 − τ )F + τG and Hn the (empirical)
distribution function. We assume that the X1, . . . ,Xm and Y1, . . . ,Yn
are independent and write the test statistic � as

� = 1 −
∫

Fm(x)Hn(x)dFm∫
F2

m(x)dFm
= 1 − ψ0(Fm,Hn). (A.1)

We study the asymptotic behavior by means of the delta method. To
this end, we need the derivative of ψ0. We shall consider the following
more general functional, which allows for a general weight function:

ψ(F,H,W) =
∫

FH dW∫
F2 dW

.

Theorem 3.9.17 of van der Vaart and Wellner (1996) implies that ψ

is Hadamard differentiable on the subset of D[−∞,∞]3 consisting of
(F,H,W) with

∫ |dW| ≤ 2 and
∫

F2 dW > 0.
The derivative of ψ is, in view of the chain rule (van der Vaart 1998,

thm. 20.9), and the derivative of the Wilcoxon functional (van der Vaart
1998, lemma 20.10), then given by

ψ ′
F,H,W (f ,h,w)

= 1

(
∫

F2 dW)2

(∫
F2 dW

(∫
(fH + Fh)dW +

∫
FH dw

)

−
∫

FH dW

(∫
2fF dW +

∫
F2 dw

))
.
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Here
∫

FH dW and
∫

F2 dW are defined by the partial integration for-
mula. Note that, if F = H, we have

ψ ′
F,F,W (f ,g,h) =

∫
(h − f )F dW∫

F2 dW
, (A.2)

which is independent of w, the perturbation of W . It follows that the
type of estimator of W has no influence on the asymptotic distribution
of the test statistic, as long as it converges sufficiently fast to a limiting
function W .

Because both
√

m(Fm − F) and
√

n(Hn − F) converge in distri-
bution in D[−∞,∞], by Donsker’s theorem (van der Vaart 1998,
thm. 19.3), for any estimators WN such that

√
N(WN − W) converges

in distribution in the same space, the delta method (van der Vaart 1998,
thm. 20.8) then gives, under the null hypothesis,

√
N� = √

N
(
ψ(Fm,Hn,WN) − ψ(F,F,W)

)

≈ √
N

∫
(Hn − F) − (Fm − F)F dW∫

F2 dW

= 1∫
F2(u)dW(u)

∫ (
1√

1 − λ
G

Y
n − 1√

λ
G

X
m

)
F dW, (A.3)

where m/N → λ, n/N → 1 − λ, λ ∈ (0,1), G
X
m = √

n(FX
m − F), and

G
Y
n = √

n(Hn − F). As G
X
n and G

Y
m are independent, this converges in

distribution to

1∫
F2 dW

∫
1√

λ(1 − λ)
GFF dW, (A.4)

where GF is a Brownian bridge corresponding to F. Finally, for
F = H = W a continuous distribution, the variable (A.4) is equal in
distribution to

N

(
0,

∫ ∫
(F(x ∧ y) − F(x)F(y))F(x)F(y)dF(x)dF(y)

λ(1 − λ)(
∫

F2(x)dF(x))2

)
(A.5)

if F is continuous. As this equals N(0,1/(5λ(1 − λ))), the asymptotic
distribution of the test statistic with Euclidean distance and weights
equal to the empirical density is (asymptotically) distribution free.

APPENDIX B: CONSISTENCY

Here we show the consistency of the proposed test that employs the
marginal permutational null distribution. First, the asymptotic distrib-
ution of the permutated samples is derived. Then we show that asymp-
totically the marginal permutational null distribution equals the null
distribution of �.

Let Z1, . . . ,Zm+n be the pooled sample from X1, . . . ,Xm,Y1, . . . ,

Yn with empirical distribution Km+n = m
m+n Fm + n

m+n Hn, and
R1, . . . ,Rm+n a random permutation of 1, . . . ,m + n. Define

F
P
m = 1

m

m∑
i=1

1{ZRi≤x} and H
P
n = 1

n

m+n∑
i=m+1

1{ZRi≤x}.

From theorem 3.7.1 of van der Vaart and Wellner (1996), it follows
that, given X1, . . . ,Xm,Y1, . . . ,Yn,

√
m(FP

m − Km+n) and
√

n(HP
n −

Km+n) converge in distribution to
√

1 − λGK and
√

λGK , respec-
tively. Here λ = limm,n→∞ m

m+n , and GK is a tight Brownian bridge
process corresponding to the measure K = λF + (1 − λ)Hτ , which is
F under the null hypothesis.

To show that the asymptotic distribution of the estimate using the
permutations equals that of �, we define

�P = 1 −
∫

F
P
m(x)HP

n (x)dF
P
m∫

(FP
m)2(x)dFP

m
.

Under the null hypothesis (at � = 0 when F = H = W) we have, in
analogy to (A.3),√

N(�P − �)

≈ ψ ′
F,F,F

(√
N(FP

m − Fm),
√

N(HP
n − Hn),

√
N(FP

m − Fm)
)

=
∫ √

N(HP
n − Hn) − √

N(FP
m − Fm)F dF∫

F2 dF

=
∫ √

N(HP
n − F

P
m)F dF∫

F2 dF
− �.

As n
m+n (FP

m − H
P
n ) = F

P
m − Km+n and the latter process converges

conditionally in distribution as noted earlier in this section, it follows
that

√
N�P converges conditionally in distribution to

1∫
F2 dF

∫
GFF√
λ(1 − λ)

dF.

Hence,
√

n�P converges in distribution to the asymptotic distribution
of � as given in (A.5).

[Received February 2006. Revised August 2007.]
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