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ABSTRACT

We address the problem of using expression data and prior

biological knowledge to identify differentially expressed pathways

or groups of genes. Following an idea of Ideker et al. (2002),

we construct a gene interaction network and search for high-scoring

subnetworks. We make several improvements in terms of scoring

functions and algorithms, resulting in higher speed and accuracy

and easier biological interpretation. We also assign significance

levels to our results, adjusted for multiple testing. Our methods are

succesfully applied to three human microarray data sets, related to

cancer and the immune system, retrieving several known and

potential pathways. The method, denoted by the acronym GXNA

(Gene eXpression Network Analysis) is implemented in software

that is publicly available and can be used on virtually any microarray

data set.

Contact: serban@stat.stanford.edu

Supplementary information: The source code and executable for

the software, as well as certain supplemental materials, can be

downloaded from http://stat.stanford.edu/�serban/gxna.

1 INTRODUCTION

A central problem in biology is the identification of genes or

pathways involved in diseases and other biological processes.

The development of microarray technology (Schena et al.,

1995) and other high-throughput techniques has enabled

massively parallel approaches to this problem. In a typical

experiment, two or more phenotypes are compared, with

several replicates used for each phenotype. Each replicate

measures expression data for a large number of genes.
Standard analysis starts with filtering and normalizing the

data, followed by the computation of test statistics for each

gene, comparing expression levels in different phenotypes.

Various techniques (Dudoit et al., 2002) can be used to account

for the large number of genes being tested. Finally, genes are

sorted in increasing order of their adjusted p-values, and the

most significant genes are used to generate biological hypoth-

eses and/or subjected to experimental validation. For a survey,

see, for example, Slonim (2002).

The power of this strategy is limited by the fact that it

analyzes genes one-at-a-time. Real genes function in concert

rather than alone, their products interact with each other and

with DNA and there has been a lot of interest in methods that

analyze groups of genes. One of the earliest approaches has

been hierarchical clustering. This method produces useful

visualizations, but it lacks a sound statistical basis. It is also

entirely driven by experimental data, not using any prior

biological knowledge about the genes of interest.

Several other methods were developed, from visualization

tools such as GenMAPP (Dahlquist et al., 2002) to algorithms

such as GO (Gene Ontology) analysis; see Curtis et al. (2005)

for a survey. A useful way to classify them is according to the

way they represent prior knowledge:

(1) The Gene Ontology (The Gene Ontology Consortium,

2000) is a database of biological terms structured as a

directed acyclic graph. A typical analysis seeks GO terms

that contain a large number of differentially expressed

genes. Pros include speed, simplicity and the ability to

assign p-values. However, this analysis ignores a lot of

information (all the top genes are assigned equal weight,

regardless of their scores) and often outputs very general

GO terms that are not very useful.

(2) Another method starts with a predefined list of groups

of genes, such as known pathways. This is used in the

GSEA algorithm (Subramanian et al., 2005) and also in

Tian et al. (2005). Every such group is assigned a score

that is essentially the average of the test statistics of its

member genes; groups with high scores are more likely to

be differentially expressed. p-values can be obtained by

permutation methods.

(3) Yet another method uses a simple but powerful idea of

Ideker et al. (2002); it has also been used in Rajagopalan

and Agarwal (2005), Sohler et al. (2004) and Cabusora

et al. (2004). Rather than using a list of known pathways,

prior knowledge is represented as an interaction network.

The nodes of the graph correspond to genes; there is an

edge between two nodes if their genes interact. Various

types of interactions may be considered, such as protein-

to-protein, protein-to-DNA or co-expression. A group of

related genes corresponds to a connected subgraph of the*To whom correspondence should be addressed.
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interaction graph. Each subgraph is assigned a score

(typically the sum of the scores of its component genes),

and a search algorithm is used to find subgraphs with

high scores.

The interaction network is a more precise way to represent

information than lists of genes or pathways, as it describes

which genes are closely connected within a given pathway.

Hence, it has the potential to detect more subtle signals, such as

local disturbances within known pathways, as well as within

pathways that have not yet been described. This comes at the

price of increased complexity, making it more difficult to design

fast algorithms and compute significance levels.

We essentially follow the approach (3), but also integrating

some elements of (2). We make several improvements in

terms of design, scoring and algorithm that address the

problems mentioned above. These are described in detail

in the Methods section; we briefly emphasize the most

important ones here:

� We focus on finding small networks, which are easier to

interpret and validate.

� We use a fast algorithm that allows us to compute p-values,

adjusted for multiple testing using the FWER (familywise

error rate) method.

� While most previous work on interaction networks was

done on simple organisms such as yeast and bacteria,

we succesfully apply our method on human data.

2 METHODS

2.1 Data

2.1.1 Expression data We test the algorithm on three data sets:

two are new, while one was previously published.

Lymphocyte data. This data set was generated as part of a study on

the role of the immune system in cancer Critchley-Thorne et al.,

(2006b). Blood samples were collected from melanoma and healthy

patients; there were 26 healthy and 30 melanoma phenotypes.

Lymphocytes were sorted according to their type into B, CD4 T,

CD8 T and NK (natural killer) cells. In order to increase power,

the various types were pooled together (see the discussion in

Section 2.5.3). Gene expression data was obtained using 56

Agilent Human 1A version 2 microarrays. After removing saturated

genes, there were 20 901 genes left.

Regulatory T-cell data. Another experiment Critchley-Thorne et al.,

(2006a) in the same study compared the expression profiles of

regulatory CD4 T-cells in healthy controls and melanoma patients.

The same microarray platform and protocols were used. Due to the

difficulty in isolating large amounts of regulatory T-cells, there were

only four healthy and four melanoma phenotypes.

Serum data. The third data set was generated by Chang et al. (2004)

and is publicly available in the SMD database. The authors studied

similarities between the biology of tumor growth and wound recovery.

To characterize wound response, they compared the expression profiles

of 50 fibroblast cultures in the presence and absence of serum.

We selected this data set because of its relevance to the study of the

immune system in cancer.

All three data sets were processed using the R packages biocon-

ductor (Gentleman et al., 2004) and limma (Smyth and Speed, 2003).

M-values were computed by a vsn-transform (Huber et al., 2002)

and normalization between arrays, and t-statistics were computed

based on the normalized M-values. We use these as inputs to our

analysis.

2.1.2 Gene interaction data Interaction data was downloaded

from two public databases: EntrezGene (December 2005) and 33

human pathways in KEGG (March 2006). The data was represented as

an undirected graph where each node is a gene and two nodes are

connected by an edge if their genes interact. Loops (nodes connected to

themselves) were eliminated. This results in a graph with 7180 nodes

and 27 082 edges (Fig. 1). The highest degree is 180 (gene TP53).

The most common degree is 1 (genes interacting with only one other

gene); there are 1869 such nodes.

2.2 Filtering

To compare the single-gene and network-based approaches, we only

look at genes with at least one interaction. To reduce the number

of false positives, we select for multiple testing only the genes that show

enough variability across arrays (typically we use a threshold of 0.5 for

the standard deviation of the M-value).

2.3 Scoring functions

Given a gene or a set of genes, we need to compute a score that

measures to what extent it is differentially expressed. We discuss several

possible choices and their pros and cons.

2.3.1 Scores for a single gene Consider first a single gene.

The most popular scoring function is the t statistic:

Ti ¼ ð�i1 � �i0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i1=n1 þ �2

i0=n0

q
ð1Þ

where the mean and standard deviation �i1, �i1 are for gene i and

the case phenotype, and �i0, �i0 are for gene i and the control

phenotype.

Several alternatives exist. For simplicity, we focus on the t statistic,

though most of our methods remain valid if we replace it with any

reasonable competitor. For example, t can be converted into a z-score

using the Student and normal distributions. This is not required

(the p-values we derive do not assume normality) but it makes it easier

to compare single gene statistics across different experiments. For large

samples, the Student distribution is close to normal, so the effect of the

transform is likely to be small.

2.3.2 Scores based on averaging test statistics Now consider a

set S ¼ fg1, . . . , gkg of k genes. A natural way to assign it a score is to

average the scores of its individual genes, leading to the scoring function

used in Tian et al. (2005):

f1ðS Þ ¼
1

k

Xk
i¼1

Tgi ð2Þ

We refer to this class of score functions as �T. Often, pathways

contain both upregulated and downregulated genes; as pointed out

in Ideker et al. (2002), this can be captured by taking absolute values of

the test statistic, possibly at the cost of creating more false positives:

f2ðS Þ ¼
1

k

Xk
i¼1

jTgi j ð3Þ

Either way, the distribution of the score depends on the set S (e.g. on

its size), so ideally it should be normalized before it is used to compare

different sets. Tian et al. (2005) propose a nonparametric normalization

method: permutations of the phenotypes are used to estimate the null

distribution of the score, and the score is adjusted by essentially
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replacing it with its quantile. The advantage of this method is that

it is nonparametric. Its main drawback is that estimates of the null

distribution are reliable only if enough permutations are used,

which may not be possible if the number of phenotypes is small

[see the discussion of the minP algorithm in Dudoit et al. (2002)].

It is also more computationally intensive. We implement a variant of

this idea called maxTscaled, discussed below in Section 2.5.2.

The alternative is to make some kind of parametric assumption.

For example, Ideker et al. (2002) normalize all sets of size k by

comparing with a single reference distribution, computed by sampling

from random sets of k genes. Ignoring the small effect due to sampling

without replacement, this amounts to using

f3ðS Þ ¼
1ffiffiffi
k

p
Xk
i¼1

jTgi j � k�

 !
ð4Þ

where � is the mean of jTj over all genes. The implicit assumptions here

are that (1) the normalization need only depend on the size of the set,

and (2) individual gene scores are independent. The latter assumption in

particular is not realistic; it would be better to normalize by sampling

among connected sets of k genes, leading to

f4ðS Þ ¼
1

�k

Xk
i¼1

jTgi j � �k

 !
ð5Þ

where �k and �k are the mean and standard deviation score for random

connected sets of k genes. Here ‘random’ need not mean ‘uniformly

random’; ideally the sampling should be similar in spirit to the one

used in the search algorithm. Also, �k need not equal k� (some nodes

may be sampled more than others), and �k need not be proportional toffiffiffi
k

p
; one would expect it to scale like k� for some exponent 1=25�51,

where 1/2 would correspond to independence and 1 to full dependence.

This leads to

f5ðS Þ ¼
1

k�

Xk
i¼1

jTgi j � k�

 !
ð6Þ

2.3.3 Scores based on averaging gene expression Scores

based on single-gene test statistics ignore most of the correlation

structure among genes. The alternative is to first sum the

expression levels for the genes in the group S within each microarray,

and then take the test statistic. We denote this class of score functions

by T�.

Let Xij be the expression level (e.g. normalized M value) for gene i on

array j. First we compute the group expression:

Sj ¼
Xk
i¼1

Xgi j ð7Þ
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Fig. 1. A subset of the gene interaction network.
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and then compute the score of the group S as the t statistic of those

values:

f6ðS Þ ¼ ð�i1 � �i0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
i1=n1 þ �2

i0=n0

q
ð8Þ

where the mean and standard deviation �i1, �i1 are for the set {Sj} where

j is a case, and �i0, �i0 are for {Sj} where j is a control.

To allow for both up- and downregulated genes in the same pathway,

we can include signs in the group expression formula:

Sj ¼
Xk
i¼1

�iXgi j ð9Þ

where �i is �1 if gene i is underexpressed in cases (its t statistic

is negative) and þ1 otherwise. As noted before, this yields a

more sensitive scoring function, but may also produce more false

positives.

Unlike �T, this method takes into account probe correlations

across arrays. It is also less likely to require normalization: taking

the t statistic at the last step adjusts for differences in group means

and variances. On the downside, it is computationally slower. It also

works best when the genes in the group have variances of the same

order of magnitude, an assumption that does not always hold. This

last problem can be avoided by rescaling gene scores to equalize their

variances.

We discuss the performance of various score functions in the results

section.

2.4 Group selection and search algorithms

Given a scoring function, we need to find groups of interacting genes

with high scores. There are two possible approaches: go through a

limited list of pre-defined groups and select the ones with high scores,

or search for high-scoring sets among all possible sets subject to some

structural constraints (e.g. being connected).

2.4.1 Using pre-defined groups One option is to extract

pathways or groups of related genes from databases such as KEGG

and score each of them. This approach is dependent on the quality of

the database, but has been applied succesfully in Tian et al. (2005).

However, many pathways extracted this way contain many genes, so it

is unlikely to detect changes that only affect a small part of a pathway.

It will also miss pathways that are not in the database.

To address these problems, we look at the local neighborhood of

nodes in the gene interaction network. This is useful in situations where

a gene appears to be differentially expressed, but its test statistic is not

significant. Because of the multiple testing adjustments, this occurs

quite frequently in microarray data (for example, a t-statistic of 3 is

often not significant). However, if both a gene and the genes it interacts

with have relatively high test statistics, this is a good indication that the

effect is real.

To make this formal, given a node x and a positive integer r,

we consider the ball B(x, r) centered at x with radius r, which is the set

of all nodes that are connected to x by a path with at most r edges.

For example, Bðx, 0Þ is just x; Bðx, 1Þ consists of x and its immediate

neighbors; Bðx, 2Þ consists of x, its immediate neighbors and their

neighbors; and so on.

We set r to some small value (for example, r¼ 1), compute the score

of B(x, r) for all genes x in the network and sort them according to these

scores. This can be seen as a generalization of standard microarray

analysis (and in fact the two are the same for r¼ 0), using the

interaction graph to smooth gene expression values. It is fast and simple

to implement. Some overlap is to be expected between the top genes

found this way and the ones found by traditional techniques, but it does

have the potential to discover new interesting genes. However, it will

not perform well for high degree nodes (genes with many interactions)

when only a few of the neighbors have high scores. This problem is

addressed by adaptive search algorithms.

2.4.2 Using the subgraph search algorithms
Selection of target groups. Given the gene interaction network,

we want to find differentially expressed pathways or groups of related

genes. We need to determine what kind of objects to search for, and the

simplest approach is to look for sets of interacting genes, hence for

connected subgraphs of the interaction graph. This is the approach we

have primarily followed, and in this article the terms ‘pathway’,

‘network’ and ‘subgraph’ are mostly used interchangeably.

From the biological standpoint, a pathway is much more than just a

set of interacting genes. Graph searches can easily yield connected

subgraphs that do not form a pathway, so this simple definition may

yield to overfitting. To control this problem, we compute objective,

permutation-based significance levels (Section 2.5). These are important

to have in any multiple testing context, but particularly so when

searching a large sample space.

Ideally our target networks should model as closely as possible the

structure of real pathways, and in future work we plan to include

information such as pathway motifs and gene interaction type and

direction. Among the methods discussed so far, using balls is most

likely too coarse, while allowing any connected subgraph is likely too

loose. We add a third option, where the adapted search algorithm only

searches for chains (each gene being added must interact with the last

gene that was added). This attempts to capture the structure of a

sequence of genes within a pathway that successively activate one

another. We discuss the performance of various methods in the results

section.

Search algorithms. Since the problem of finding the maximal

subgraph of a generic graph is NP-hard (Ideker et al. 2002), various

approximate algorithms have been proposed. Ideker et al. (2002) use

simulated annealing, however, this is slow and tends to produce large

subgraphs that are difficult to interpret. Rajagopalan and Agarwal

(2005) offer several improvements, but these are based on heuristics that

may not be optimal and require estimation of additional parameters.

We are primarily interested in small networks, so we use a different

approach, where we start with a seed vertex and gradually expand

around it. After k steps, we will have constructed a connected subgraph

Gk with k nodes. Let Nk be the set of all nodes that are outside Gk but

have at least one neighbor on Gk. We update Gk by choosing a vertex in

Nk and attaching it to Gk.

The choice can be done in various ways. One natural way is to use a

greedy algorithm: pick a vertex such that the new graph has maximal

score. Variants of this are used in Sohler et al. (2004) and Breitling et al.

(2004). It is fast, but reduces the number of subgraphs searched and

may get stuck in local maxima.

An alternative is to use a randomized algorithm: pick a random

vertex, with higher probabilities assigned to vertices that yield high

scores. This is similar in spirit to Metropolis/Markov Chain Monte

Carlo algorithms and avoids some of the problems of the greedy search.

However, it is slower, which puts it at a disadvantage when computing

resampling-based p-values. We found that, in practice, greedy search

works reasonably well, so we decided to use it for its speed and

simplicity.

There are two other ingredients to the algorithm: starting and

stopping rules. A priori any node can be used as a root (starting node).

This may lead to overlapping networks, but the multiple testing

adjustment methods (Section 2.5.1) can in principle adjust for that.

If we desire to reduce overlapping, we can use filters (for example,

require that all roots have a certain degree) or require that roots be

relatively far from each other in the graph distance. Both options are

implemented in our software.
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We can stop the search either when reaching a certain size (fixed-size

search; we tried sizes of 5, 10 and 20) or when adding any extra node

decreases the score of the current subgraph (flexible-size search).

The former is simpler, at the cost of an artificial constraint, and less

sensitive to normalization (all graphs have the same size, so their scores

are easier to compare). The latter is more natural, but depends on the

scoring function being used.

2.5 Computing significance levels

We would like to assign p-values to the graphs identified by the search

algorithms. Clearly, adjustment for multiple testing is required:

searching a large network will yield some high scoring subgraphs by

mere chance, even if they have no biological significance.

The two standard measures in multiple testing problems are FWER

(the family-wise error rate) and FDR (false discovery rate). FWER is

more conservative, thus selecting fewer hypotheses as statistically

significant; indeed, the GSEA algorithm (Subramanian et al., 2005)

switched from FWER to FDR because of difficulties in getting any

significant genes in some experiments. However, FWER provides much

better protection against false positives. Our goal is to obtain results

that were at least partially normative, rather than merely exploratory.

Hence, we choose to control FWER.

2.5.1 Permutations Since our algorithm uses root nodes, the

nonparametric techniques developed for standard microarray analysis

(Dudoit et al., 2002) can be applied. In the two-phenotype case

(n0 controls and n1 cases), the indices are permuted, thus relabeling

some controls as cases and viceversa. The analysis (scoring and graph

searching starting from each node) is repeated for each permutation.

If enough permutations are available, this gives a reasonable estimate

for the null distribution of the subgraph scores, and allows us to

compute adjusted p-values that control the FWER.

Rajagopalan and Agarwal (2005) propose using permutations of the

genes instead of the phenotypes. However, as discussed in Tian et al.

(2005), this tests a different null hypothesis: whether genes are different,

not whether phenotypes are different. While easier to implement,

the p-values it produces are not relevant to our main question (Are the

subgraphs we find truly differentially expressed among phenotypes?).

We note that the assumption of subset pivotality (Dudoit et al.,

2002), which guarantees strong control of the FWER, is not completely

correct in our setting, as different subnetworks may overlap. However,

since our search method is essentially local and produces small graphs,

deviations from subset pivotality are likely to be smaller than for

methods [such as in Tian et al. (2005) or GSEA] that involve large sets

of genes.

2.5.2 maxT vs. minP Dudoit et al. (2002) discuss two methods

for computing FWER, both implemented in the R package biocon-

ductor. The maxT algorithm assumes that the null distribution is the

same for all objects (in our case, for the scores of graphs obtained from

different root genes). The minP algorithm makes no such assumption,

and essentially replaces the null test statistics with their quantiles. While

in theory minP seems superior, research shows that it may need a large

number of permutations (up to 1 000 000) to obtain good estimates of

the null, and that maxT often performs better for fewer permutations.

Our goal was to have a fast algorithm, so we decided to use fewer

permutations. We implement two algorithms: the standard maxT, and a

version called maxTscaled, which adjusts each t-statistics by subtracting

its null mean and dividing by its null standard deviation; this is

essentially a parametric (and faster) version of minP. Since we

normalize group scores to reduce dependency on group size, it is

realistic to assume that the null distributions do not vary too much and

hence maxT can have adequate performance.

Unless specified otherwise, the p-values in the results section are

obtained using N¼ 1000 permutations.

2.5.3 Choice of permutations Depending on experiment design,

uniform random permutations may not capture the null hypothesis.

The lymphocyte data is one example: to gain power, we pool data

for several kinds of cells (B, CD4, CD8, NK). Thus, in addition to the

main phenotype (healthy or melanoma), there is a ‘ghost’ phenotype

(cell type). The null hypothesis asserts that healthy and melanoma are

similar; it does not require that B and CD4 be similar, and in fact we

know they are not. Hence it is desirable to use permutations that

preserve cell type; we call them ‘invariant’ permutations. We implement

this option and use it to analyze the lymphocyte data; the significance

levels are better than the ones obtained using uniform random

permutations.

3 RESULTS

The value of a new method can be judged by asking two
questions: Does it tell us anything new? Does it tell us anything

useful? For each of our three data sets, we run our algorithm
and compare our results with ones obtained using standard

single-gene analysis. Our method is validated if we obtain (1)
statistically significant genes and pathways that (2) are

biologically relevant and (3) are not obtained by other methods.
The ultimate proof of relevance is of course biological

confirmation, and in some cases it is possible to check that our

method retrieves known pathways. When this cannot be done,
then we require statistical significance (low adjusted p-values)

and also check gene annotations for connections with the
biological problem at hand. The latter is inherently biased (it is

easier to make up stories after seeing the results) but still
helpful.

The networks described in this section are obtained as
follows. For each of the three data sets, we run the algorithm

twice, once looking for balls centered at each gene
(Section 2.4.1) and once performing an adapted graph search
(Section 2.4.2). For each set of results, we report the adjusted

p-values for the top-most-significant networks and select the
ones with the most interesting annotations. We leave out

several networks that are statistically significant, but whose
annotation is missing.

We conclude the section with a comparison of various
parameter values, scoring functions and search methods.

3.1 Lymphocyte data

In a single-gene analysis, we obtain seven significant genes
(FWER, p50:05). Several top genes are downregulated and

associated with the Jak/Stat signaling pathway, suggesting its
disruption may be a cause or effect of tumor development.

See Critchley-Thorne et al. (2006b) for a more detailed
discussion. Network-based analysis retrieves this result, and

more.
Using balls of radius 1 only yields four significant genes,

three of which are new: TNFRSF1B, CXCL9 and CXCL11.
These genes are also common in the top subgraphs in the
adapted search algorithm. Adapted search (fixed search depth

10) yields in fact 99 subgraphs with p50:05, but many overlap.
One of the top-scoring networks is represented in Figure 2.

It includes STAT1, but also the chemokine ligands CXCL9,
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CXCL10 and CXCL11, which bind to the chemokine receptor

CXCR3. The ligands have high scores (jtj42:5) but are not

large enough to be significant as single genes after adjusting for

multiple testing. As a group, however, they are are significant;

they strongly suggest that a chemokine pathway is down-

regulated in melanoma patients.

Looking more closely at TNFRSF1B (tumor necrosis factor

receptor superfamily, member 1B) also elucidates an interesting

pathway that is altered in melanoma lymphocytes versus

healthy. TNFRSF1B associates with TRAF1 (t ¼ 1:77),
which belongs to the TNF receptor-associated factor family

that interact with and transduce signals for members of the

TNF receptor superfamily. TRAF1 binds to TRAF2, which

contains a C terminal homology domain that enables associa-

tion with the cytoplasmic domain of TNF receptors. TRAF1

thereby indirectly interacts with TNF receptors. Of the

eleven TNFRSFx genes that interact with TRAF1, nine are

overexpressed in lymphocytes from melanoma patients, and

four have t42. TNF is a pleiotropic cytokine involved in

biological processes such as cell proliferation, differentiation

and apoptosis. Alterations in these processes in lymphocytes

may be part of the mechanism of immune dysfunction in

cancer.
This TNF receptor-signaling network is unusual because

most of its genes are overexpressed in melanoma lymphocytes,

while most genes identified by standard single-gene techniques

are underexpressed in melanoma.

3.2 Regulatory T-cell data

The analysis of this data set is more challenging, due to

the small number of arrays (four healthy, four melanoma).

The number of available permutations is small, and significant

p-values are difficult to obtain. In a standard single-gene

analysis, the lowest value obtained is p ¼ 0:46 (gene TCN2).

For this data set, a network-based analysis actually produces

better p-values. Considering single genes together with their

immediate neighbors, and averaging first within each array,

the top balls are centered at TESK2 (p ¼ 0:08) and GULP1

(p ¼ 0:11). None appears in the top 100 genes in the single-gene

analysis.
These all lead to potentially interesting findings. TESK2,

testis-specific kinase 2 (t ¼ �3:7) is involved in actin

cytoskeletal reorganization and has only one neighbor,

YWHAB (t ¼ 3:2). YWHAB encodes a protein belonging to

the 14-3-3 family, which bind to phosphoserine-containing

proteins and may function in transducing mitotic signals to the

cell cycle machinery. YWHAB is known to inhibit TESK2,

consistent with the signs of their t-values.
The engulfment adaptor PTB domain GULP1 (t ¼ �1:8)

also has only one interactant, LRP1 (t ¼ �2:9), a low-density-

lipoprotein-receptor-related protein. GULP1 and LRP1 speci-

fically interact during rapid clearance of apoptotic cells, e.g. in

tissue turnover and inflammation. It is interesting that, despite

their relatively low test statistics, they become significant when

taken together.
In a graph search for high-scoring subgraphs, the top result

has p¼ 0.18 (Fig. 3). It is rooted at the tyrosine-protein kinase

LYN (t ¼ �1:8). LYN is an important component of the

KEGG B-cell receptor signaling pathway; it phosphorylates

CD19 (t ¼ �6:4), BTK (t ¼ �4:5) and SYK (t ¼ �2:4; not

drawn). LYN also interacts with EPOR, the erythropoietin

receptor (t ¼ 3:3). Binding of erythropoietin to its receptor

activates JAK2 tyrosine kinase, resulting in activation of

STAT5.
EPOR also interacts with SOCS2, a STAT-induced STAT

inhibitor that is upregulated in melanoma (t ¼ 3:9), which in

turn interacts with IL12B1, IL22RA2 and IL22RA1

(t ¼ �3:9, � 2:6, � 2:8, respectively) cytokine receptors of the

interleukin family. SOCS2 negatively regulates cytokine signal-

ing by interacting with the cytoplasmic tails of cytokine

receptors such as interleukin receptors. This network analysis

suggests that these signaling pathways are disturbed in

T regulatory cells from the melanoma patients and may provide

insight into the hypothesized alterations in function of these

cells in the cancer state.

3.3 Serum data

Chang et al. (2004) studied the gene expression response of

fibroblasts to serum, which is a major initiator of wound

healing responses. Since wound healing is a complex process,

we predicted that many genes would be differentially expressed

in serum-treated versus untreated fibroblasts. In a single gene

analysis, out of 842 genes remaining after filtering, there are

22 differentially expressed genes (FWER, p50:05).
Network analysis using balls of radius 1 produces similar

p-values (21 balls with p50:05) and yields several new genes.

The top ball ( p ¼ 0:001) consists of the gene KLKB1 (t ¼ �1:2)
and its neighbors SERPINA5 (t ¼ 1:5) and TFPI2 (t ¼ 2:7).
Individual t scores are fairly low, but taken together they yield

the highest-scoring ball. KLKB1 (plasma kallikrein) is a serine

protease that functions in blood coagulation, fibrinolysis and

complement fixation, and so the altered expression of KLKB1

due to serum treatment is consistent with the known roles that

fibroblast play in wound healing.
The adapted graph search (flexible size, maximum depth 20)

yields 80 sets with p50:05; however, there is significant overlap
between the sets at the top. The set in Figure 4 is rooted at the

gene SMAD3 and has p ¼ 0:001. Unsurprisingly, it contains

several cell-cycle-related genes like CDK2, CDC2, CDC25C

and CDC27.
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Fig. 2. A chemokine pathway is downregulated in melanoma. Each

node contains the gene name and its t statistic.
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CDK2 (t¼ 3.5) is known to inhibit SMAD3 (t ¼ �2:3)

by phosphorylation and thereby regulate the anti-proliferative

function of SMAD3. SMAD3 also interacts with TGFB1I1,

the expression of which is induced by transforming

growth factor beta 1. The action of TGF-beta is critical

for resolution of inflammatory infiltrate and as such TGF-beta

is a major mediator of normal wound healing. SMAD3

and SMAD7 are target genes of TGF-beta, further
indicating the involvement of these SMAD genes in wound
healing. This is reinforced by the statistics of two related

genes not included in the subgraph: SMAD2 (t ¼ �1:7) and
TGFB2 (t ¼ �2:8).
It is not straightforward to compare our results with the

original results in Chang et al. (2004), as the authors’ goal was
to derive a global signature of wound healing, rather than
identify individual genes; they also used different methods of

normalization and analysis (the SAM algorithm). However,
many of the genes we identify (KLKB1, SMAD3, the
TGF genes) seem absent from the list of differentially expressed

genes available as an online supplement to Chang et al. (2004).
They are also not among the top genes in our standard, single-
gene analysis. Our method identifies new networks of fibroblast

serum-response genes and may further the understanding of the
process of wound healing.

3.4 Comparing various methods

3.4.1 The scaling exponent for balls We consider balls of
radius 1 centered at all genes having at least one interaction,
and simulate the null distribution of their scores using

N ¼ 10 000 permutations of the phenotypes. To compute the
scaling exponent � for the �T scoring function, we perform a
linear regression of the log of the standard deviation on the log

of the number of nodes in each ball.
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Fig. 3. The top-scoring network for regulatory T-cells.
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Fig. 4. A network involved in wound healing.
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We obtain � ¼ 0:60 for the lymphocyte data set, � ¼ 0:59 for

the regulatory T-cell data set and � ¼ 0:49 for the serum data

set (the latter result is likely noisier, as the sample size is

significantly smaller). This suggests that the optimal � is larger

than 0.5, so neighboring genes tend to be positively correlated.

3.4.2 Scoring functions and permutation-based rescaling We
compare the performance of the �T and T� scoring functions

for balls of fixed radius (the current implementation of adapted

search only uses �T since it is faster). T� yields better p-values

(Fig. 5).
Permutation-based rescaling does not seems to improve �T;

it also underperforms in the adapted search case. This does

not change when increasing the number of permutations from

1000 to 10 000. Hence the behavior of maxTscaled appears

similar to the behavior of minP described in Dudoit et al.

(2002). We did not try larger numbers of permutations, as the

algorithm slows down considerably and memory availability

becomes an issue.

3.4.3 Adapted search parameters
Graphs versus chains. Restricting the search to chains instead

of any connected subgraph does not seem very productive. The

top sets in the two methods tend to overlap, but the p-values are

higher for chains. This suggests that the chain model does not

capture well the biology of pathways. The performance of

chains may improve by using directed edges.
Graph size. We compare the algorithm for flexible graph size

and fixed sizes of 5, 10 and 20. We do not find any strong size

effect: different sizes provide better p-values for different data

sets. In practice, we find that sizes of 10 and 20 both worked well.

The results of flexible-depth search are influenced by the scaling

exponent �; values close to 1 will make adding nodes more

difficult and result in smaller networks. We compare four values

of �: 0.5, 0.6, 0.7 and 0.9 for the three data sets. Again, we find no

strong effects; � ¼ 0:5 or 0.6 worked well in most cases.

4 DISCUSSION

Our aim was to design an algorithm that uses interaction

networks to obtain results not found by single-gene analysis.

Remarkably, our method yields interesting findings in each of

the three data sets we tried. This is one of the first succesful

applications of this kind of analysis to human expression data.

Each data set conveniently illustrates a different use for the

algorithm. For the lymphocyte data, simply looking at the top

genes in single-gene analysis yields strong biological hypoth-

eses; network analysis refines and reinforces them, and provides

as well some new ones. For the regulatory T-cell data,

traditional analysis yields no significant genes, but our

algorithm identifies groups of genes with p-values very close

to the conventional threshold of 5%. In the serum data,

both methods find a large number of significant genes, but

these do not completely overlap, and have different orderings.

Network analysis highlights groups of high-scoring, interacting

genes, and suggests several interesting pathways.
We offer several improvements over previous methods.

Perhaps most importantly, we assign significance levels to the

networks we find, so we can state with a high degree of

confidence that they reflect underlying biological differences,

rather than random chance. We focus on small networks,

since they are easier to study and interpret. We also introduce

the new scoring function T�, which outperforms the previously

used �T. Our software was designed to run fast: a typical

analysis (adapted search for 20 000 genes, 50 phenotypes, 1000

root nodes, 1000 permutations) takes at most a few minutes on

a low-end 1GHz Pentium platform. The same analysis using

balls of radius 1 takes only a few seconds.
We compared our results to Gene Ontology analysis using

the top 50 most significant genes and found very little overlap;

GO yields mostly fairly general terms of limited interest.
We also compared our method with the GSEA method for

the lymphocyte data set (we attempted a similar analysis for the

regulatory T-cell data set but the GSEA analysis did not

terminate due to some unknown software issue). Overall, our

method yields better p-values; the top four gene sets in GSEA

have p ¼ 0:05, 0:14, 0:14 and 0.43. The top GSEA gene sets are

motif-based, with very little overlap with our top sets. These

results suggest that the two methods are somewhat comple-

mentary. Heuristically, one would expect GSEA to be better at

identifying large pathways with major disturbances, while our

algorithm pinpoints a small number of genes within pathways

that are most likely to be responsible. We are also likelier to

detect local disturbances within a pathway.
The construction of an interaction network is a key step in

our algorithm. The current implementation incorporates a

broad definition of a network, including both protein–protein

and DNA–protein interactions. All interactions are treated

equally, regardless of type and direction. It is remarkable that

even such a relatively coarse design captures enough informa-

tion to produce interesting and statistically significant results.

Refining network structure is a promising area of future
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Fig. 5. Comparing three scoring functions for the regulatory T-cell data

set. The x-axis has gene ranks, the y-axis has adjusted p-values.

T� (dotted curve) yields better p-values than �T (solid curve) and

�T rescaled (dashed curve). Same qualitative behavior occurs for the

other two data sets.
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research. We are also working on increasing output quality by

reducing the overlap among the top graphs.
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