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Summary. Genome-wide measurement of gene expression is a promising approach to the iden-
tification of subclasses of cancer that are currently not differentiable, but potentially biologically
heterogeneous. This type of molecular classification gives hope for highly individualized and
more effective prognosis and treatment of cancer. Statistically, the analysis of gene expression
data from unclassified tumours is a complex hypothesis-generating activity, involving data explo-
ration, modelling and expert elicitation. We propose a modelling framework that can be used to
inform and organize the development of exploratory tools for classification. Our framework uses
latent categories to provide both a statistical definition of differential expression and a precise,
experiment-independent, definition of a molecular profile. It also generates natural similarity
measures for traditional clustering and gives probabilistic statements about the assignment of
tumours to molecular profiles.
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1. Introduction

1.1. Background
Gene expression microarrays are assays for studying gene expression on a large portion of
the genes on a genome of interest. See Schulze and Downward (2001) for a recent review.
Cancer research is among the most important application areas for gene expression investiga-
tions. Currently, cancer classes used in prognosis and therapy decisions are defined on the basis
of morphological features, sometimes complemented by single-gene or single-protein assays.
Existing classes often include a broad range of malignancies with widely different prognosis,
or with different responses to available therapies. For example, about 75% of infiltrating breast
cancers are classified as ductal carcinomas, a category also known as ‘carcinoma of no specific
type’. Ductal breast cancers are highly variable in their clinical aggressiveness and response
to treatment, probably as a result of different progenitor cell types and different molecular
pathways that give rise to these cancers. The diversity of ductal breast cancers is reflected in
their highly variable histologic appearances, but distinctive subtypes cannot be objectively rec-
ognized by morphologic criteria. See Tavassoli (1992) and Perou et al. (1999). More broadly,
cancer is a heterogeneous disease from a genetic standpoint, so molecular classification based
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on gene expression information gives hope for individualized and more effective prognosis and
treatment.
The biological literature on the molecular classification of cancer by using microarrays is

growing and we shall not review it here. To motivate our approach, however, it is useful to con-
sider briefly two successful examples. Alizadeh et al. (2000) considered the classification of the
most common class of non-Hodgkin’s lymphoma, the so-called diffuse large B-cell lymphoma
(DLBCL). They developed a custom-made complementaryDNA array with about 20000 genes
potentially related to carcinogenesis. They measured gene expression in malignant lymphocytes
from 40 patients and, to provide a frame of interpretation for the results, they also measured
56 samples of normal lymphocytes, of eight different types. They visualized data by using a
colour map of gene expression for all genes after rearranging the expression matrix’s rows and
column using a hierarchical clustering approach (Eisen et al., 1998). Using this visualization,
they identified subgroups of genes with both similar expression patterns and similar biologi-
cal functions. In parallel, they distinguished two subclasses of DLBCL patients, one of which
they characterized by its similarity in expression to one of the normal subtypes. Finally, they
correlated, informally but effectively, two of the gene groups to the two subclasses. They could
also perform a preliminary validation of their classification by using prognostic data, showing
differential survival in the two DLBCL subclasses.
Bittner et al. (2000) investigated molecular classification of cutaneous melanomas, another

malignancy which is difficult to classify on the basis of morphology. They considered gene
expression on a set of 31 tumours and investigated potential subtypes by using three comple-
mentary approaches: a hierarchical clustering dendrogram, based on the matrix of Pearson
correlation coefficients derived from the expression measurements of all genes meeting a min-
imum level of expression in each hybridization, a three-dimensional multidimensional scaling
(Kruskal, 1964) representation of the samematrix and the non-hierarchical clustering algorithm
termed the cluster affinity search technique, developed by Ben-Dor et al. (1999). A visual exam-
ination of the results led to focusing on a set of 19 tumours that appear to be tightly clustered in
all three approaches. They then searched for genes that are strongly associatedwith the subgroup
of 19 by an analysis of variance in the multidimensional scaling space. The genes so identified
are then grouped by expression, interpreted and used successfully in confirmatory work.

1.2. Statistical issues
As illustrated by these two applications, the main goal of microarray analyses of unclassified
cancer is to identify, or hypothesize, novel cancer subtypes for later validation and prediction,
with a view to individualized prognosis and therapy. At this early stage of genomic investiga-
tions, a successful classification analysis does not necessarily need to assign all available tumours
to a subtype, but only to identify interesting subgroups for further analysis. Also, it is critical
that molecular classes are interpretable, and amenable to further biological analysis. Eventu-
ally, classes need to be recognizable in clinical settings using less expensive and more accurate
assays than expression microarrays. For this reason, it is not necessary, nor generally useful, to
use all the genes to define subtypes. A critical advantage of subtypes based on a small number
of genes is that they lend themselves to easier validation. Simple hypotheses about subtypes
can be efficiently assessed and either discarded or pursued for clinical implementations, where-
as hypotheses involving genome-wide measurements are constrained to the context of high
throughput analysis.
Because of difficulties in acquiring tissue and the large costs of microarray experiments, clas-

sification is often attempted by using a relatively small number of tumours, compared with the
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number of genes on the array. Gene-to-tumour ratios of 100 and noisy gene expressionmeasure-
ments are common. These constraints and the goals outlined above suggest that initial progress
and translational results are more likely to occur by aiming at classifications that involve a small
number of genes and their interactions, rather than trying to exploit all gene expression infor-
mation at once. Currently, the utility of a genomic classification analysis lies primarily in the
comprehensive nature of the list of candidate genes. In this context, gene expression experiments
are best interpreted as screening tools, whose goal is to identify candidate directions for more
pointed and accurate investigations, using a variety of existing assays. Molecular profiles that
are based on a small subset of genes marking the key steps in a complex carcinogenic pathway
would be ideal targets.
Statistically, a prototypical molecular classification experiment is a random sample of

tumours that are at present unclassifiable, each with an array of expression measurements.
Formally, molecular classification could be viewed as the problem of finding subgroups of
points each of which represents a tumour in a high dimensional gene space. There are numerous
methodologies to approach this general type of problem. These include a variety of algorithms
for finding clusters in data, reviewed byHartigan (1975) andQuackenbush (2001) in the context
of microarrays, as well as other unsupervised algorithms in pattern classification reviewed, for
example, by Ripley (1996) and Duda et al. (2001).
There are, however, aspects that are specific to molecular classification. First, vast and grow-

ing information about human genes functions and interaction between genes is becoming avail-
able. This information is relevant and needs to be brought to bear, especially in view of the
unfavourable gene-to-tumour ratios. Second, the ‘not-all-genes’ and ‘not-all-tumours’ prop-
erties of molecular classification of cancer discussed above set molecular classification aside
from a large portion of general purpose clustering and classification approaches. Although
traditional unsupervised classification technologies can provide useful insight and important
building-blocks in molecular classification strategies, specific approaches are necessary.

1.3. Data analysis tools in molecular classification
Tomeet these challenges, methodologies for unsupervised classifications of microarray data are
growing rapidly. See Herrero et al. (2001) or Segal et al. (2001) and references therein for recent
developments. The ‘gene shaving’ algorithm, proposed by Hastie et al. (2000), influenced some
of the ideas behind the present paper. Gene shaving searches for clusters of genes showing high
variation across tumours, high correlation across the genes within a cluster and high diversity
of gene expression from cluster to cluster. In applications, clusters are often selected for further
analyses on the basis of expert elicitation. Cluster averages by tumour are used for classification.
The same gene can belong to more than one cluster.
More broadly, most approaches pursue dimension reduction, recognizing that the gene-to-

tumour ratios make it difficult to develop empirical classifications that make full use of the
genomic dimensionality. We can identify two broad and somewhat overlapping tendencies: the
first is to generate low dimensional summaries of the gene expression information, such as dis-
tance matrices or lower dimensional projections, like principal components. The second is to
identify, via visualization, expert opinion or more formal tools, a manageable number of genes.
The first approach has been prevalent in the statistical literature, whereas the second seems to
be more common in successful contributions to the cancer literature. One problem with the first
approach is that molecular profiles are defined in a way that is specific to the overall set of genes
measured on the array. An arraywise molecular profile from a custom array can be different in
meaning from a molecular profile from a generic commercial array.
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In both the melanoma and the lymphoma analyses, molecular classification results in one or
two novel classes, defined by differential expression of a group of genes with similar patterns. If
the sole goal is to identify subtypes, a small subset of these genes may be sufficient for assigning
tumours to classes. Clusters of functionally related genes are useful in providing a framework
for the interpretation of the predictor(s) and supporting the belief that the subtype may reflect
a biological mechanism. Critical to the analyses of both the lymphoma and melanoma is a
combination of visualization, formal quantitative analysis and informal a priori information
on gene function. It is clear that each of these aspects contribute to the success of the analysis,
and that the use of each alone is unlikely to result in similar progress.
In this paper, our aim is to provide a framework to support this tree-faceted enterprise. We

propose a probabilistic definition of differential expression in the context of unsupervised clas-
sification, and we use it to define molecular profiles, and to assess quantities of potential use in
classification, such as the probability that a tumour belongs to a given profile and the probability
that two tumours have the same profile. Our long-term goals are

(a) to provide tools that will facilitate the use of prior knowledge about gene function in
the screening process, in an interactive way, to improve the interpretation and clinical
validation of the classification that will ultimately emerge from the analysis, and

(b) to capture the potentially categorical nature of differential gene expression, by using
latent categorical data that can be interpreted as a gene being turned ‘on’ or ‘off’ com-
pared with normal expression.

These categories may offer a venue for a synthesis of information across studies which is cur-
rently made difficult by low correlation across technologies and laboratories.

2. Modelling

2.1. A statistical definition of abnormal expression
Data are aG×T expression matrixAwith generic element agt , representing the measured tran-
script abundance of gene g in tumour t, or a transformation of interest, such as the logarithm.
G = {1; : : :; G} is the set of all genes in the experiment. We assume that raw intensity values
have been normalized and purified from experimental artefacts, and that the noise is stabilized
with respect to abundance.
There is no obvious notion of differential expression in the context of unsupervisedmolecular

classification of disease. Initial progress can be made by defining differential expression using
empirical evidence of the presence of subgroups in expression measures. Our approach is based
on defining three possible categories of expression for each entry in the matrix A, as follows:

egt =



−1 gene g has abnormally low expression in tumour t,
0 gene g has normal expression in tumour t,
1 gene g has abnormally high expression in tumour t.

This model can be used to support

(a) a statistical definition of differential expression, via a mixture approach,
(b) a precise definition of a molecular profile, independent of the set of genes measured on

the array, and
(c) probabilistic statements about the relationship of tumours to profiles and tumours to

each other.

To build a model we specify, for each g,
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agt|.egt = e/ ∼ fe;g.·/; e ∈ {−1; 0; 1}; t = 1; : : :; T:

For gene g, the overall proportions of differentially expressed tumours in the population of
unclassified tumours are π−

g = P.egt = −1/ and π+
g = P.egt = 1/. These are also unknown

parameters. We shall use the notation πg = π−
g + π+

g . Our model specification is completed
by assuming that, for fixed π+

g s, π
−
g s and f s, the egts are independent across genes and tumours,

and that, conditionally on egts, the agts are independent.
This model describes variation of expression across tumours. In the unsupervised case, the

density f0;g.·/ describes the variation of expression for gene g in tumours that represent the
modal expression for the cancer population of interest. Variation is attributable to both small
biological differences between tumours of the same subtype, and imperfect measurement of
abundance in the hybridization experiment. The term ‘normal’ in the definition of egt = 0 refers
to expression levels within the particular cancer population that is considered for molecular
classification. Expression within this group may differ from typical levels in normal tissue. In
some experiments, data on normal tissue or on known subtypes of cancer may be available. In
these cases, expression levels in the external group could be used to identify the f0;g.·/ compo-
nent. Densities f−1;g.·/ and f1;g.·/ capture the variation of expression for gene g in tumours
that display underexpression or overexpression compared with the norm defined by f0;g.·/; the
supports of f−1;g and f1;g are assumed to be mutually exclusive.
A key aspect of our approach is the conversion of abundancemeasurements into probabilities

of differential expression categories. These probabilities can offer an effective way to stabilize
the measurements, by eliminating a large portion of the noise and of the hard-to-cluster varia-
tion at the extremes. At the same time, they provide an interpretable scale for classification of
tumours to patterns. For each data point, the probabilities of differential expression are known
functions of the mixture model parameters, determined by using Bayes’s rule. Specifically, we
have

p+
gt = P.egt = 1|agt ;π

+
g ;π−

g ; f1;g; f0;g/ = π+
g f1;g.agt/

π+
g f1;g.agt/ + .1− π+

g − π−
g / f0;g.agt/

.1/

for agt and in the support of f1;g and p+
gt = 0 otherwise. Similarly

p−
gt = P.egt = −1|agt ;π

+
g ;π−

g ; f−1;g; f0;g/ = π−
g f−1;g.agt/

π−
g f−1;g .agt/ + .1− π+

g − π−
g / f0;g.agt/

.2/

for agt in the support of f−1;g and p−
gt = 0 otherwise. Zero terms have been omitted from both

denominators above. We shall use the notation pgt = p+
gt + p−

gt .
Mixture modelling is not new to microarray data but has been mostly confined to describ-

ing the variation across genes, as in Lee et al. (2000). Multivariate clustering via mixtures is
discussed by McLachlan et al. (2002) and Yeung et al. (2001).

2.2. Distributional assumptions
Approaches such as that above for defining categorical expression patterns in tumour popula-
tions canbe implemented inavarietyofways, dependingonparameterizations anddistributions.
In general, distributional assumptions can be specific to the application. In analysing cancer
data, we find it useful to use the following specification:

f−1;g.·/ = U.−κ−
g + αt + µg;αt + µg/;

f0;g.·/ = N .αt + µg;σg/;

f1;g.·/ = U.αt + µg;αt + µg + κ+
g /;
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where U is the uniform distribution and N is the Gaussian (normal) distribution. We shall
use the shorthand ω for the full set of unknown parameters. Examples of normal and uniform
mixtures for finding outliers and sparse clusters are discussed by Fraley and Raftery (1998).
The model can be thought of as having a systematic component αt + µg, and a three-

component mixture for the residuals. αt + µg is both the centre of the distribution of the
normal abundance levels for gene g in tumour t and the dividing point between overexpres-
sion and underexpression. µg is the effect of gene g on mean normal abundance, whereas αt is
the effect of tumour t. αt is a tumour-specific adjustment that is determined only by the normal
expression levels. For example, in radiolabelled arrays, it is common to normalize data agt for
each tumour by dividing by the total of abundance measurements for tumour t, as the overall
signal varies with the level of activity of the isotope batch used. If the data are indeed a mixture
of a core distribution and a set of dispersed points, and, if the frequency of dispersed points
varies with the tumour, then the core distribution will be normalized differently from tumour to
tumour, even though it is biologically the same. The αts provide a normalization that considers
only the common normal component and not the differentially expressed component. See also
Colantuoni et al. (2003) and Tseng et al. (2001).
The normal component has gene-specific standard deviation σg. The uniform distribution

is motivated here by the notion that abnormally altered expression of a gene in cancer reflects
the failure of a regulatory mechanism that is present in healthy tissue, as would result, for
example, from a deleterious mutation of a tumour suppressor gene. Therefore, abnormally high
or low expression levels could vary over a broad range without necessarily informing on a
biological subtype. In addition, the uniform distribution generally provides stable estimates of
expression status probabilities, because no expression values are assigned a very low density in
the differentially expressed cases. The parameters κ+

g and κ−
g provide the limits of the uniform

components of the mixture. Mixtures of normal and uniform distributions can lead to heavier
or lighter tails than the normal, depending on the relationship between the κs and σ. Here we
are interested only in inflating the tails. For this, we impose the constraint κ > κ0σ, with κ0 > 5
in applications.
The choice of a centre distribution can also be important. Our choice of a normal distribution

works satisfactorily in the motivating application of Section 4, but it needs to be checked case
by case. A gene-dependent choice of the functional form in problems with a relatively large
number of tumours could result in improved classification ability.
This model can be equivalently expressed by introducing unknown quantitative expression

values ηgt and defining agt ∼ N.ηgt ;σg/. The normal class is then defined by ηgt = µg + αt , and
σg unknown, the overexpressed class is ηgt −µg−αt ∼ U.0;κ+

g /, σg = 0, and the underexpressed
class is ηgt − µg − αt ∼ U.κ−

g ;0/, σg = 0. The posterior means of the ηgt can be used to obtain
multiple-shrinkage estimates of expression values. In particular we have

E.ηgt|agt ;ω/ ≈ µg + αt + pgt.agt − µg − αt/;
when the variability in the normal component is predominantly driven by noise, point estimates
of posterior expectations of ηgt can provide denoised expressionmeasurements. See alsoGeorge
(1986).
An alternativemodelling strategy is to replace the uniform distributions with highly dispersed

normal distributions, by settingf−1;g.·/ = N −.αt+µg;κg/ andf1;g.·/ = N +.αt+µg;κg/where
N + and N − are half-normal distributions on the positive and negative real line respectively.
Similar ideas have been used in Bayesian variable selection by George and McCulloch (1993),
who introduced two-element scale mixtures of normal distributions as a way of modelling latent
variables that represent ‘practical significance’ of coefficients in a regression model.
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2.3. Bayesian hierarchical analysis
Parameter estimation can be carried out by using a variety of approaches. If fast computing
is critical, heuristic quantization rules could be devised to approximate the expression classes
directly on the basis of the data, independently for each gene. Amore systematic alternative is to
use a maximum likelihood approach. Estimates can be obtained by using a Newton–Raphson
algorithm. At each step, the κgs can be profiled out in closed form, which leads to a faster and
more stable maximum likelihood algorithm than do common alternative outer distributions.
Here we have implemented a hierarchical model assuming that the tumour-to-tumour vari-

ation is described by the mixture distribution of Section 2.2 whereas, at a second level, the
variation of gene-specific parameters is described by further probability distributions. This
allows for an estimation of gene-specific parameters that borrows strength from the entire
genomic distribution and reflects the fact that the components of variation that are driven by
limitations in the technology are likely to affect the majority of genes in a similar way.
Bayesian hierarchical models lead to shrinkage estimates with good properties in the estima-

tion of large vectors of related parameters. See Berger (1985). Newton et al. (2001) have consid-
ered hierarchical models for genes within a single two-dye hybridization. These have desirable
denoising properties in the estimation of relative expression levels. Hierarchical models across
multiple hybridizations are considered by Tseng et al. (2001). In our context, even greater gains
are to be expected from borrowing strength across both genes and tumour types, as most genes
will behave similarly in all tumours. Newton et al. (2001) also introduced Bayesian probabilities
of differential expression in microarray analyses, again in the context of single-slide compari-
sons. Bayesian hierarchical models share structural assumptions with empirical Bayes analyses,
reviewed by Carlin and Louis (2000), and illustrated in the context of microarrays by Efron
et al. (2001). Related ideas underlie mixed effects models as discussed byWolfinger et al. (2001).
The implementation that is considered here is based on the following second-stage distribu-

tions:

µg|θµ; τµ ∼ N .θµ; τµ/;

σ−2
g |γ;λ ∼ G.γ;λ/;

κ+
g |θ+

κ ∼ E.θ+
κ /;

κ−
g |θ−

κ ∼ E.θ−
κ /;

logit.π+
g /|θ+

π ; τ+
π ∼ N .θ+

π ; τ+
π /;

logit.π−
g /|θ−

π ; τ−
π ∼ N .θ−

π ; τ−
π /;

where G is the gamma distribution and E is the exponential distribution. Gene-specific param-
eters are assumed to be independent conditionally on the hyperparameters on the right-hand
sides above. The hyperparameters can be assigned dispersed proper priors, as the large number
of genes allows for a data-driven estimation. One of the advantages of a hierarchical specifi-
cation regards genes that show no evidence of a departure from normality. For those genes,
data provide minimal information about κ+

g and κ−
g . Improper priors can lead to identifiability

problems. Maximum likelihood estimation of gene-specific parameters in those cases requires
care and additional ad hoc constraints that are avoided by borrowing strength from the genomic
distribution.
The αts are assumed independentN .0;100/ and constrained to sum to 0. Hierarchical mod-

elling of the αt is also possible and in our application leads to similar results. A proper prior on
the αts and θµ is necessary, as the likelihood is uniformative about combinations in which the
same constant is added to all αts and µgs.



724 G. Parmigiani, E. S. Garrett, R. Anbazhagan and E. Gabrielson

We used a Metropolis–Hastings Markov chain Monte Carlo (MCMC) approach to obtain
samples from the posterior distribution of the parameters. We augmented the data set with an
unknown class indicator egs for each observation, as inDiebolt andRobert (1994) andWest and
Turner (1994). We use the sampling sequence [κ|ωÅ], [e|κ;ωÅ], [ωÅ|κ; e], to facilitate mixing in
the sampling of κs. In the expression above, the symbols refer to parameter vectors or matrices,
brackets refer to posterior distributions and ωÅ is ω with κ removed. The first two terms on the
left-hand side combine to form [κ; e|ωÅ]. Given model parameters, the full conditional distri-
bution of the class indicators e is given by expressions (1) and (2). Given the class indicators,
the full conditional distribution of .π+

g ;π−
g ;1 − π+

g − π−
g / is a Dirichlet distribution, and the

full conditional of the parameters of the normal component is conjugate, with the additional
constraint σ < min.κ+

g ;κ−
g /=κ0.

3. Molecular profiles

The expression variables e can be used to construct a useful definition of a molecular profile.
For a given set of G genes, we define a molecular profile to be a vector of es, i.e. a point in
{−1;0;1}G. A given tumour can belong to only one of these profiles. In practice, the number
of profiles defined in this way on the set of all genes on a microarray is far too large to allow
reliable inference based on the data sets that are typically available. Our interest is therefore in
what we term marginal profiles, i.e. profiles based on a subset of genes. For example, forG = 3
we obtain 27 possible marginal profiles, as follows:

gene A gene B gene C
profile 1 −1 −1 −1
profile 2 −1 −1 0

:::
:::

:::
:::

profile 27 1 1 1

Marginal profiles are coarse classifications, susceptible to further refinements at later times,
when additional evidence becomes available. There is no implication that other genes may not
display differential expression. This definition has a direct biological interpretation, is inde-
pendent of the array used (as long as all G genes are measured) and is independent of the
classification algorithm that is used to assign tumours to profiles.
The mixture analysis provides a way to evaluate membership probabilities for each tumour.

Using conditional independence of the genes, we can determine the probability that each of the
tumours belongs to any given profile, as a function of the ps. Specifically,

p.e1t ; : : :; eGt|ω/ = ∏
g

.p−
gt/

I{egt=−1}.p+
gt/

I{egt=1}.1− p+
gt − p−

gt/
I{egt=0} ;

where I is the binary indicator of the condition in parentheses. Some tumours may be easily
classifiable, whereas for others the probabilities may spread over several competing profiles. It
is also straightforward to compute the probability that any two tumours have the same profile
over a set of genes G0. Because egt and egt′ are conditionally independent given the model
parameters, the conditional probability that two tumours t and t′ have the same expression
status on all genes in G0 is

q.t; t′;G0/ = ∏
g∈G0

{p−
gtp

−
gt′ + p+

gtp
+
gt′ + .1− p+

gt − p−
gt/.1− p+

gt′ − p−
gt′/}: .3/
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Analogous computations apply to gene patterns across tumours. A special role is played by
the profile of all zeros, indicating that a gene is expressed at a normal level in all tumours, or is
varying by a degree that is not differentiable from noise. The probability of this pattern for gene
g is p0g = Πt .1 − pgt/. The expected number of tumours in which gene g is at a normal level
is ng = Σt .1 − pgt/. Estimates of both these quantities can be used to exclude from analysis
genes with low discriminatory ability; ng is less sensitive than p0g to the presence of very small
probabilities, which may be unstable.
Gene patterns across tumours can be used to mine for genes that show promise as subtype

predictors. Measures of variability of the overexpression and underexpression probabilities are
examples of useful gene-specific summaries. In general, summaries will have to strike a balance
between the fraction of tumours that show evidence of differential expression and the reliabil-
ity with which each tumour can be attributed to each class. In Section 4 we shall use a class
of summaries that allows us to control for the first component, by mining for genes matching
patterns of the type ‘n− tumours are underexpressed and n+ are overexpressed’, irrespective of
the order of the tumours. We define E.n−; n+/ to be the set of all such patterns, i.e. the set of
all T -dimensional vectors taking values in {−1;0; 1} and such that n− entries are −1 and n+
entries are 1. The corresponding probability is

rn−;n+.g/ = p{eg1; : : :; egT ∈ E.n−; n+/|ω}; .4/

r depends on the target frequencies n− and n+ and also reflects uncertainty in the expression
status of genes: as values of p+

gt and p−
gt move away from the extremes, r decreases irrespective

of the target pattern.
Lastly, we can express the probability that two genes g and g′ have the same pattern over all

tumours as

q.g; g′/ = ∏
t

{p−
gtp

−
g′t + p+

gtp
+
g′t + .1− p+

gt − p−
gt/.1− p+

g′t − p−
g′t/}: .5/

Although q.g; g′/ is not a distance, it does provide an interpretable measure of closeness for
describing the gene space. The closeness q.g; g/ of a gene to itself (i.e. the probability that it
would have the same true profile as another gene with an identical observed expression) defines
a measure of internal consistency.

4. Molecular analysis of ductal breast cancer

4.1. Data and preprocessing
The data set that is analysed in this section includes measurements of gene expression in 80
ductal carcinomas of the breast, also known as carcinoma of no specific type. We use a custom
breast cancer array developed in the Gabrielson Laboratory at Johns Hopkins University, to
classify these tumours according to gene expression profiles. We have selected frozen samples
of ductal breast cancers and isolated tumour cells from the samples by using a rapid mechan-
ical microdissection technique. Total ribonucleic acid (RNA) was labelled and hybridized to
the array membranes, and hybridization to specific spots was quantitatively measured by using
a phosphoimager. The reproducibility of these measurements is high, as shown by Johnston
et al. (2002). Our collection of tumours includes primary breast tumours (including tumours
of low and high pathological grades) and metastatic breast cancers, chosen to represent highly
aggressive cancers. In the selection of specimens for these studies, the histology was reviewed to
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attempt to represent ductal cancers with different histologic features. Some bias against small
cancers with tubular features may be inevitable because these samples may not yield sufficient
RNA for analysis.
Radiolabelling arrays produce a single intensity measurement per spot. For initial graphi-

cal diagnostics we constructed a reference by computing the median intensities by gene over
all tumours. Scatterplots of intensity versus this reference indicated a subset of genes with a
pronounced, roughly linear, loss of signal on a subset of the tumours. One of these tumours
is shown in Fig. 1(a). To address this issue, we used a latent class mixture model postulating
two classes of genes: class 0 for genes with no loss of signal and class 1 for genes with loss of
signal. After class assignment, we carried out separate normalizations. The resulting data could
be analysed jointly over the two classes but, because the reasons leading to the loss of signal
have yet to be established, here we only present analyses using genes that are likely to be in class
0, a total of 2897 genes.
In general, a linear loss of signal on a relatively large portion of the genes is not uncommon in

microarray experiments with radiolabelling filters. It may result from tissue admixture or con-
tamination, or from array manufacturing problems. When the size of the class 1 subset is large,
standard normalization procedures based on robust regression, as in Yang et al. (2002) and
Irizarry et al. (2001), would not be appropriate. In view of these difficulties, the resulting arrays
are sometimes discarded. A latent class model provides a systematic way of treating these cases.
More specifically, let ygt be the natural logarithm of intensitymeasures for gene g in tumour t,

mg be the median of log-intensity for gene g across all tumours and cg the binary class indicator.
We specified a model based on two separate regression equations for the two classes, i.e.

ygt = βt1 + βt2cg + βt3mg + βt4cgmg + "ts;

with "gt normally distributed withmean 0 and variance ζ2gt = 1=ρ2t .1+δcg/, specified so that it is
tumour specific and that ζ2gt=ζ

2
g′t = 1 if genes g and g′ are in the same group and ζ2gt=ζ

2
g′t = 1+ δ

otherwise. We define p.cg = 1/ = ξ and set dispersed priors ρ−2
t ∼ G.0:001; 0:001/, ξ ∼ U.0; 1/

and 1 + δ ∼ U.0:2;5/, so the ratio of variances of the two groups ranges between 1=5 and 5,
and values less than 1 are favoured. The regression equation above is used for class assignment,
but not for subsequent abundance correction.

Fig. 1. Scatterplots of log(gene intensity) for one of four tumours used for the normalization model against
the corresponding median log(gene intensity) (medians are taken over all the samples; �, genes assigned
to class 0; C, genes assigned to class 1): (a) raw ygt versus mg; (b) normalized agt C mg versus mg
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We fitted the normalizationmodel based on four tumours showing strong evidence of a linear
loss of signal. Our implementation usedMCMC sampling and the software BUGS, by Thomas
et al. (1992). We obtained posterior probabilities of class membership for each gene and used
those for class assignments. To correct for a minor low intensity bias remaining in some filters,
we performed a separate abundance adjustment for each of the two subclasses. We applied a
LOESS fit to ygt − mg versus mg, to obtain residuals rgt . To facilitate the fit of a hierarchical
distribution of gene-specific variances we performed a variance stabilization, fitting a second
LOESS curve on the squared residuals versus mg, as proposed by Colantuoni et al. (2003). The
square roots of the residuals from the second LOESS fit, sgt , were then divided by the median
value across tumours, to preserve the scale. The variance stabilization term from the second
LOESS fit was sÅgt = sgt=median.sg1; : : :; sgT /. Finally we evaluated the adjusted expression
measures agt = mg + rgt=sÅgt . Scatterplots of agt versus mg are shown in Fig. 2.

4.2. Estimation
As the next step we fitted the model of Section 2.3 to the agt , using an R implementation of
the MCMC algorithm. We used vague priors θ+

µ ∼ N .0; 100/, θ−
µ ∼ N .0; 100/, .τ+

µ /−2 ∼
G.1;0:1/, .τ−

µ /−2 ∼ G.1;0:1/, θ+
κ ∼ N .0;100/, θπ ∼ N .0; 100/, .τ+

π /−2 ∼ G.1; 0:1/ and

Fig. 2. Scatterplots of normalized expression measurements agt C mgversus medians mg for the 80 tumours
studied, and for the genes selected for further analysis, after normalization: genes correspond to points and
tumours to scatterplots: points away from the line x D y indicate that gene expression differs from the median
of that gene over all samples
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.τ−
π /−2 ∼ G.1;0:1/, λ ∼ flat and γ ∼ flat. The sensitivity to the specific vague prior used is very

limited in our application. The convergence of the hyperparameters is fast. The convergence of
gene-specific parameters varies with the gene, with κs being the slowest mixing parameters. The
MCMCoutput provides point estimates and assessments of uncertainty on any of the quantities
of interest. Hats will denote point estimates based on the chain. The spot-specific p̂gt generally
converge more rapidly than the mixture weights and uniform limits. A careful choice of the
initial values substantially improves the speed of convergence. We found it useful to perform
preliminary gene-by-gene 2-means or 3-means clustering to estimate class assignments and to
initialize the chain at the corresponding parameter estimates.
Fig. 3 illustrates estimated mixture components for four genes, selected to illustrate a range

of situations. The fit of the normal component is evaluated by the qq-plots. The dark section
corresponds to the estimated normal component; linearity of the dark section indicates a good
fit and is common to the majority of genes in this experiment. A good fit of the inner normal
component is an important element of our approach: an inner distribution that is skewed, but
smoothly so, could make both estimation and interpretation problematic.
Summary measures of non-linearity of the residuals of the regression of the normal qq-plot,

using 1− p̂gt as the weights, can provide a mining tool for selecting genes for further visualiza-
tion and diagnostics. Another useful mining tool is the estimated gene self-consistency q.g; g/.
Although it is common for the inner distribution to fit well, it is less common that the differen-
tially expressed values will be uniformly distributed. This lack of fit of the uniform distribution
is not critical, as it typically coexists with a good estimate of the probability of differential
expression. Gene 1753 in Fig. 3 highlights a potentially problematic situation for our model.
There are either more than three groups or a departure from normality in the e = 0 group.
Also, because groups have similar sizes, the choice of the class labelled e = 0 is sensitive to the
initialization of the chain.

Fig. 3. Estimated mixture components for genes (a) 20, (b) 2818, (c) 2634 and (d) 1753 (the vertical marks
are the estimated residuals agt � µg � αt ; . . . . . . ., kernel density estimate of the distribution of the residuals;

, best fitting uniform and normal components of the mixture, multiplied by the corresponding mixture
weights (some of the uniform components are too close to the axis to appear)) and (e)–(h) corresponding
normal quantile plots, with shades of grey proportional to the probability 1 � p̂gt of being from the normal
distribution
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4.3. Visualization of profile information: genome-wide approaches
A useful step towards molecular classification is identifying a subset of candidate genes for
subsequent validation. The results of the mixture analysis can contribute to this process, by
providing the basis for visualization and mining tools. For example, because of our stipulation
that p+

gt and p−
gt cannot both be positive, we can represent expression probabilities in a single

dimension, the estimated signed differential expression probabilities p̂+
gt − p̂−

gt . This ranges from
−1 to 1 and can be used for imaging in grey scales or with different colour codes for positive and
negative differential expression. To sort genes and tumours by using hierarchical clustering, all
traditional similarity metrics can be applied directly to p̂+

gt − p̂−
gt . In addition, measures with

an interpretation that is more directly related to the problem at hand are available. We use the
probability that two tumours have the same pattern, calculated for the whole gene set, as de-
fined by q of equation (3). Alternatively, we can build a less stringent criterion by computing the
probability that two patterns are the same up to a given number of samples. Visualizations based
on probabilities are suitable for comparisons across microarray technologies, especially when
using the now prevalent oligonucleotide arrays, whose ability to measure underlying transcript
abundance varies markedly with both the gene and the manufacturer.
Fig. 4 compares a visualization of probabilities with a visualization of observed expression.

Only genes with Σt pgt > 2 are shown. In Fig. 4(a) we show the centred data, interpretable as
log-ratios of expression to the gene median. Rows and columns are sorted by using the divisive
hierarchical algorithm diana, in R (Rousseeuw et al., 1996) with Euclidean distance. In Fig.
4(b) are the signed probabilities of differential expression. Rows and columns are sorted again
by using diana, with similarity q. This example illustrates the denoising that takes place as
a result of mixture modelling and suggests that clustering using the probability of differential
expression may be less sensitive to noise-driven artefacts than clustering in the original scale.
In this application, there is a large subset of genes with bimodal distributions as can be seen

in Fig. 4. This can result from large subclasses of cancers, but also from systematic variation
at the analytical level, without an underlying biological explanation. Confirmatory laboratory
work is in progress to clarify this issue. In the presence of significant bimodality, it is possible
that tumour classes that are labelled, say, 0 and−1 should have been labelled 1 and 0, as deter-
mining the modal class in the data when two classes are of similar sizes is difficult. Empirically,
it is possible that the normal class is not the best represented. An incorrect identification of the
normal class in pronouncedly bimodal genes is not necessarily problematic for the molecular
classifications of the samples, but it makes an interpretation of covariation patterns of the genes
involved less reliable.

4.4. An iterative approach examining small subsets of candidate genes
A complementary tool to the visualization of clustered genomic profiles of Fig. 4 is the
visualization of a selected subset of candidate genes, in concert with other information such
as functional annotations. Unlike clustering, this can be an iterative process in which sever-
al subsets are successively identified and examined, on the basis of various mining criteria. We
illustrate one iteration inFig. 5,which showsa collectionof geneswithhighpotential for discrim-
ination. Genes may be grouped. Each group is formed by iteratively choosing a seed gene, and
then identifying a set of genes that are similar to it for display. The goals of displaying groups
are to reduce redundancy in the set of seed genes, to provide additional context to facilitate
interpretations of subtypes, and to make it less likely to select isolated artefacts. It is not critical
that the gene groups contain all the genes that are actually involved in a co-regulated pattern.
Although such a result would be of great biological interest, it is often too difficult a task for the
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Fig. 4. Alternative visualization strategies: (a) centred log-expressions and (b) probabilities of differential
expression (the row and column orderings differ)

type of data sets at hand. Likewise, it is not critical that the gene sets be disjoint. This approach
requires a measure of discriminatory power for ranking seed genes, a measure of similarity of
gene patterns for forming groups and preliminary filters to exclude unlikely candidates. Many
alternatives are available, and the choice between them can affect the results.
Inour illustrationweapplypreliminaryfilters basedonaminimumΣtpgt of 10andaminimum

internal consistency score q.g; g/ of 60/80. We measure discriminatory power with the prob-
ability r of matching a target pattern, given in equation (4). The pattern used in Fig. 5 is
n− = n+ = 25, i.e. genes are ranked on the basis of how similar they are to a hypothetical
gene that is overexpressed in 25 tumours and underexpressed in 25 other tumours, in any order.
Very low values of n− and n+ may lead to mining genes whose pattern is the result of noise or
other artefacts and are unlikely to be useful. Very large values, with no normal expression, may
result from an improper fit of the mixture model. Within these extremes, a wide range of target
frequencies could lead to useful genes. For example, if it were known that a fraction of about
20% of tumours had early local recurrence, we may mine using n− + n+ = 0:2T , even in the
absence of matched phenotype information on the tumours. The display of Fig. 5 is somewhat
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Fig. 5. Visualization of gene expression for the elicitation of classification genes: each column corresponds
to a tumour, with all 80 tumours represented, and ordered via the same hierarchical clustering as in Fig. 4;
each row corresponds to a gene, with genes identified by genbank accession numbers; grey scales represent
differential expression probabilities; horizontal sections corresponding to gene groups are separated by black
lines; at the right-hand side, for each gene, is listed information about the family it belongs to, with each gene
potentially belonging to more than one family

sensitive to the choice of n− and n+. In this application, as n− and n+ are decreased below
10, genes with large overexpressed or underexpressed subsets of samples are no longer selected.
The order in which seed genes are ranked is sensitive to the choice of n− and n+ but the overall
order of groups is less so. As the computation of r is time consuming, we approximate it by
the probability that the vector eg1; : : :; egT is equal to the pattern in the set E.n−; n+/ with the
highest probability of being correct. This can be a poor approximation to the probability r, as
it is only the largest term in a sum of many terms, but it is likely to preserve the ranking of
potential seed genes.
We measure similarity by the probability q, given in equation (5), that a gene has the same

pattern as the seed. In Fig. 5, we set the threshold for adding genes to a group at 60=80, imposing
that genes in a group differ from the seed in no more than 20 tumours in total. The sensitivity to
this threshold is naturally high, as one canmodulate it to create groups that go frombeing empty
to having the size of the entire genome. Here we tuned the threshold starting from high values,
i.e. few genes. The goal here is not so much to identify clusters of co-regulated genes but to
select enough co-regulated genes to provide a context for candidate predictors, and alternatives
to expressed sequence tags in defining marginal molecular profiles.
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Table 1. Abbreviations for gene families

ad adhesion in invasion
an angiogenesis me metabolism
ap apoptosis ne neuroendocrine
cc cell cycle re receptors
ch checkpoint, mitosis, G2-modifiers rn RNA processing and ribosomes
cy cytokines si signal transduction
cs cytoskeletal and secretory st stress
da DNA damage and repair tr transcription factors
dn DNA binding and modification

At the right-hand side of Fig. 5, for each gene, we list information about the family that it
belongs to, where families are defined on the basis of the biological function of the gene (the
gene family keys are given in Table 1). Each gene may belong to more than one family, with
up to two listed here. More elaborate versions of this graph may use additional gene-specific
information to provide a richer context, e.g. by using genomic search tools such as DRAGON
(Bouton and Pevsner, 2000). The list of genbank accession numbers on the left-hand side of
Fig. 5 can be uploaded to DRAGON to generate a Web page with links to database and litera-
ture information about each of the genes. No obvious functional similarity within groups seems
to emerge in this case. Some of the rows correspond to expressed sequence tags of yet unknown
function, whence the lack of functional class information.

4.5. Visualization of profile probabilities
The analysis of Sections 4.3 and 4.4, as well as additional validation with confirmatory assays,
may lead to the identification of genes for molecular classification. The results of the mixture
model can then be useful in representing the assignment of tumours to subtypes and the associ-
ated uncertainty. To illustrate, we select one gene from three of the groups in Fig. 5, focusing on
N94468 (jun B proto-oncogene) from the ninth group from the bottom, AA486312 (cyclin-
dependent kinase 4) from the seventh group from the bottom and AA453831 (hepatoma-

Fig. 6. Molecular profiles probabilities: each row corresponds to one of the 27 molecular profiles defined
by the expression status of genes N94468, AA486312 and AA453831; each column corresponds to a
tumour—for example, the point for row (1,�1,0) for tumour 79 is the probability that the true expression
indicators for tumour 79 are (1,�1,0) with regard to the genes in question
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derived growth factor) from the third group from the bottom. All three have a probability
near 0 of being affected by a loss of signal in the analysis of Section 4.1.
Fig. 6 shows the molecular profile probabilities, with tumours sorted by using hierarchical

clustering. Three large subclasses, (1,1,0), (0,1,0) and (1,0,0), emerge, as well as two smaller
ones: (1,0,1) and (1,1,1). There is uncertainty about the classifications, especially for tumours
that are likely to be in class (0,1,0), many of which also have a significant probability of belong-
ing to class (1,1,0). This display is complementary to genome-wide colour maps. An alternative
approach to that presented here is to use genome-wide maps to select genes and then to use our
mixture analysis and this graph to represent the ensuing assignment probabilities.
The uncertainty represented here concerns the assignment of tumours to marginal profiles

conditionally on the model parameters. Additionally, there is uncertainty about the model
parameters themselves, and uncertainty in the selection of the marginal profile. The latter
uncertainty is complex to quantify because the selection process involves several steps, not all
of which are easily quantified. Parameter uncertainty, however, can be quantified by using the
results from theMCMCoutput. Each of the spots in Fig. 6 is a function of unknown parameters
and for each we can derive a posterior probability distribution.

5. Gene interactions

Complex interactions between expression levels of several genes are likely to be present in can-
cer data. This can be the result of carcinogenic pathways, some of which are well understood,
but many of which may still be unknown. Naturally, an exploration of these interactions is of
interest biologically and eventually clinically. The approach described here can be extended in a
direct way to the exploration of gene interactions. Of special concern is the case inwhich a cancer
subtype is not distinguishable on the basis of a marginal inspection of each gene separately but
may become apparent when multiple genes are considered simultaneously.
One way of thinking about this is to work with subsets of genes, rather than individual genes.

Let s be a set of genes, i.e. a subset of G, and let S be the set of all subsets under consider-
ation. Typically, data sets will only permit a consideration of sets of moderate size, even though
genetic pathways may involve a large number of genes. For illustration, we consider subsets of
two genes.We can again work with a statistical definition of differential expression, constructed
via a mixture approach, by specifying, for each set s comprising two genes g and g′, a joint
distribution of agt and ag′t

agt ; ag′t|.egt = e; eg′t = e′/ ∼ fe;e′.·/
with .e; e′/ taking values in the set {.1;1/; .−1;1/; .1; −1/; .−1; −1/; .0; 0/}; with probabilities
π++

g ;π−+
g , π+−

g ;π−−
g ;1− π++

g − π−+
g − π+−

g − π−−
g . The cases {.0; 1/; .0;−1/; .1; 0/; .−1; 0/},

have been omitted to reflect the fact that the pathway is either activated, in which case both
genes are altered, or not, in which case both genes are normal.
A natural extension of the model of Section 2 to this case is to choose a mixture of a bivariate

normal distribution for the .0;0/ component, and four mutually exclusive bivariate uniform
distributions for the differentially expressed components. Specifically,

f0;0.·/ = N2

{(
αt + µg

αt + µg′

)
;

(
σ2g 0
0 σ2g′

)}
;

f−1;1.·/ = U2
{( −κ−

g + αt + µg

αt + µg′

)
;

(
αt + µg

κ+
g′ + αt + µg′

)}
;
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whereN2 is a bivariate normal distribution and U2 is a bivariate uniform distribution. Densities
for other differentially expressed cases can be defined similarly. The one-dimensional marginal
densities for g and g′ correspond to the sets including only g and only g′, as desired. Gene
selection and visualization can now proceed from the ss rather than the gs.

6. Discussion

We have proposed a strategy for the analysis of gene expression in unclassified tumours, a set-
ting in which there is no natural reference, and often no reliable phenotypic information. We
introduced a statistical definition of differential expression based on latent classes, developed
a probabilistic definition of the molecular profile in this context and proposed a statistical
implementation based on mixture modelling. We discussed generating model summaries that
have simple probabilistic interpretations and using them for visualization, gene clustering and
tumour classification.
A critical assumption is that the important aspect of the variation of gene expression across

tumours can be captured sufficiently well by a three-way categorical variable. Taken literally,
this is unlikely to be true. Yet, at this preliminary phase of genomic research, it may be more
efficient to focus on gross features, rather than attempting to detect the results of subtle changes
in expression that may be obscured by natural biological variation and noise in measurements.
Our categorization may play a constructive role in enabling a combination of results across mi-
croarray technologies that may have different gene-specific sensitivities and/or non-linearities,
and contribute to the critical step of synthesizing information on genomic information.
The strategy outlined here is likely toworkwell when the normal class is relatively large.When

there is evidence of multiple large subgroups, the identification of which class is the normal one
is both more arbitrary and more sensitive to the initialization of the MCMC estimation algo-
rithm. In some experiments, mixture modelling can be informed by additional normal tissue
or by existing known subclasses, both of which could be used to help to identify which of the
latent classes is defined to be normal.
We consideredmolecular classificationbasedongene expression informationonly.Additional

support for the presence of subclasses can be provided by a variety of additional molecular and
more traditional measurements, including information on the outcomes for patients or their
response to therapy. The presence of this additional information adds complexity but also
increases the likelihood of a successful classification.
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