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Abstract

As technology for microarray analysis becomes widespread, it is becoming increasingly im-
portant to be able to compare and combine the results of experiments that explore the same scien-
tific question. In this article, we present a rank-aggregation approach for combining results from
several microarray studies. The motivation for this approach is twofold; first, the final results
of microarray studies are typically expressed as lists of genes, rank-ordered by a measure of the
strength of evidence that they are functionally involved in the disease process, and second, us-
ing the information on this rank-ordered metric means that we do not have to concern ourselves
with data on the actual expression levels, which may not be comparable across experiments. Our
approach draws on methods for combining top-k lists from the computer science literature on
meta-search. The meta-search problem shares several important features with that of combining
microarray experiments, including the fact that there are typically few lists with many elements
and the elements may not be common to all lists. We implement two meta-search algorithms,
which use a Markov chain framework to convert pairwise preferences between list elements into
a stationary distribution that represents an aggregate ranking (Dwork et al, 2001). We explore the
behavior of the algorithms in hypothetical examples and a simulated dataset and compare their
performance with that of an algorithm based on the order-statistics model of Thurstone (Thur-
stone, 1927). We apply all three algorithms to aggregate the results of five microarray studies of
prostate cancer.
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1 Introduction
Widespread use of high-throughput genomic and protein analysis is providing re-
searchers with the opportunity to combine (or aggregate) results across sets of ex-
periments designed to explore the same biological phenomenon. These sets of ex-
periments may consist, for example, of microarray studies conducted by different
groups that have compared gene expression patterns under similar sets of condi-
tions (Rhodes et al, 2002, 2004) (e.g. cancerous versus normal tissue or progressive
versus non-progressive tumors). They may attempt to aggregate measures of ex-
pression at the DNA, RNA, or protein levels (Varambally et al, 2005). And they
may even attempt to aggregrate results across diseases or species (McCarroll et al,
2004).

Combining information across multiple studies is challenging for many reasons.
In the case of microarray studies, the use of different technologies means that not
all studies measure expression levels of the same genes. In addition, technical,
biological, and other sources of variability will generally lead to measurements of
gene expression that are not comparable across studies.

To avoid dealing directly with measurements of gene expression that may not
be comparable, several approaches have been proposed. Rhodes et al (2002, 2004)
computed q-values (Benjamini and Hochberg, 1995) for each gene, and defined a
differential expression signature for each of S experiments as the set of genes with
q-values below a pre-defined threshold. The meta-signature was declared to be all
genes present in at least J signatures, where J was selected by permutation testing.
Applying this approach to analyze microarry results from 36 studies comparing
cancerous versus normal tissue, Rhodes et al found 183 genes present in at least
10 signatures, while under their permutation null distribution zero such genes were
expected.

A second approach (Wang et al, 2004) used differences between the log gene
expression ratios under each experimental condition. These differences were com-
puted for each gene and each experiment and combined across experiments in a
Bayesian fashion. Final inferences were based on standard hypothesis testing pro-
cedures applied to the combined differences. A third approach used information
on the correlation between gene expression measurements (Parmigiani et al, 2004).
Rather than providing an aggregate inference, this approach focused on identifying
a set of comparable genes, namely genes for which the correlation (of expression
values) with other genes in the array was similar across studies.

In this article, we base analysis on the ranked list of genes produced by each
study. The rankings reflect the results of statistical hypothesis tests for differential
expression across the experimental conditions of interest and represent an ordering
of the genes in terms of priority for further study. Our use of ranked lists represents
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another attempt to move away from gene expression measurements to a metric that
we anticipate will be more comparable across studies. Indeed, a recent study (Yuen
et al, 2002) compared microarray measurements between Affymetrix c©GeneChips
and two-color cDNA microarrays and found that, although the fold changes of dif-
ferentially expressed genes showed poor correlation across array platforms, the rank
orders of differentially expressed genes were comparable.

In the ranked-list metric, meta-analysis corresponds to aggregating the rankings
across studies. From a statistical perspective, we may think of attempting to esti-
mate a modal, or central, ranking that summarizes the distribution of the observed
rankings of the genes across studies. There is an extensive and mature literature on
statistical models for ranked data, which includes the order-statistic models of Thur-
stone (Thurstone, 1927, 1931), paired-comparison models (Smith, 1950; Bradley
and Terry, 1952), and multi-stage models (Plackett, 1975; Fligner and Verducci,
1988). Generally, these models require data in many, short lists for parameter es-
timation. However, meta-analysis of microarrays is a problem in which data are
typically available only in a few, long lists. Therefore, much of the developed sta-
tistical methodology is not applicable in our setting.

To address the problem of few, long lists, we draw on algorithms developed
for meta-search (Dwork et al, 2001), which is the combination of ranked results
from multiple internet search engines. These algorithms conceptualize the aggre-
gate ranking as a consensus ranking i.e., one that summarizes majority preferences
between pairs of items (or genes) across lists (experiments). Different concepts of
majority preference lead to different algorithms. We consider two different concepts
of majority preference and evaluate the performance of the resulting algorithms in
a number of simple examples and simulation studies.

The meta-search algorithm of Dwork et al represents a Markov process ap-
proach to rank aggregation and consists of two steps. First, preferences among
pairs of genes are expressed in terms of a J×J transition matrix, where J is the to-
tal number of genes evaluated. The Markov process corresponding to this pairwise
transition matrix has J states, where each state represents a gene. The probabil-
ities encoded in this process’s stationary distribution reflect the time spent by the
process in each state. The aggregate ranking is derived by computing the process’s
stationary distribution; states with higher stationary probabilities are preferred to
those with lower stationary probabilities and receive a higher aggregate rank.

The Markov chain (MC) approach used in the meta-search application has also
been used to model global decision behavior in large groups of decision makers,
such as commmuters making decisions about departure times and routing and view-
ers selecting from a number of television channels. In this setting (De Smet et al,
2002), multicriteria decision analysis is used to obtain a preference matrix repre-
senting the general preference structure of the group. The assumption that decision
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makers continously compare and re-compare pairs of alternatives during their de-
cision process leads naturally to a Markov Chain representation. An appropriate
transition matrix is derived to represent potential transitions between alternative de-
cisions, and the limiting equilibrium distribution is interpreted as representing the
global decision behavior.

In addition to the Markov process algorithms, we also develop an implementa-
tion of Thurstone’s model. We show that when all studies rank the same genes, the
Markov algorithms perform similarly to each other and to Thurstone’s algorithm,
and that all algorithms produce aggregate rankings that closely approximate the true
central ranking as the number of studies increases.

An advantage of the MC algorithms is that they do not require that all lists rank
the same items. This is particularly useful in the microarray setting where different
studies may use microarray chips that cover overlapping, but not identical, subsets
of genes.

We use our algorithms to aggregate across five published microarray studies
comparing prostate tumors with normal prostate tissue (Rhodes et al, 2002). The
common goal of these studies was to identify a list of genes that are most over- or
under-expressed in prostate cancer and that may ultimately be useful for diagnostic
or prognostic purposes or as targets for prevention or treatment. Two of these stud-
ies used Affymetrix c©chips and three used custom cDNA microarrays. This dataset
therefore reflects the major features that our approach is designed to address: few,
long lists of genes, different technologies leading to different sets of genes within
experiments, and non-comparable measurements of gene expression. We conclude
with a discussion of the issue of differential variance or reliability across studies and
propose methods for adjusting our approach to take study variability into account.

2 Methods

2.1 Review: Rankings, orderings, and distance measures
Assume that our goal is to aggregate across L studies or ranked lists, denoted
D1, D2, . . . , DL. At this point we define the aggregate ranking loosely as the rank-
ing that is closest in some sense to the individual lists. We define the notion of
closeness in greater detail later in this section. The length of list Dl is denoted nl.
In what follows, we assume that each element of a list corresponds to an identifiable
gene or expressed sequence tag (EST). Further, we will assume that the genes have
been labelled using an annotation system that is consistent across studies. We will
denote the gene labels for the genes in list l by the index d = 1, 2, . . . , nl, however,
to avoid confusion in our hypothetical examples, unique items will be labelled with
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different letters. Let τl(d) denote the rank of item d in list l. Then τl represents a
permutation of list l. Our goal is to derive an aggregate, or consensus ranking that
summarizes τ1, τ2, . . . , τL.

In practice, we consider a reduced version of the aggregation problem, namely
aggregating across top-k lists. The top-k kist is the sublist consisting of the k most
highly ranked items in the original list; it is thus a partial list as opposed to the
original, full list. The reason for considering top-k lists is that typically only the few
most promising genes or markers can be further investigated in follow-up studies.
While the number of genes in an array may be on the order of 10,000 or more, k will
typically be on the order of 25 to 100. The problem of comparing and aggregating
across top-k lists has been considered in the context of meta-search (Fagin et al,
2003; Dwork et al, 2001). Fagin et al defined a set of distance measures that could
be used to quantify dissimilarities between top-k lists. Dwork et al considered the
problem of aggregating across top-k lists. They first summarized pairwise majority
preferences across top-k lists and then used the matrix of pairwise preferences to
produce an MC transition matrix. The aggregate ranking was defined according to
the stationary distribution of this MC. De Smet et al (2002) used a simliar approach
to model the aggregate behavior of a large number of decision makers.

To establish notation for the MC approach, let U denote the union of the top-k
lists. Relabel the distinct items in U from 1 to J . Let M = {mij} be the transition
matrix that reflects the preference for item i relative to item j across lists. Differ-
ent preference concepts will lead to different matrices M and their corresponding
stationary distributions. Assume that M is constructed to ensure a stationary distri-
bution, P = {pi}, i = 1, 2, . . . , J corresponding to M . The aggregate ranking is
defined as the ranking that reflects the ordering of the elements of P . The element
with the highest value in P receives the highest aggregate rank.

The development and evaluation of aggregate rankings requires a concept of
distance between ranked lists. One well-known distance measure is Kendall’s tau
(Fagin et al). Kendall’s tau is equal to the number of adjacent pairwise exchanges
needed to convert one ranking or permutation to another. Formally, if we con-
sider two permutations τ and τ ′ of a set of items U , then Kendall’s tau is given
by K(τ, τ ′) =

∑
{i,j}∈U K̄i,j(τ, τ

′), where K̄i,j(τ, τ
′) is equal to 0 if the orderings

of the ranks of items i and j agree in the two lists and 1 otherwise; for example,
τ(i) > τ(j) and τ ′(i) > τ ′(j) implies K̄i,j(τ, τ

′) = 0. The maximal value of
Kendall’s tau occurs when τ is the the reverse of τ ′, and this maximal value is given
by J(J − 1)/2, where J is the length of the lists. In presenting results concerning
the performance of our aggregation algorithms, we use Kendall’s tau and normalize
all measured distances by their maximal values.

When comparing top-k lists, the aforementioned concepts of distance must be
extended to handle the comparison of partial lists or, more generally, lists which
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rank overlapping but not identical sets of items. We use the extension of Kendall’s
tau suggested by Fagin et al (2003), which we briefly review here.

Consider two top-k lists, τ1 and τ2, which are permutations of two sets, D1 and
D2, respectively. Let P (τ1, τ2) be the set of all unordered pairs of distinct elements
in D1 ∪D2. Define a penalty K̄

(p)
i,j (τ1, τ2) for each i, j ∈ P (τ1, τ2). There are four

possible cases:

1. Items i and j appear in both top-k lists: Let K̄
(p)
i,j (τ1, τ2) equal 0 if i and j

are similarly ordered in the two lists and 1 otherwise.

2. Items i and j appear in τ1 and item i (but not item j) appears in τ2: Let
K̄

(p)
i,j (τ1, τ2) equal zero if τ1(i) < τ1(j) and 1 otherwise. Here we infer that

τ2(i) < τ2(j) as item i appears in τ2 and item j does not.

3. Item i (but not item j) appears in τ1 and item j (but not item i) appears
in τ2 Let K̄

(p)
i,j (τ1, τ2) equal 1. Again, we infer the position of the missing

items.

4. Items i and j appear in τ1 and neither i nor j appear in τ2 Let K̄
(p)
i,j (τ1, τ2)

equal p. In this case, we cannot infer the ordering of i and j in τ2.

Similar to the Kendall distance, we define the top-k list Kendall distance as:

K(p)(τ1, τ2) =
∑

i,j∈P (τ1,τ2)

K̄
(p)
i,j (τ1, τ2). (1)

A non-zero penalty parameter, p, corresponds to the assignment of a non-zero
penalty when information is missing about the ordering of i and j in one list (case
4 above). Fagin et al suggest two values for p: a neutral 0.5 or an optimistic 0. In
presenting results concerning the performance of our aggregation algorithms, we
set the penalty parameter to 0, which is equivalent to ignoring the relative ranking
of items that are ranked lower than the kth item.

2.2 Algorithms for aggregating ranked lists
In this section we summarize three algorithms for aggregating ranked lists. All of
the algorithms may be decribed as relational approaches as they are based on pair-
wise comparisons of items appearing in at least one of the top-k lists under study.
The two MC algorithms use the results of these comparisons to construct ergodic
transition matrices. The algorithm of Thurstone uses the paired comparisons to es-
timate an assumed continuous latent mean for each item; the aggregate ranking is
then based on the order of the underlying means.
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2.2.1 The MC4 algorithm

The MC4 algorithm was one of four MC algorithms developed by Dwork et al. The
goal of this particular algorithm was to combat search engine spamming (manipu-
lation of search engines to increase the chance of a web page being ranked highly).
Search engines affected by spam typically have irrelevant pages ranked highly. The
goal of the MC4 algorithm is to produce an aggregate ranking that ignores items
(pages) that are spuriously highly ranked in only a minority of lists. The algorithm
may be summarized as follows:

1. Construct the set U that consists of all items that appear within the top-k in
at least one list.

2. For each pair of items i and j in U , let the preference for j over i, m∗
ij , equal

1 if the majority (≥50%) of lists that rank both i and j rank j above i and 0
otherwise. Let m∗

ij = m∗
ji = 0.5 if items i and j are never directly compared

in any list.

3. Define the transition matrix M = {mij} as follows: for i 6= j set mij to
m∗

ij/|U | and let mii = 1−
∑

j 6=i mij .

4. Make the transition matrix M ergodic by multiplying each element by 1− ε
and then adding ε/|U | to each element, where ε is a small, positive number.
In practice, we use ε=0.15.

The MC4 algorithm constructs preferences based on a simple majority vote.
Thus, for example, if 5 lists rank both i and j, the MC4 algorithm will produce the
same value for mij regardless of whether i is preferred to j 3 out of 5 or 5 out of 5
times. This is the key to the algorithm’s spam-fighting property.

2.2.2 The MCT algorithm

In contrast to the MC4, the second algorithm uses information on the frequency of
the i versus j preferences. We label it MCT because this information is also used in
Thurstone’s order-statistics algorithm (see below). The steps in the MCT algorithm
are as follows:

1. Construct the set U that consists of all items that appear within the top-k
items in at least one list.

2. For each pair of items i and j in U , let the preference for j over i be m∗
ij =

rij/nij , where nij is the number of lists that rank both i and j and rij is the
number of these lists that rank j above i. Let m∗

ij = m∗
ji = 0.5 if items i and

j are never directly compared in any list.
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3. Define the transition matrix M = {mij} as follows: for i 6= j set mij to
m∗

ij/|U | and let mii = 1−
∑

j 6=i mij .

4. Make the transition matrix M ergodic by multiplying each element by 1− ε
and then adding ε/|U | to each element.

In both MC algorithms, the stationary distribution is computed by iteratively
multiplying a uniform probability vector of length |U | by the transition matrix. This
distribution can also be computed by identifying the eigenvector associated with the
eigenvalue of 1 for the transition matrix.

2.2.3 Thurstone’s order-statistics algorithm

Thurstone’s model for paired comparisons (Thurstone, 1927) assumes that each
item has a normal distribution over a single underlying continuum and that an ob-
server ranking any two objects is sampling from the support of this unobserved
bivariate normal, ranking the object with a greater sample value above the other.
In the context of gene expression levels or ratios of expression levels, the under-
lying continuum has a clear interpretation, and each microarray then represents a
separate sampling from the multivariate normal distribution of the levels for all
the genes in the chip. Consider first the measurement of just two genes, with
observed values of x1 and x2, underlying means µi (i = 1, 2) and variances σ2

i

(i = 1, 2), and covariance σ12. The probability of X1 > X2 is then given by
Pr(X1 > X2) = Pr(X1−X2 > 0) where X1−X2 ∼ N(µ1−µ2, σ

2
1 +σ2

2 − 2σ12).
Theoretically, f , the frequency with which gene 1 is ranked above gene 2, is calcu-
lated as:

f = Φ

(
µ1 − µ2

(σ2
1 + σ2

2 − 2σ12)
1/2

)
(2)

where Φ is the normal cumulative distribution function. For situations with more
than two genes, one can construct an analogous equation for each unique pair; solv-
ing this system of equations yields estimates of the parameters µ and Σ. In practice
we set all variances to 1 and covariances to 0.

Our observations consist of the frequencies with which gene i is ranked above
gene j for all i and j. We use a nonlinear least squares approach (Maydeu-Olivares,
1999) to estimate the parameters µ2, µ3, . . . , µn, substituting the observed pairwise
frequencies in the relevant version of f . This substitution results in a system of(

n
2

)
equations of the form given in Eq. 2. We set the first mean, µ1, to zero due to

location indeterminacy. To avoid infinite estimates for µ, observed frequencies of
0 or 1 are adjusted by adding or subtracting a small value, which is chosen to be
proportional to the number of lists that directly compare the genes. For example,
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if gene i and gene j are compared in n lists and i is preferred to j in all n lists,
the corresponding frequencies of 0 and 1 will be adusted to 0.5/n and (n− 0.5)/n,
respectively. This approach ensures that the adjustment of the observed frequency
away from 0 or 1 will be smaller when the observation is more reliable, i.e., based
on a larger number of comparisons, and vice versa. The aggregate ranking of the
genes corresponds to the rankings of the estimated parameters, µ2, µ3, . . . , µn.

2.3 Performance of the algorithms on two simple examples
2.3.1 A transitivity example

Consider a set of three genes {a, b, z}. Assume that the data provided to each
algorithm consist of N1 lists comparing a to z, with a preferred over z 90% of the
time, and N2 lists comparing b to z, with b preferred over z only 70% of the time.

Steps 1-3 of the MC4 algorithm yield the following transition matrix M (to two
decimal places):  0.83 0.17 0

0.17 0.83 0
0.33 0.33 0.33

 ,

with corresponding stationary distribution (0.5, 0.5, 0) for items (a, b, z). In con-
trast, steps 1-3 of the MCT algorithm yield the transition matrix: 0.80 0.17 0.03

0.17 0.73 0.10
0.30 0.23 0.47

 ,

with corresponding stationary distribution (0.49, 0.4, 0.11) for items (a, b, z).
Since the MC4 algorithm calculates preferences based on majority, the resulting

stationary distribution ranks a and b equally, as both are preferred to z by a majority
of lists. In the case of the MCT algorithm, however, preferences correspond directly
to the proportion of lists which prefer a over z (90%) and b over z (70%), allowing
the algorithm to infer that a should be ranked more highly than b in the aggregate.
Similarly, results of fitting Thurstone’s model indicate that a is roughly 1.3 standard
deviations above z and b is roughly 0.5 standard deviations above z. Thus, the rela-
tive ordering of a and b is determined to be that a is roughly 0.8 standard deviations
above b, even though they are never directly compared, i.e., they never appear in
the same list. This extended transitivity property (if a is strongly preferred to z and
b is preferred to z, then a is preferred to b) is useful in combining results across
microarray experiments because it enables aggregation across lists that do not con-
tain identical genes. The MCT and Thurstone algorithms are more likely than the
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MC4 algorithm to produce results that reflect this property because they use more
detailed information on the observed frequencies of the various pairwise orderings
in the data.

2.3.2 A signal versus noise example

To explore the ability of the algorithms to separate signal from noise, we considered
100 lists of the same 10 genes, of which some fraction of the lists were randomly
ordered and the rest were consistently and correctly ordered. Over 100 such tri-
als, we calculated the average number of correctly ranked genes produced by the
algorithms as the fraction of random lists increased from 5% to 95% (see Figure
1). MC4 is the most effective algorithm for producing correctly ordered aggregates
when some lists contain noise. Clearly, this is a result of using majority rule to
determine pairwise preferences. The MC4 algorithm averages 10 correctly ranked
genes even when 70% of lists passed to the algorithm are randomly ordered. In
contrast, MCT and Thurstone’s algorithm average around 6 correctly ranked genes
at the same level of noise.

2.4 A simulation study
To evaluate the statistical properties of the MC algorithms in comparison with each
other and with Thurstone’s model, we simulated sets of microarray data from a
known central ranking. We show that for simulated data, the algorithms perform
similarly and produce aggregate rankings that approach the central ranking as the
number of studies increases.

The data were generated as follows (Kooperberg et al, 2005): let xijml rep-
resent the expression level corresponding to the ith gene from the jth array of
the mth group of the lth study for i = 1, 2, . . . , 100, j = 1, 2, . . . , J , m = 1, 2,
and l = 1, 2, . . . , L. Here the group indicator, m, corresponds to the two biolog-
ical conditions being compared by hybridization, such as normal tissue (m = 1)
and cancer tissue (m = 2). Now, generate xijml as µi + δim + Zijml, where
µi ∼ U(0, 1), Zijml ∼ N(0, σil), σil = (0.3 − 0.02µi)Gil, and Gil ∼ Γ(5, 1).
Thus, the variance parameter, σil, depends on the mean, and genes with smaller
expression have a larger variance; in addition, the variance parameters also vary
across studies. We arbitrarily consider the first 40 genes to be of interest (truly
differentially expressed). More precisely, the differential expression parameters
δim, m = 1, 2, i = 1, 2, . . . , 100, are set to 0 when m = 1 and i = 41, 42, . . . , 100,
and to 0.2(2Bi − 1)Gi otherwise, where Bi ∼ Bern(0.5) and Gi ∼ Γ(5, 1). The
(true) central ranking corresponds to the ordering of δ1,2, δ2,2, . . . , δ40,2 from largest
to smallest.
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Figure 1: Over 100 trials, we passed each algorithm 100 lists of the same 10 genes, of
which some fraction of the lists were randomly ordered and the rest were consistently and
correctly ordered. Here we show the average number of genes ranked correctly by each
algorithm as the fraction of random lists increases. MC4 is the most effective algorithm for
fighting spam.
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To assess the behavior of the aggregation algorithms as sample size increased,
we varied L, the number of studies, over selected values from 5 to 40. We ranked
the genes in each simulated study by the attenuated two-sample t-test statistic pro-
posed by Tusher et al (2001). We also varied the number of arrays in each study,
J , from 5 to 20. For each (J, L) combination, we simulated 10 datasets. Perfor-
mance statistics were averaged over these 10 replicate datasets. The ranked lists
from each dataset were aggregated across studies using both the MC algorithms
and Thurstone’s model. We set k, the number of genes of interest in the aggregate,
to 40.

The top-40 genes from each aggregate were compared to the top-40 genes of the
(true) central ranking in two ways. First, we computed the average distance (over
the 10 simulated datasets) between the aggregate ranking and the (true) ranking
using the partial-list Kendall distance measure of Fagin et al (2003). Second, we
computed the number of (truly) differentially expressed genes on average in the
aggregate top-40 lists produced by the various algorithms.

To facilitate comparisons across aggregation algorithms, we normalized the
partial-list Kendall distance to the interval [0, 1] by dividing by its maximum value,
k2. The maximum value occurs when τ1 and τ2 are completely disjoint. Since we
set the penalty parameter p to 0, we have K̄

(p)
i,j (τ1, τ2) = 1 only for pairs of items

i, j where i appears in τ1 and j appears in τ2. For any two disjoint top-k lists, there
are k2 such pairs. The scale of the normalized distance can be understood by con-
sidering the following two aspects of top-k list agreement: agreement of items and
agreement of rank. A normalized partial-list Kendall distance of 0 corresponds to
the scenario where τ1 = τ2; these lists have perfect agreement of items and perfect
agreement of rank. A normalized distance of 1 corresponds to the scenario where
τ1 ∩ τ2 = ∅; these lists have neither agreement of items nor agreement of rank.
A third special case occurs when τ1 and τ2 include the same k items in opposite
order; these lists have agreement of items and disagreement of rank. Conceptually,
this scenario falls midway between perfect match lists and completely disjoint lists.
Hence, we consider the normalized distance to have a reasonable scale if the third
scenario results in a normalized distance equal to 0.5. The partial list Kendall dis-
tance for the third scenario is k(k − 1)/2, as there are k(k − 1)/2 pairs of items
each with K̄

(p)
i,j (τ1, τ2) = 1, as they appear in opposite order in τ1 and τ2. Thus, the

normalized Kendall distance is 1/2 − 1/2k, which asymptotically approaches 0.5,
as k increases. When k equals 40, as in our simulations, the third scenario receives
a normalized Kendall distance of 0.4875.

The simulation results are summarized in Tables 1 and 2. In general, the three
algorithms perform similarly on the simulated data. All three algorithms exhibit
the desirable property of decreasing average distance from the central ranking as
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the number of experiments increases. As expected, the accuracy of the aggregate
solution is greater when the number of arrays per study is larger.

For our simulations, the average distance from the central ranking to the aggre-
gates ranged from 0.03 to 0.15. The smaller distances are consistent with orderings
that are generally correct with only a few genes incorrectly ordered. For example,
let τ1 be the correct ranking of the top-40 genes in our simulation. Transpose 16
adjacent pairs of items to produce τ2. The normalized distance between τ1 and τ2 is
0.01. Larger distances are consistent with orderings that contain a few genes from
outside of the true top-40. For example, replace elements 1, 11, 14, 17, 38 and 40 of
τ1 with genes that are not contained in the top-40 to produce τ2. The normalized
distance between τ1 and τ2 is 0.145.

L J MC4 MCT Thurstone
5 5 0.14 (0.023) 0.15 (0.017) 0.14 (0.022)

10 5 0.09 (0.008) 0.09 (0.012) 0.10 (0.011)
20 5 0.07 (0.011) 0.06 (0.009) 0.07 (0.008)
40 5 0.05 (0.008) 0.05 (0.008) 0.05 (0.009)
5 20 0.06 (0.006) 0.07 (0.009) 0.06 (0.008)

10 20 0.05 (0.008) 0.05 (0.009) 0.05 (0.008)
20 20 0.04 (0.007) 0.04 (0.005) 0.04 (0.004)
40 20 0.03 (0.005) 0.03 (0.005) 0.03 (0.006)

Table 1: Simulation results: The mean (sd) normalized Kendall distance from the known
central ranking to the aggregate. The mean distance decreases as L, the number of studies,
and J , the number of arrays, increase, indicating the algorithm is approaching the central
ranking.

2.5 Data analysis
We used the three algorithms to aggregate results from five prostate cancer mi-
croarray studies, each of which compared normal to cancerous tissue. Three of the
studies used custom-built spotted cDNA arrays (Dhanasekaran et al, 2001; Luo et
al, 2001; True et al, 2006), the remaining two (Welsh et al, 2001; Singh et al, 2002)
used commercially produced oligonucleotide arrays (Affymetrix c©, version U95a
and U95Av2). The normalized gene expression values for three of the datasets
(Dhanasekaran, Luo, Welsh) were obtained by contacting Dr. Arul Chinnaiyan, a
creator of the Oncomine gene expression database (www.oncomine.org). The nor-
malized gene expression values for the remaining datasets are publicly available
through the journals in which they are published. In each study, the researchers
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compared benign prostate tissue to prostate cancer tissue. Although metastatic
prostate cancer samples were also analyzed, we limited our analysis to the compar-
ison of clinically localized prostate cancer tissue and benign prostate tissue. Benign
prostate tissue includes both normal prostate tissue and benign prostatic hyperpla-
sia.

The five datasets consisted of different sets of array elements, with different an-
notation protocols. To combine the data, we standardized annotations. Genbank
numbers for each array element were assigned a UniGene number using UniGene
Build 180 (for details see www.ncbi.nlm.nih.gov). When multiple elements anno-
tated to the same UniGene number, the median expression value was assigned to the
element. For Affymetrix c©data, array elements identified solely by identifiers from
The Institute for Genomic Research (a non-profit genome research center) were re-
moved from the analysis. Genes, defined by a unique UniGene number, which did
not appear in all five studies were also removed from the analysis, leaving a total of
747 genes. Table 3 gives a brief description of the datasets.

We ranked the genes from each study by differential expression of cancer tissue
relative to normal tissue, using the test statistic proposed by Tusher et al (2001).
This test statistic is an attenuated t-statistic, where a small value is added to the
standard deviation of each gene to help reduce the occurrence of statistically sig-
nificant but biologically unimportant genes, i.e., statistically significant genes with
a very low level of differential expression. The amount of overlap among the top
25 genes from each study is surprisingly small. Of the 89 genes that appear in the
top-25 up-regulated genes in at least one list, only 23 appear in more than one list
and only one gene, hepsin, appears in all five lists. There are three genes that appear
in four lists, AMACR, GDF15, and NME1. (See Table 4).

3 Results
3.0.1 Data Analysis

Table 5 shows the results of applying our three rank aggregation algorithms to the
five prostate cancer datasets. The aggregation procedures are applied to the set
of genes consisting of the union, U , of the top-25 genes from each study (89 up-
regulated genes). Unless otherwise stated, results presented are based on 100 itera-
tions of the MC. Table 4 gives the observed top-25 upregulated genes for each of the
five studies. Table 5 gives the top-25 up-regulated genes as determined by each of
the three algorithms. The table also gives the stationary distribution for the two MC
algorithms and the estimated µ values for the Thurstone algorithm. The three algo-
rithms give quite similar results: of the aggregate top-25 up-regulated genes, 25 are
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L J MC4 MCT Thurstone
5 5 32 32 32

10 5 34 34 34
20 5 36 35 36
40 5 36 36 36
5 20 37 38 37
10 20 39 39 38
20 20 39 39 39
40 20 40 40 40

Table 2: Simulation results: The number of true discoveries, i.e. genes which appear in
the top-40 in the central (true) ranking which also appear in the top-40 of the aggregate.
The number of true discoveries increases as L, the number of studies, and J , the number of
arrays, increases, indicating the algorithm is approaching the central ranking.

Authors Number of Clones Number of Samples
BP CaP

Dhanasekaran et al 7150 22 59
Luo et al 5831 9 16

Welsh et al 7567 9 25
True et al 4653 32∗ 32∗

Singh et al 6621 50 52

Table 3: Description of Datasets used for meta-analysis. BP:Benign Prostate,
CaP:Localized Prostate Cancer. ∗ The experiment by True et al hybridized matched lo-
calized cancer tissue and benign prostate tissue in a head-to-head fashion. There were a
total of 32 cases in this experiment.
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identified by all three algorithms. Of the two MC algorithms, the MCT algorithm
tends to be more consistent with Thurstone’s method.

While the dimensionality of the problem precludes us from fully detailing how
the aggregate rankings are produced, some intuition may be gained from studying
the genes that are most highly ranked in the aggregates. Among the up-regulated
genes, the most highly ranked are HPN, AMACR, NME1 and GDF15. HPN is the
only gene that appears in the top-25 lists from all five studies, at positions 1, 1, 4,
2 and 1 in the studies of Luo, Welsh, Dhanasekharan, True, and Singh respectively.
It is followed in the aggregate ranking(s) by AMACR, which appears at positions
2, 2, 2, 1 and 38. It is instructive to study pairs of genes that are ordered differ-
ently by the MC4 algorithm than by the other algorithms. For example, the MC4
algorithm obtains quite similar stationary probabilities for GDF15 and NME1, with
GDF15 just above NME1, but the MCT and Thurstone algorithms consistently rank
NME1 above GDF15. To explain this, note that GDF15 ranks higher than NME1
in four out of five studies, and the “majority rule” MC4 algorithm yields a result
consistent with this observation. However, in the fifth study (Luo et al), GDF15
appears at position 66, far below the number 15 slot of NME1. Since the MCT and
Thurstone algorithms will reduce the preference for GDF15 in relation to all the
genes appearing between NME1 and GDF15 (ranks 16-65), this poor performance
by GDF15 in a single study is sufficient to bring down the final position of this gene
in the aggregate. A simliar phenomenon is observed when we consider the genes
SND1 and FASN; FASN is ranked more highly than SND1 by the MC4 algorithm,
but the reverse is true for the other two algorithms, which rank FASN considerably
lower than SND1. Again we note that even though FASN outranks SND1 in three
out of five lists, FASN appears at positions 82 and 79 in the Luo and True studies,
whereas the lowest rank received by SND1 is 36 in the study of Luo et al. Thus,
even if a gene is fairly highly ranked in three or more studies, a low ranking in one
or two studies is enough to move it lower in the aggregate, and this is more likely to
occur when aggregating via the MCT and Thurstone algorithms than via the MC4
algorithm. Also, note that although OGT is the most highly-ranked up-regulated
gene in the study of Dhanasekharan et al, it does not appear in any of the aggregates
in Table 4. This is because OGT appears at positions 83, 56 and 55 in the studies of
Luo, Welsh and Singh and at position 40 in the study of True.

Among the highly-ranked aggregrate results are several genes that have al-
ready been identified as important in prostate cancer development and progres-
sion, including hepsin (HPN) which stimulates metastasis formation in an animal
model of prostate cancer (Klezovitch et al, 2004), alpha-Methylacyl-CoA racemase
(AMACR), a clinically utilized marker of prostate cancer (Kuefer et al, 2002), and
fatty acid synthase (FASN), an emerging therapeutic target (Pizer et al, 2001). The
up-regulated gene list also included several genes linked to signal transduction and
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gene transcription including GUCY1A3, an androgen-receptor-regulated guanylate
cyclase implicated in prostate carcinogeneses (Dong et al, 2005), ANK3, a member
of the ankyrin family of structural proteins (Ignatiuk et al, 2006) and STRA13, a
basic helix-loop-helix (bHLH) transcription factor which regulates cell differenti-
ation, proliferation, apoptosis and the response to hypoxic conditions (Ivanova et
al, 2005). The up-regulated results also include chaperone genes. The proteins
encoded by these genes facilitate the folding of newly synthesized proteins in the
endoplasmic reticulum (CCT2, CANX or calnexin) or stabilize proteins in the cy-
toplasm (TRAP1).

4 Discussion
In this article we have proposed a method for aggregating results across microarray
experiments. Our approach draws on methods from the meta-search and multicri-
teria decision-making literatures and relies on information on the rankings of genes
within each experiment rather than on quantitative measures of gene expression.
The utility of the rank metric was highlighted recently by Xu et al (2005) who
developed a rank-based approach for classifying tissue samples and applied it to
gene-expression profiles from multiple experiments. In fact, the classifier of Xu
et al was based on the relative rankings of pairs of genes within the classes of in-
terest. This work and ours confirm the findings of Yuen et al (2002), namely that
rank-based information can yield robust inferences across microarray studies.

Our proposed approach consists of two distinct methods for rank aggregation,
the first being algorithmic and based on the methods of Dwork et al (2001) in the
computer science literature and the second being statistical and based on a long-
standing estimating algorithm from the statistics literature. We have built on and
extended the Dwork methodology by introducing a variant on the MC4 algorithm
(the MCT algorithm) and examinining the properties of both these algorithms in
several illustrative examples and a simulation study. The examples highlight the
differences between the algorithms, particularly the spam-fighting property of the
MC4 algorithm and the extended transitivity property of the other two. Our re-
sults indicate that even though the MC algorithms are heuristic, they still display
desirable statistical properties as the sample size increases. In our simulations and
sample dataset, the MC algorithms produce results similar to Thurstone’s; this is
another validation of the performance of the MC approach since the Thurstone ap-
proach is the most rigorous statistically.

The rank aggregation approach has both advantages and limitations relative to
other meta-analysis methods in the setting of gene-expression studies. In contrast
to other methods, our approach does not require a pre-processing step to identify a
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set of genes common to all studies. In our example, we did limit attention to this
common set of genes to avoid the setting where very few of the top-25 results over-
lapped across studies. We conducted a supplementary analysis, which included all
genes common to at least three out of the five studies, and were able to obtain ag-
gregate rankings for this expanded set of genes. While the top-25 upregulated lists
still had HPN and AMACR in the top two positions, these were followed by several
new genes that preceded NLM1 and GDF15 in the aggregate orderings, namely,
HSPD1, TARP, CAMKK2, TXN, and MY06. There was also greater heterogeneity
between the aggregates computed by the different algorithms when considering the
expanded set of genes. In practice, we would recommend using as large a gene su-
perset as possible, but this must be balanced against the realization that meaningful
aggregation can only occur when there is considerable overlap between the gene
lists being aggregated.

Another advantage of the proposed approach is that it produces a ranked list of
genes rather than a set of genes that are not distinguished by priority or preference.
The availability of a ranked list can be important when selecting genes for further
investigation under resource constraints. Limitations include the fact that with few
lists the granularity of the preference matrix in terms of the range of its elements is
quite limited. Moreover, these preference probabilities do not reflect the number of
lists being considered. However, our simulations show that as the number of lists
increases, inferences do tend to become more accurate.

Our approach does not explicitly consider the fact that different studies may
have different levels of reliability. The standard statistical measure of reliability is
precision or variance. In principle, if variance measures were available for each
study, a weighted preference matrix could be obtained, where preference informa-
tion from more reliable studies would be upweighted by a factor proportional to the
inverse of the study-specific variance. In practice, however, a concept of variance
must be developed that is appropriate for ranked lists, and this variance must then
be estimated for each study. Marden (1995) defines a concept of spread for a set of
ranked lists, given by the average distance between each of the lists and a central
ranking. Future work will concentrate on the implementation of this concept in the
setting of multiple microarray experiments and the adaptation of our aggregation
procedures to take study reliability into account.
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Rank Luo Welsh Dhana True Singh
1 HPN HPN OGT AMACR HPN
2 AMACR AMACR AMACR HPN SLC25A6
3 CYP1B1 OACT2 FASN NME2 EEF2
4 ATF5 GDF15 HPN CBX3 SAT
5 BRCA1 FASN UAP1 GDF15 NME2
6 LGALS3 ANK3 GUCY1A3 MTHFD2 LDHA
7 MYC KRT18 OACT2 MRPL3 CANX
8 PCDHGC3 UAP1 SLC19A1 SLC25A6 NACA
9 WT1 GRP58 KRT18 NME1 FASN

10 TFF3 PPIB EEF2 COX6C SND1
11 MARCKS KRT7 STRA13 JTV1 KRT18
12 OS−9 NME1 ALCAM CCNG2 RPL15
13 CCND2 STRA13 GDF15 AP3S1 TNFSF10
14 NME1 DAPK1 NME1 EEF2 SERP1
15 DYRK1A TMEM4 CALR RAN GRP58
16 TRAP1 CANX SND1 PRKACA ALCAM
17 FMO5 TRA1 STAT6 RAD23B GDF15
18 ZHX2 PRSS8 TCEB3 PSAP TMEM4
19 RPL36AL ENTPD6 EIF4A1 CCT2 CCT2
20 ITPR3 PPP1CA LMAN1 G3BP SLC39A6
21 GCSH ACADSB MAOA EPRS RPL5
22 DDB2 PTPLB ATP6V0B CKAP1 RPS13
23 TFCP2 TMEM23 PPIB LIG3 MTHFD2
24 TRAM1 MRPL3 FMO5 SNX4 G3BP2
25 YTHDF3 SLC19A1 SLC7A5 NSMAF UAP1

Table 4: Up-regulated top-25: The observed rankings from the five studies are given.

18

Statistical Applications in Genetics and Molecular Biology, Vol. 5 [2006], Iss. 1, Art. 15

http://www.bepress.com/sagmb/vol5/iss1/art15



Rank MC4 MCT Thurstone
1 HPN 0.070 HPN 0.066 HPN 2.362
2 AMACR 0.062 AMACR 0.042 AMACR 1.880
3 GDF15 0.041 NME1 0.029 NME1 1.360
4 NME1 0.040 GDF15 0.024 GDF15 1.216
5 SLC25A6 0.038 EEF2 0.023 EEF2 1.150
6 KRT18 0.037 SND1 0.021 SND1 1.094
7 EEF2 0.037 KRT18 0.021 KRT18 1.052
8 FASN 0.032 SLC25A6 0.020 UAP1 1.023
9 GUCY1A3 0.031 UAP1 0.020 SLC25A6 1.019

10 SND1 0.029 GUCY1A3 0.019 GUCY1A3 0.967
11 ANK3 0.029 STRA13 0.018 STRA13 0.883
12 OACT2 0.027 OACT2 0.018 OACT2 0.868
13 UAP1 0.026 ANK3 0.017 ANK3 0.819
14 STRA13 0.021 MRPL3 0.015 MRPL3 0.654
15 MRPL3 0.019 MTHFD2 0.015 MTHFD2 0.611
16 SERP1 0.017 FASN 0.014 CCT2 0.579
17 PPIB 0.016 CCT2 0.014 PPIB 0.558
18 MTHFD2 0.015 PPIB 0.014 FASN 0.527
19 CCT2 0.015 ALCAM 0.013 ALCAM 0.512
20 ALCAM 0.014 TRAP1 0.013 TRAP1 0.507
21 MAOA 0.014 SERP1 0.013 MAOA 0.489
22 TRAP1 0.014 MAOA 0.013 SERP1 0.448
23 TFF3 0.013 TFF3 0.013 CANX 0.436
24 GRP58 0.013 CANX 0.013 TFF3 0.432
25 CANX 0.013 GRP58 0.012 GRP58 0.425

Table 5: Up-regulated top-25 aggregation results: The aggregate rankings and associated
stationary distributions produced by MC4 and MCT are given in the first four columns. The
stationary probabilites are rounded to 3 decimal places, resulting in the appearance of ties
between some genes. There are no actual ties in the rankings. The final columns give the
aggregate ranking produced by Thurstones method together with the estimated µ values for
each gene.

19

DeConde et al.: Combing Results of Microarray Experiments

Published by The Berkeley Electronic Press, 2006



References
Bradley, R.A. and Terry, M.A. (1952) Rank analysis of incomplete block designs.

I. Biometrika, 39:324-345.

Benjamini Y., Hochberg Y. (1995) Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society
Series B, 57(1):289-300.

De Smet, Y., Sprinagael, J., Kunsch, P. (2002) Towards statistical multicritera de-
cision modeling: A first approach. Journal of Multi-Criteria Decision Analyis,
11(6):305-313.

Dhanasekaran, S.M., Barrette, T.R., Ghosh, D., Shah, R., Varambally, S., Kurachi,
K., Pienta, K.J., Rubin, M.S. and Chinnaiyan,A.M. (2001) Delineation of prog-
nostic biomarkers in prostate cancer. Nature, 412(6839):822-826.

Dong, Y., Zhang, H., Gao, A.C., Marshall, J.R., Ip, C. (2005) Androgen receptor
signaling intensity is a key factor in determining the sensitivity of prostate can-
cer cells to selenium inhibition of growth and cancer-specific biomarkers. Mol
Cancer Ther 4(7):1047-1055.

Dwork, C., Kumar, R., Naor, M. and Sivakumar, D. (2001) Rank aggregation meth-
ods for the web. http://www10.org/cdrom/papers/577/

Fagin, R., Kumar, R. and Sivakumar, D. (2003) Comparing top-k lists. SIAM J.
Discrete Math., 17(1):134-160.

Fligner, M.A. and Verducci,J.S. (1988) Multistage ranking models. J Am Stat As-
soc., 83(403):892-901.

Ignatiuk, A., Quickfall, J.P., Hawrysh, A.D., Camberlain, M.D., Anderson, D.H.
(2006) The smaller isoforms of ankyrin 3 bind to the p85 subunit of phos-
phatidylinositol 3’-kinase and enhance platelet-derived growth factor receptor
down-regulation. J Biol Chem 281(9):5956-5964.

Ivanova, A., Liao, S.Y., Lerman, M.I., Ivanov, S., Stanbridge, F.J. (2005) STRA13
expression and subcellular localisation in normal and tumour tissues: implica-
tions for use as a diagnostic and differentiaion marker. J Med Genet 42(7):556-
576.

Klezovitch, O., Chevillet, J., Mirosevich, J., Roberts, R., Matusik, R., Vasioukhin,
V. (2004) Hepsin promotes prostate cancer and metastasis. Cancer Cell. 6(2):185-
195

20

Statistical Applications in Genetics and Molecular Biology, Vol. 5 [2006], Iss. 1, Art. 15

http://www.bepress.com/sagmb/vol5/iss1/art15



Kooperberg, C., Aragaki, A., Strand, A.D., Olson, J.M. (2005) Significance testing
for small microarray experiments. Statistics in Medicine 24(15):2281-2298.

Kuefer, R., Varambally, S., Zhou, M., Lucas, P.C., Loeffler, M., Wolter, H., Mat-
tfeldt, T., Hautmann, R.E., Gschwend, J.E., Barrette, T.R., Dunn, R.L., Chin-
naiyan, A.M., Rubin, M.A. (2002) alpha-Methylacyl-CoA racemase: expression
levels of this novel cancer biomarker depend on tumor differentiation. Am J
Pathol 161(3):841-848.

Luo, J., Duggan, D.J., Chen, Y., Sauvageot, J., Ewing, .M., Bittner, M.L., Trent,
J.M. and Isaacs, W.B. (2001) Human prostate cancer and benign prostatic
hyperplasia: molecular dissection by gene expression profiling. Cancer Res.,
61(12):4683-4688.

Marden, J.I. (1995) Analyzing and modeling rank data. Chapman and Hall, London.

Maydeu-Olivares, A. (1999) Thursonian modeling of ranking data via mean and
covariance structure analysis. Psychometrika, 64(3):325-340.

McCarroll, S.A., Murphy, C.T., Zou, S., Pletcher, S.D., Chin, C.S., Kenyon,
C., Bargmann, C. and Li, H. (2004) Comparing genomic expression patterns
across species identifies shared transcriptional profile in aging. Nature Genetics,
36(2):197-204.

Parmigiani, G., Garrett-Mayer, E.S., Anbazhagan, R. and Garielson, E. (2004) A
cross-study comparison of gene expression studies for the molecular classifica-
tion of lung cancer. Clinical Cancer Research, 10(9):2922-2927.

Pizer, E.S., Pflug, B.R., Bova, G.S., Han, W.F., Udan, M.S., Nelson, J.B. (2001)
Increased fatty acid synthase as a therapeutic target in adrogen-independent
prostate cancer progression. Prostate 47(2):102-110.

Plackett, R.L. (1975) The analysis of permutations. Applied Statistics, 24:193-202.

Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh,D. and Chinnaiyan,A.M. (2002)
Meta-analysis of microarrays: interstudy validation of gene expression profiles
reveals pathway dysregulation in prostate cancer. Cancer Res., 62(15):4427-
4433.

Rhodes, D.R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Bar-
rette, T., Pandey, A. and Chinnaiyan, A.M. (2004) Large-scale meta-analysis of
cancer microarray data identifies common transcriptional profiles of neoplastic
transformation and progression. Proc Natl Acad Sci USA., 101(25):9309-9314.

21

DeConde et al.: Combing Results of Microarray Experiments

Published by The Berkeley Electronic Press, 2006



Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P.,
Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff,
P.W., Golub, T.R., Sellers, W.R. (2002) Gene expression correlates of clinical
prostate cancer behavior. Cancer Cell, 1(2):203-209.

Smith, B.B. (1950) Discussion of professor Ross’s paper. J R Stat Soc Ser B, 12:53-
56.

Thurstone, L.L. (1927) A law of comparative judgement. Phycological Rev.,
79:281-299.

Thurstone, L.L. (1931) Rank order as a psychological method. J Exp. Psychol.,
14:187-201.

True, L., Coleman, I., Hawley, S., Huang, A., Gifford, D., Coleman, R., Beer, T.,
Gelman, E., Datta, M., Mostaghel, E., Knudsen, B., Lange, P., Vessella, R., Lin,
D., Hood, L., Nelson, P. (2006) A Molecular Correlate to the Gleason Grading
System for Prostate Adenocarcinoma. Proc Natl Acad Sci U S A., forthcoming.

Tusher, V.G., Tibshirani, R., Chu, G. (2001) Significance analysis of microar-
rays applied to the ionizing radiation response. Proc Natl Acad Sci U S A.,
98(9):5116-21.

Varambally S., Yu J., Laxman B., Rhodes D.R., Mehra R., Tomlins S.A., Shah
R.B., Chandran U., Monzon F.A., Becich M.J., Wei J.T., Pienta K.J., Ghosh
D., Rubin M.A., Chinnaiyan A.M. (2005) Integrative genomic and proteomic
analysis of prostate cancer reveals signatures of metastatic progression. Cancer
Cell. 8(5):393-406.

Wang, J., Coombes, K.R., Highsmith, W.E., Keating, M.J and Abruzzo, L.V. (2004)
Differences in gene expression between B-cell chronic lymphcytic leukemia and
normal B cells: a meta-analysis of three microarray studies. Bioinformatics,
20(17):3166-3178.

Welsh, J.B., Sapinoso, L.M., Su, A.I., Kern, S.G., Wang-Rodriguez, J., Moskaluk,
C.A., Frierson, H.F.Jr. and Hampton,G.M. (2001) Analysis of gene expression
identifies candidate markers and pharmacological targets in prostate cancer. Can-
cer Res., 61(16):5974-5978.

Xu L., Tan A.C., Naiman D.Q., Geman D., and Winslow R.L. (2005) Robust can-
cer marker genes emerge from direct integration of inter-study microarray data.
Bioinformatics, 21(20):3905-3911.

22

Statistical Applications in Genetics and Molecular Biology, Vol. 5 [2006], Iss. 1, Art. 15

http://www.bepress.com/sagmb/vol5/iss1/art15



Yuen, T., Wurmbach, E., Pfeffer, R.L., Ebersole, B.J. and Sealfon, S.C. (2002)
Accuracy and calibration of commercial oligonucleotide and custom cDNA mi-
croarrays. Nucleic Acids Res., 30:e48.

23

DeConde et al.: Combing Results of Microarray Experiments

Published by The Berkeley Electronic Press, 2006


