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We describe a novel method for assessing the strength of disease association with single nucleotide polymorphisms (SNPs)
in a candidate gene or small candidate region, and for estimating the corresponding haplotype relative risks of disease,
using unphased genotype data directly. We begin by estimating the relative frequencies of haplotypes consistent with
observed SNP genotypes. Under the Bayesian partition model, we specify cluster centres from this set of consistent SNP
haplotypes. The remaining haplotypes are then assigned to the cluster with the ‘‘nearest’’ centre, where distance is defined
in terms of SNP allele matches. Within a logistic regression modelling framework, each haplotype within a cluster is
assigned the same disease risk, reducing the number of parameters required. Uncertainty in phase assignment is addressed
by considering all possible haplotype configurations consistent with each unphased genotype, weighted in the logistic
regression likelihood by their probabilities, calculated according to the estimated relative haplotype frequencies. We
develop a Markov chain Monte Carlo algorithm to sample over the space of haplotype clusters and corresponding disease
risks, allowing for covariates that might include environmental risk factors or polygenic effects. Application of the
algorithm to SNP genotype data in an 890-kb region flanking the CYP2D6 gene illustrates that we can identify clusters of
haplotypes with similar risk of poor drug metaboliser (PDM) phenotype, and can distinguish PDM cases carrying different
high-risk variants. Further, the results of a detailed simulation study suggest that we can identify positive evidence of
association for moderate relative disease risks with a sample of 1,000 cases and 1,000 controls. Genet. Epidemiol. 29:91–107,
2005. & 2005 Wiley-Liss, Inc.
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INTRODUCTION

The most promising approach for mapping
genes contributing to complex traits is generally
accepted to be disease-marker association studies
of samples of unrelated affected cases and
unaffected controls, provided that the high-risk
variant is not too rare [Risch and Merikangas,
1996; Zondervan and Cardon, 2004]. The power of
this approach depends, in part, on the extent of
linkage disequilibrium (LD) of the high-risk
variant with alleles at flanking markers within a
population of individuals, generated as a result of
the shared ancestry of their chromosomes at the
disease gene. Chromosomes carrying the same
variant tend to share a more recent common

ancestor at the disease gene than random chromo-
somes in the population, and hence are expected
to carry similar marker haplotypes in the flanking
region. The extent of haplotype sharing will
depend on the time to the most recent common
ancestor and the rates of recombination and
marker mutation. As a result, we then expect to
see correlation between disease phenotype and
marker haplotypes, the strength of the correlation
dependent on the penetrances of variants in the
disease gene.

In this report, we focus on association studies
using single nucleotide polymorphism (SNP)
markers in candidate genes or small candidate
regions. One of the attractive features of these
markers for mapping is their abundance through-

Genetic Epidemiology 29: 91–107 (2005)

& 2005 Wiley-Liss, Inc.



out the genome, although each individual poly-
morphism provides relatively little information
about LD. Single-locus analyses, testing for asso-
ciation of each SNP in turn with the disease, are
thus extremely inefficient, even before addressing
the issue of multiple testing with many markers.
For high-density panels of SNPs in candidate
genes or small candidate regions, strong correla-
tions are expected between alleles at different loci
on the same chromosome as a result of LD. Thus,
appropriate multi-locus analyses of SNP haplo-
types can jointly provide evidence of association
for relatively modest gene effects with realistic
sample sizes, even when the individual markers
do not.

A convenient foundation for the development of
statistical methods that take account of the joint
information across multiple linked SNPs is the
logistic regression modelling framework. Assum-
ing multiplicative disease risks, the model is
parameterised in terms of the odds of disease for
each haplotype. Within this framework, it is
straightforward to accommodate covariates,
which may include environmental risk factors,
polygenic effects, or genotypes at unlinked SNPs
to allow for population structure [Pritchard and
Rosenberg, 1999]. The logistic regression model
can also be extended to allow for epistasis and
gene-environment interactions.

A major drawback of haplotype-based analyses
is the requirement of phase information, which
cannot generally be recovered from the genotypes
generated by current SNP typing technology. An
obvious approach to dealing with this problem is
to first reconstruct haplotypes using a statistical
algorithm such as PHASE [Stephens et al., 2001;
Stephens and Donnelly, 2003], and then proceed to
analyse these haplotypes as if they were known to
be correct. However, this approach does not allow
for the uncertainty in the haplotype reconstruction
process, and may lead to inflated estimates
of the level of LD across the region [Morris
et al., 2003] and over-confidence in any results
obtained from the subsequent haplotype-based
association analysis [Morris et al., 2004]. The
appropriate approach to deal with unknown
phase is to consider all possible haplotype con-
figurations consistent with the observed SNP
genotype data, weighted in the logistic regression
likelihood by the corresponding phase assignment
probabilities [Schaid et al., 2002; Zaykin et al.,
2002; Stram et al., 2003].

However, a further problem with haplotype-
based analyses is lack of parsimony, since one

odds parameter is required for each haplotype. To
reduce the dimensionality of the problem, we can
take advantage of the expectation that ‘‘similar’’
marker haplotypes in the region flanking the
disease gene have comparable disease risks. A
number of methods have been proposed that
cluster SNP haplotypes according to some simi-
larity metric, and then assign the same disease
odds to all haplotypes within the same cluster,
reducing the number of parameters required
[Templeton et al., 1987, 1988, 1992; Templeton
and Sing, 1993; Molitor et al., 2003a,b; Durrant
et al., 2004].

In this report, we develop a novel method for
the analysis of population-based association stu-
dies using unphased SNP genotype data directly.
We begin by obtaining maximum likelihood
estimates of the relative frequencies of haplotypes
consistent with the observed SNP genotypes via
implementation of the expectation-maximisation
(E-M) algorithm [Excoffier and Slatkin, 1995].
Under the Bayesian partition model [Knorr-Held
and Rasser, 2000; Denison and Holmes, 2001], we
specify ‘‘cluster centres’’ from the set of consistent
SNP haplotypes, with each cluster allocated a
disease odds parameter. The remaining SNP
haplotypes are then assigned to the ‘‘nearest’’
centre, where similarity is defined in terms of
marker allele matches. A similar approach has
been utilised by Molitor et al. [2003b] in the
context of fine-scale mapping with phased hap-
lotype data. Uncertainty in phase assignment is
addressed by considering all possible haplotype
configurations consistent with each unphased
genotype, weighted in the logistic regression
likelihood by their probabilities, calculated ac-
cording to the estimated relative haplotype fre-
quencies [Schaid et al., 2002; Zaykin et al., 2002].
In this way, we naturally allow for missing
genotype data by considering all haplotypes
consistent with each possible genotype at an
untyped locus. We develop a reversible jump
Markov chain Monte Carlo (MCMC) algorithm to
sample over the space of haplotype clusters and
corresponding odds, allowing for additional cov-
ariates. Output from the algorithm can be used to:
(1) estimate relative-risks of disease for each
haplotype consistent with the observed unphased
genotype data, treating the most common haplo-
type as baseline; (2) identify clusters of haplotypes
with similar disease risks; (3) identify groups of
cases carrying the same high-risk variants; and (4)
estimate the posterior probability of haplotype
association with the disease.
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We illustrate the method by application to high-
density unphased genotype data collected across
an 890-kb region flanking the CYP2D6 for associa-
tion with a recessive poor drug metaboliser (PDM)
phenotype [Hosking et al., 2002]. Our analysis
provides overwhelming evidence of association of
the PDM phenotype with SNP haplotypes across
the candidate region. Further, by constructing a
dendogram of common SNP haplotypes consis-
tent with the observed unphased marker genotype
data, we identify two high-risk clusters, each
associated with a different mutation in CYP2D6.
We are also able to distinguish PDM cases
carrying two copies of the most common high-
risk mutation at the CYP2D6 locus, from those
carrying other, rarer mutations. Finally, we present
a detailed simulation study to evaluate the
performance of the method to detect haplotype
associations across a candidate gene (or small
candidate region o100-kb) for a putative disease
gene. The results are encouraging, indicating that
this approach can be used to identify associations
for moderate relative disease risks with a sample
of 1,000 cases and 1,000 controls.

MODEL AND METHODS

Consider a case-control sample of N unrelated
individuals, typed at M marker SNPs in a
candidate gene or region, yielding genotypes G,
with alleles coded 1 and 2 at each locus, and 0
denoting missing data. The disease status of
individual i is denoted yi¼1 if affected and yi¼0
if unaffected, with additional covariates denoted
xi. The set of n distinct marker SNP haplotypes
consistent with the observed genotypes, G, is
denoted H ¼ fH1;H2; . . . ;Hng where H1 is the
most common haplotype. Relative haplotype
frequencies, h, are estimated by means of max-
imum likelihood from the available genotype data
via implementation of the E-M algorithm.

Within a logistic regression framework, the key
parameters of interest are haplotype log-odds of
disease, c. Under the Bayesian partition model, c
is determined precisely by the assignment of
haplotypes to clusters, referred to as a tessellation,
T, and corresponding cluster log-odds, b. Thus,
we can obtain estimates of the haplotype log-odds
by considering the joint posterior density function
f(T, b, y|y, G, h, x), where y denotes a set of
additional model parameters, including covariate
regression coefficients, g. In particular, the mar-
ginal posterior distribution of haplotype log-odds

can be obtained by integration,

f c j Dð Þ ¼
Z
y

f T;b; y j Dð Þqy;

where D ¼ y;G; x;hf g denotes observed data and
relative haplotype frequencies. By Bayes’ theorem,

f T; b; y j Dð Þ / f y jG;h; x;T;b; yð Þ f T; b; yð Þ; ð1Þ
where f y jG;h; x;T; b; yð Þ denotes the likelihood of
disease phenotypes given the assignment of
marker SNP haplotypes to clusters in tessellation
T, the corresponding cluster log-odds b and
additional model parameters, y, and f T;b; yð Þ
denotes their joint prior density.

HAPLOTYPE TESSELLATION STRUCTURE

A tessellation, T, is defined by specifying K
cluster centres, C¼{C1, C2, y, CK}, ordered and
without replacement from the set of haplotypesH.
The haplotype Hj is then assigned to the cluster
with maximum similarity metric, defined as

Sjk ¼
1

M

XM
m¼1

sjk½m�

for cluster center Ck, denoted T Hj

� �
. The SNP

similarity metric, sjk½m�, is given by

sjk½m� ¼
1 if Hj½m� ¼ Ck½m�
0 if Hj½m� 6¼ Ck½m�;

�

where Hj½m� and Ck½m� denote the allele present at
SNP m on haplotype Hj and cluster centre Ck,
respectively. If haplotype Hj is equidistant from
more than one cluster centre, it is assigned to that
with minimum k.

LIKELIHOOD CALCULATION

For unphased genotype data, there is a set of Pi

ordered haplotype pairs, Hi ¼ fH1
i ;H

2
i ; :::;H

Pi

i g,
consistent with the observed genotype Gi for
individual i. The likelihood term can then be
expressed as a summation over Hi, weighted by
the corresponding phase probabilities,

f y jG;h; x;T; b; yð Þ

/
YN
i¼1

XPi

p¼1

f Yi jHp
i ; xi;T; b; g

� �
f H

p
i jGi;h

� �
:
ð2Þ

Assuming Hardy-Weinberg equilibrium,

f H
p
i jGi;h

� �
¼ h

p
i1h

p
i2

f Gi jhð Þ ;

where h
p
i1 and h

p
i2 are the relative frequencies of the

pair of haplotypes H
p
i1 and H

p
i2 in configuration H

p
i ,
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and f Gi jhð Þ ¼
PPi

p¼1 h
p
i1h

p
i2. Within a logistic re-

gression framework,

f Yi jHp
i ; xi;T; b; g

� �
¼

exp Zp
i

� �yi

1þ exp Zp
i

� � :
Assuming a multiplicative disease model, the
linear component is given by

Zp
i ¼ bT H

p

i1½ � þ bT H
p

i2½ � þ
XL

l¼1

glxil;

where T H
p
i1

� �
and T H

p
i2

� �
denote the assignments

of the pair of haplotypes H
p
i1 and H

p
i2, respectively,

to clusters in tessellation T.

PRIOR DENSITY FUNCTION

Covariate regression coefficients, g, are as-
sumed to be distributed MVN(0, s2

C x0xð Þ�1Þ,
independent of the tessellation and cluster log-
odds, a priori [George and McCullogh, 1993].
Conditional on the number of clusters, K, in the
tessellation, cluster log-odds, b, are assumed to be
distributed MVN(m1, s2

BIK), and independent of
the choice of cluster centres, C, a priori. In
defining the tessellation, each of the n distinct
haplotypes in H has equal prior probability of
selection as one of the K cluster centres, C. Hence,
the joint prior density function can be expressed
as

f T; b; yð Þ ¼f C jKð Þ f b jK;m;sBð Þ
�f Kð Þ f mð Þ f sBð Þ f g jsCð Þ f sCð Þ;

where f C jKð Þ / n� Kð Þ! and

f g jsCð Þ /detðx0xÞ
sC

exp � g0 x0xð Þg
2s2

C

� �
;

f b jK;m;sBð Þ / 1

sB

YK
k¼1

exp � bk � mð Þ2

2s2
B

" #
:

The unconditional prior density of the number of
clusters is given by

f Kð Þ ¼ 0:5 if K ¼ 1
0:5�K 1� 0:5ðn�1Þ� �� ��1

if K41

�

Under this model, the prior probability of exactly
one cluster is 0.5, whilst the prior probability of
more than one cluster has a truncate geometric
distribution. The prior mean cluster log-odds has
a prior uniform distribution so that f mð Þ / 1. The
prior standard deviations of b and g, have
exponential distributions with expectation 1, a
priori, given by f sBð Þ / exp �sB½ � and f sCð Þ /
exp �sC½ �, respectively.

MCMC ALGORITHM

We have developed a Metropolis-Hastings
MCMC algorithm [Metropolis et al., 1953;
Hastings, 1970] to approximate the joint
posterior density of model parameters Z ¼ C;K;f
b; g;m;sB;sCg, expressed as f Z jDð Þ in equation
(1). The dimensionality of the parameter
space depends on the number of clusters, K,
of haplotypes. To account for this, we incorporate
a birth-death process for the number of
clusters via implementation of a reversible-jump
step in the MCMC algorithm [Green, 1995].
At each step of the algorithm, a candidate set
of new parameter values, Z0, is proposed by
making a ‘‘small’’ change to the current
parameter set. The candidate values are accepted
in place of Z with probability f Z0 jDð Þ=f Z jDð Þ.
Otherwise, the current values of Z are retained.
Full details of the algorithm are presented in
Appendix A2.

The algorithm is run for an initial ‘‘burn-in’’
period to allow convergence from a randomly
selected set of starting values of Z. In the
subsequent sampling period, each parameter set
accepted, or retained, by the algorithm represents
a random draw from the posterior density (1). To
reduce autocorrelation between consecutive
draws, only every tth set of parameter values, Z,
is recorded for some suitably large t.

Output of the MCMC algorithm can be used
directly to approximate the posterior distribution
of the log-odds, cj, of haplotype Hj. Over R
recorded MCMC outputs, the posterior mean of
the log-odds of haplotype Hj is given by

ĉj ¼
1

R

XR

r¼1

bðrÞ
T Hj½ �ðrÞ

;

where bðrÞ
T Hj½ �ðrÞ

denotes the log-odds of the cluster

to which haplotype Hj is assigned in the rth
output.

Assuming the disease to be rare, we can
approximate the posterior mean log-relative risk,
fj, of haplotype Hj, treating the most common
haplotype, Hj as baseline, given by

f̂j ¼
1

R

XR

r¼1

bðrÞ
T Hj½ �ðrÞ

� bðrÞ
T H1½ �ðrÞ

� �
;

with posterior variance

V fj

� 	
¼ 1

R� 1ð Þ
XR

r¼1

f̂j � bðrÞ
T Hj½ �ðrÞ

þ bðrÞ
T H1½ �ðrÞ

� �2

:
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POSTERIOR PROBABILITY OF ASSOCIATION

In the absence of disease-marker association in
the candidate gene, we expect all haplotypes to
have the same risk, and hence to fall into a single
cluster. We can thus approximate the posterior
probability of haplotype association with disease,
r ¼ f K41 j Dð Þ, given by the proportion of MCMC
outputs for which the number of clusters exceeds
1. The prior probability of more than one cluster
of haplotypes, f(K41), is 0.5, so that r̂40:5 is
‘‘suggestive’’ of association. By convention,
r̂40:75 is taken as ‘‘positive’’ evidence of associa-
tion, r̂40:95 as ‘‘strong’’ evidence, whilst ‘‘over-
whelming’’ evidence corresponds to r̂40:99 [Kass
and Raftery, 1995].

POSTERIOR SUMMARY OF HAPLOTYPE
DIVERSITY

Our prior model of the haplotype tesselation
structure takes account only of pairwise diversity
due to their allelic makeup. We propose a poster-
ior measure of similarity between a pair of
haplotypes that also takes account of similarity
due to disease risk, given by the proportion of
MCMC outputs for which they are assigned to the
same cluster of the tesselation. This similarity
metric can be used to construct a dendogram to
summarise the posterior tesselation of haplotypes
using standard average-linkage hierarchical clus-
tering techniques [Hartigan, 1975].

SOFTWARE AVAILABILITY

The GENEBPM software has been developed to:
(1) obtain maximum likelihood estimates of the
relative frequencies of haplotypes consistent with
a sample of observed SNP genotypes via applica-
tion of the E-M algorithm; and (2) implement the
reversible jump algorithm to sample over the
space of haplotype clusters and corresponding
odds under the Bayesian partition model, allow-
ing for additional covariates in the logistic regres-
sion framework. GENEBPM is available as a linux
executable on request from the author, together
with additional software to summarise the output
of the algorithm.

EXAMPLE APPLICATION

The gene CYP2D6 on human chromosome
22q13 has an established role in drug metabolisa-
tion [Evans and Relling, 2000]. Hosking et al.
[2002] genotyped 1,018 individuals at 32 SNP
markers across an 890-kb region flanking CYP2D6

to evaluate the efficacy of LD mapping methods
to identify the gene. The sample was also typed
for four known functional polymorphisms in
CYP2D6. A total of 41 individuals were found to
carry two mutant alleles across any of the four
functional polymorphisms, and hence were pre-
dicted to be recessive poor drug metaboliser
(PDM) cases. No additional covariates were
obtained.

We present the results of analysis of the
candidate region using the GENEBPM algorithm
developed here to identify high-risk haplotypes
across the 32 marker SNPs, but excluding the
functional polymorphisms. Implementation of the
E-M algorithm identified 878 marker SNP haplo-
types consistent with the observed genotype data.
Each run of the MCMC algorithm consisted of an
initial 100,000-iteration burn-in period to allow
convergence from a random starting parameter
set. In the subsequent 1-million-iteration sampling
period, output of the algorithm was recorded
every t¼1,000th iteration. The total run time of the
algorithm, including relative haplotype frequency
estimation, was less than 12 h on a dedicated
Pentium IV processor.

Figure 1 presents a summary of the output from
a single run of the MCMC algorithm (1,000
recorded sampling outputs). Figure 1a illustrates
a trace of the scaled log-likelihood to check
convergence. Figure 1b illustrates the correspond-
ing autocorrelation function, providing no evi-
dence of correlation between outputs. Figure 1c
presents a trace of the number of clusters, K, of
haplotypes, with the corresponding approxima-
tion to the posterior distribution presented in
Figure 1d. The number of clusters ranges from 3 to
22, with a mode of 5. There is overwhelming
evidence of haplotype association with PDM, with
posterior probability r̂40:999. Figures 1e and 1f
present approximations to the posterior distribu-
tions of model hyperparameters (m and sB). The
posterior mean of m is �5.026, with posterior
standard deviation 2.231, compared with the prior
mean of 0. Similarly, the posterior distribution
of sB has mean 3.596, with standard deviation
1.221, compared with the prior mean of 1.

Figure 2 presents a dendogram of the 41 marker
SNP haplotypes with estimated relative frequency
hjZ0.5%, to illustrate the posterior similarities
between them in terms of disease risk and allelic
makeup, generated from the output of a single run
of the MCMC algorithm. Haplotypes are coded
according to their relative frequency, where 1
denotes the most common. Broadly, we can
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identify four clusters of haplotypes, summarised
in Table I, and labelled A–D in Figure 2. Cluster A
contains high-risk haplotypes, with posterior
mean log-relative risks in the range 7.25–7.28,
taking the most common haplotype as baseline.
This cluster of haplotypes carries the most
common high-risk mutation in CYP2D6. Cluster
B also contains high-risk haplotypes, this time
carrying a rarer mutation in CYP2D6, with lower
posterior mean log-relative risks, ranging from
2.12 to 3.05. Clusters C and D contain lower-risk
haplotypes, with posterior mean log-relative risks
of less than 0.24.

As a final stage in the analysis, we consider the
relatedness of the 41 PDM cases, illustrated by the
dendogram presented in Figure 3, constructed
using hierarchical clustering techniques, based on

the output from a single run of the MCMC
algorithm. Here, the similarity between a pair of
individuals is defined by the posterior mean
number of haplotypes they share from the same
cluster over all MCMC outputs. For the rth output,
the mean sharing is calculated over all combina-
tions of possible phase assignments for the two
individuals, weighted by the product of their
relative probabilities. For each combination of
phase assignments, sharing is scored as 2 if the
individuals share both pairs of haplotypes from
the same cluster(s), 1 if the individuals share one
pair of haplotypes from the same cluster, and 0
otherwise. Figure 3 indicates the genotype of each
PDM case at the CYP2D6 locus, where 1 and 2 are
mutations associated with clusters A and B,
respectively, and 3 is a much rarer mutation. The
dendogram distinguishes individuals with differ-
ent genotypes at CYP2D6 with remarkable accu-
racy. The 32 individuals carrying the 1/1 genotype
at CYP2D6 form a tight cluster, with posterior
mean haplotype cluster sharing of near 2, as
expected. The same is true for the 7 individuals
with CYP2D6 genotype 1/2. The 40 individuals
carrying at least one copy of the common
mutation at CYP2D6 (genotypes 1/1, 1/2, and
1/3) also form a cluster, with posterior mean
haplotype sharing of approximately 1, again as
expected.

To assess the effect of sporadic, non-genetic
cases of PDM on the haplotype association, we
repeated our analysis of the Hosking et al. [2002]
sample, but with 41 randomly selected controls
mislabeled as cases. Controls carry at most one
copy of any mutation in CYP2D6: among the
subset of mislabeled individuals, genotypes 0/0
(no mutations), 0/1 (one copy of the mutation
carried by cluster A), and 0/2 (one copy of the
mutation carried by cluster B) were observed.
Despite the increased heterogeneity among the
cases, our analysis still provided overwhelming
evidence of haplotype association with PDM
across the candidate region (r̂40:999). Figure 4
presents a dendogram to illustrate the relatedness
of the 41 PDM cases, and 41 mislabeled controls,
generated from the output from a single run of the
MCMC algorithm. This time, the two main
clusters of the dendogram distinguish individuals
carrying at least one copy of the most common
mutation (genotypes 0/1, 1/1, 1/2, and 1/3) from
those not carrying the most common mutation
(genotypes 0/0, 0/2, and 2/3). Within the com-
mon mutation clade, the dendogram successfully
identifies a single cluster of individuals carrying
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two copies of the most common mutation (geno-
type 1/1).

SIMULATION STUDY

We present details of a simulation study to
investigate the utility of the proposed method for

detecting haplotype associations across a candi-
date gene or small region (o100-kb) for a complex
disease with 1% population prevalence. We
investigate the properties of the posterior prob-
ability of haplotype association, r̂, for a range of
complex disease models, encompassing one or
two high-risk variants. For each model, we
generate 500 replicates of unphased case-control

TABLE I. Posterior mean (Standard Deviation) log-relative haplotype risks, /̂j, for PDM phenotype across 890kb
candidate region flanking gene CYP2D6, treating the most common haplotype, H1, as baseline

Cluster j hj (%) cj fj(SD) Marker SNP haplotype Hj

A 3 3.42 1.322 7.282 (1.567) 11111111121121111121111121222111
5 2.42 1.322 7.282 (1.567) 11111111121121111121111121221111
6 2.35 1.324 7.284 (1.567) 11111111121121111121111121111111

20 0.97 1.322 7.282 (1.567) 11111111121121111121111121221112
25 0.86 1.324 7.284 (1.567) 11111111121121111121111121111112
27 0.82 1.323 7.283 (1.568) 11111111121121111121112121111111
28 0.78 1.288 7.248 (1.635) 11121111111121111121111111221111
32 0.73 1.324 7.284 (1.568) 11111111111121111121111121111111
34 0.67 1.322 7.282 (1.568) 11111111111121111121111121221111

B 11 1.66 �2.983 2.977 (1.537) 22122111111212211112111111111111
17 1.10 �2.907 3.054 (1.502) 22122111111212211112111111111221
19 0.98 �3.748 2.212 (2.405) 22122111111212211122111111111111
22 0.93 �3.841 2.119 (2.533) 22122111111212211122111111112111
23 0.92 �3.023 2.937 (1.567) 22122111111212211112111111111121
26 0.86 �3.298 2.662 (1.892) 22122111111212211112111111221111

C 2 4.66 �8.591 �2.631 (2.943) 11111111111111122211111112221111
7 2.34 �8.460 �2.500 (3.250) 22122111212121121211111111112111
9 1.71 �8.524 �2.564 (3.178) 22122111212121121211111111111121

10 1.71 �8.574 �2.614 (2.951) 11111111121111122211111112221111
16 1.20 �8.531 �2.571 (2.914) 11111222112111122211111112221111
21 0.96 �8.567 �2.607 (3.075) 11111111111111122211111112111221
31 0.76 �8.539 �2.579 (3.076) 11111222112111122211111112221112
33 0.68 �8.124 �2.164 (3.220) 22122111212111122211111112221111
35 0.65 �8.159 �2.198 (3.151) 22122111222111122211111112221111
37 0.64 �8.388 �2.427 (3.242) 22122111212121121211111111111221
38 0.64 �8.598 �2.638 (3.075) 11111111111111122211111112221112
39 0.55 �8.495 �2.535 (3.040) 11111222112111122211111112221221
41 0.51 �8.634 �2.674 (3.118) 11111111112111122211111112111111

D 1 6.90 �5.960 BASELINE 11111111111212211112111111221111
4 3.02 �5.725 0.235 (1.384) 11111111111212211112111111111121
8 1.91 �6.069 �0.108 (1.342) 11111111111212211112111111112111

12 1.65 �5.988 �0.027 (0.710) 11111111111212211112111111221112
13 1.52 �5.980 �0.020 (0.821) 11111111111212211112111111111111
14 1.40 �5.778 0.182 (1.572) 11111111111212211112111111111221
15 1.33 �6.009 �0.049 (0.902) 11111111111212211122111111221111
18 1.00 �6.020 �0.060 (1.099) 11111111111212211111111111111111
24 0.90 �5.853 0.107 (1.773) 11111122211212211112111111111121
29 0.76 �5.834 0.126 (1.488) 11111111111212211112111111221221
30 0.76 �5.980 �0.019 (0.784) 11111111111212211111111111221111
36 0.65 �6.009 �0.048 (0.983) 11111111121212211112111111111111
40 0.53 �5.781 0.179 (1.364) 11111111111212211112111111121121

Rank j refers to ordered relative frequency among all haplotypes, where 1 is the most common (baseline), and corresponds to labels in
Figure 2.

Morris98



marker genotype data, allowing for the bias
towards common SNPs in the public databases.
Each replicate is obtained as follows:

1. Generate an ancestral recombination graph
[Griffiths and Marjoram, 1997] for a population
of 20,000 SNP haplotypes from a realisation of
the coalescent process with recombination,
obtained using the MS software [Hudson,
2002]. We assume a mutation rate of 10�8 per
base (in each generation) and a recombination
rate of 1 cM per Mb, for an effective population
size of 10,000 individuals, corresponding
to scaled recombination and mutation rates of
400 per Mb [Nordborg, 2001].

2. Select the high-risk disease variant(s) at ran-
dom from all SNPs ‘‘close’’ to a pre-specified
minor allele frequency (MAF), q.

3. Test each remaining SNP for ascertainment in
the public databases: the probability that a SNP
is ascertained is given by 4�MAF� (1-MAF).

4. Select the required number of marker SNPs, at
random, from all ascertained SNPs.

5. Generate a diploid individual by sampling a
pair of haplotypes at random, and with
replacement, from the population of 20,000
chromosomes. Generate the phenotype of this
individual according to their genotype(s) at the
disease variant(s) and the disease model.
Repeat this step until the required numbers of
affected cases and unaffected controls are
obtained.

6. Retain the unphased genotypes of each indivi-
dual only at the marker SNPs, ordered by
physical location.

For each replicate of data, we perform a single
run of the GENEBPM algorithm. After haplotype
frequency estimation, each run of the MCMC
algorithm consists of an initial 100,000-iteration
burn-in period to allow convergence from a
random starting parameter set, with output
recorded every 1,000th iteration of the subsequent
1-million-iteration sampling period. From the
output of the algorithm, we estimate the posterior
probability, r̂, of haplotype association with the
disease.

NULL MODEL: NO HIGH-RISK DISEASE
VARIANTS

We begin by considering the null model of no
disease-marker association across the candidate
region. Table II presents the mean posterior
probability of association, r̂, together with the
proportion of replicates for which there is positive
evidence (r̂40:75) and strong evidence (r̂40:95)
of haplotype association, for a range of sample
sizes, across two different candidate regions.
There is some evidence to suggest that the mean
posterior probability of association increases as
the sample size is reduced. However, the mean
posterior probability of association remains below
the prior probability of 0.5, and the proportion of
replicates with false-positive evidence of associa-
tion is less than 1%, regardless of sample size or
the candidate region under consideration.

ONE HIGH-RISK DISEASE VARIANT

We consider next the case of disease-marker
association generated as a result of a single high-
risk variant in the candidate gene for a sample
of 1,000 cases and 1,000 controls. This model of
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association is parameterised in terms of the
population relative frequency of the high-risk
variant and the genotype relative risks (GRRs) of
individuals homozygous and heterozygous for the
high-risk variant, with the homozygous low-risk
variant genotype taken as baseline.

Figure 5 presents the mean posterior probability
of association, r̂, together with the proportion of
replicates for which there is positive evidence
(r̂40:75) and strong evidence (r̂40:95) of haplo-

type association, as a function of GRRs for a high-
risk variant frequency of 0.2, in a 100-kb candidate
region spanned by 10 SNPs. For moderate relative
risks (GRRs of 1.5), the mean posterior probability
of association exceeds the prior of 0.5. In addition,
the proportion of replicates with positive evidence
of association exceeds 30%, even with a sample of
just 1,000 cases and 1,000 controls.

Figures 6 and 7 present the proportion of
replicates for which there is positive evidence

TABLE II. Mean posterior probability of association, q̂ together with the proportion of replicates for which there is
positive evidence (q̂40.75) and strong evidence (q̂40.95) of haplotype association, for a range of sample sizes, across two
different candidate regions, in the absence of a disease gene

Proportion of replicates

Candidate region Sample size cases/controls Mean number of haplotypes Mean r̂ r̂40.75 r̂40.95

5 SNPs in 50kb 200/200 11.73 0.415 0.000 0.000
500/500 12.68 0.398 0.006 0.000

1,000/1,000 13.11 0.385 0.002 0.002

10 SNPs in 100kb 200/200 41.05 0.417 0.004 0.002
500/500 47.27 0.400 0.002 0.000

1,000/1,000 50.51 0.387 0.002 0.002
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(r̂40:75) of association as a function of GRRs, for
high-risk variant frequencies of 0.1 and 0.2, in two
different candidate regions. The probability that
we obtain positive evidence of association is less
for the rarer high-risk variant. This is not
unexpected since, for rarer variants, individuals
carrying two high-risk alleles contribute less to the
overall prevalence of the disease. A similar
pattern of results is observed for both candidate
regions.

TWO HIGH-RISK DISEASE VARIANTS

Finally, we consider a range of models for
disease-marker association generated by two
interacting high-risk variants in the same candi-
date gene. We assume that the two high-risk
variants occur with the same population relative
frequency, and interact with positive epistasis.
Under this model, any individual carrying at least
one high-risk variant at both loci has the same GRR
of disease, with all other genotypes taken as
baseline.

Table III presents the mean posterior probability
of association, r̂, together with the proportion of
replicates for which there is positive evidence
(r̂40:75) and strong evidence (r̂40:95) of haplo-
type association, as a function of GRR for two
interacting high-risk variants, each with frequency
of 0.1 or 0.2, in a 100-kb candidate region spanned
by 10 SNPs. For the more common high-risk

variants (frequency 0.2), the mean posterior prob-
ability exceeds the prior of 0.5 for moderate relative
GRRs of 1.5, although the proportion of replicates
with positive evidence of association is only 15%. A
similar pattern of results is observed for the rarer
high-risk variants (frequency 0.1), although the
evidence of association is not as strong.

DISCUSSION

It is widely accepted that appropriate analyses
of SNP haplotypes may provide evidence of
association for the modest gene effects expected
for complex traits with realistic sample sizes, even
when the individual SNPs themselves do not.
However, there are two major drawbacks of
haplotype-based analyses with many SNPs: lack
of parsimony and unknown phase.

Reducing the dimensionality of haplotype space
to obtain a more parsimonious model of disease-
marker association is not a new idea [Templeton
et al., 1987]. Here, we take the same approach as
Molitor et al. [2003b], clustering haplotypes
according to a Bayesian partition model. We
measure the similarity between pairs of haplo-
types by the proportion of SNPs at which they
carry the same allele. Such a metric is consistent
with haplotype diversity driven by marker muta-
tion, with minimal ancestral recombination, a
reasonable assumption for candidate genes or
small candidate regions. There are, of course,
many other metrics. For example, we could
weight SNP matches according to allele frequency
[Durrant et al., 2004] or measure haplotype
sharing around a putative disease locus [Molitor
et al., 2003a, b] to extend the method for fine
mapping. An alternative metric would treat all
haplotypes as equally similar, with the result that
clustering occurs with respect to disease risk,
without regard to allelic makeup. However, this
metric does not take account of the expected
patterns of haplotype diversity generated as a
result of their shared ancestry, and may have a less
stable tesselation structure when there are rare
haplotypes. In general, we would expect the equal
similarity metric to perform less well than those
taking account of allelic makeup, unless our
model of haplotype evolution were inapporopri-
ate. One such example would be a candidate
region with high rates of recombination although,
in this scenario, the phase assignment process
would be inaccurate, and haplotype-based ana-
lyses would not be recommended.

TABLE III. Mean posterior probability of association, q̂,
together with the proportion of replicates for which there
is positive evidence (q̂40.75) and strong evidence
(q̂40.95) of haplotype association, as a function of
genotype relative risk (GRR) for two interacting high-
risk variants, each with frequency of 0.1 or 0.2, in a
100-kb candidate region spanned by 10 SNPs, for
a sample of 1,000 cases and 1,000 controls

Frequency of
Proportion of replicates

high-risk variants GRR Mean r̂ r̂40.75 r̂40.95

0.2 1.1 0.391 0.006 0.002
1.2 0.404 0.014 0.006
1.5 0.506 0.146 0.068
2 0.719 0.516 0.408
5 0.993 0.998 0.966

0.1 1.1 0.388 0.006 0.002
1.2 0.390 0.006 0.000
1.5 0.422 0.040 0.014
2 0.562 0.270 0.208
5 0.759 0.570 0.456
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We deal with unknown phase in the same way
as Schaid et al. [2002] and Zaykin et al. [2002] by
first obtaining maximum likelihood estimates of
the relative frequencies of haplotypes consistent
with the observed unphased SNP genotype data
via implementation of the E-M algorithm. The
resulting phase assignment probabilities calculated
from these estimated haplotype frequencies are
then treated as weights for each unphased geno-
type in the logistic regression model. However, we
could easily incorporate the posterior probabil-
ities of phase assignment generated by PHASE
[Stephens et al., 2001; Stephens and Donnelly,
2003], or other Bayesian haplotype reconstruction
algorithms. Alternatively, we could treat unknown
phase as a latent variable to be updated in the
MCMC algorithm, as implemented by Morris et al.
[2004] in the context of fine mapping with
unphased SNP genotype data, using the estimated
phase assignment probabilities, a priori. However,
this approach would add considerably to the
computational burden of the algorithm.

We have illustrated here the utility of the
GENEBPM algorithm in the analysis of retro-
spective case-control studies (as in the Simulation
Study) and prospective cohorts (as in the Example
Application). However, the prospective likelihood
(2) does not take account of ascertainment. The
over-representation of affected individuals in
case-control samples will lead to inflated esti-
mates of high-risk haplotype frequencies in the
E-M algorithm, and will introduce bias in the
corresponding haplotype relative-disease risk es-
timates. One solution to the problem would be to
restrict haplotype frequency estimation to the
control sample, but this may exclude rare high-
risk haplotypes in the case sample. The correct
approach would be to include an ascertainment
correction in the propsective likelihood (2) as
developed by Stram et al. [2003], with joint
estimation of population haplotype frequencies
and haplotype relative-disease risks. However,
this is not possible here as the phase assignment
probabilities are fixed in the prospective like-
lihood (2), given by relative haplotype frequencies
estimated by the E-M algorithm, without regard to
ascertainment. Nevertheless, if we are prepared to
accept that the haplotype frequencies are nuisance
parameters, Stram et al. [2003] have demonstrated
that haplotype relative disease risk estimates are
generally only slightly biased.

Within the Bayesian paradigm, we cannot
formally test the null hypothesis of no haplotype
association with disease. However, the GENEBPM

algorithm can be used to approximate the poster-
ior probability of association, given by the
proportion of MCMC outputs for which there is
more than one cluster in the haplotype tessella-
tion. Assuming the prior probability of one cluster
to be 0.5, a posterior probability of association of
0.75 corresponds to odds of 3:1 against the null
hypothesis. Our simulation study suggests that
this cut-off corresponds to a false-positive error
rate of less than 1% for a range of sample sizes and
candidate regions. However, to test more formally
for association, we recommend generating the
empirical null distribution of the posterior prob-
ability of association over many permutations
obtained by randomly exchanging the case and
control labels of pairs of individuals. Such an
approach is computationally intensive, but not
unrealistic.

The method presented here is designed for use
in candidate genes or small candidate regions. The
GENEBPM algorithm is currently limited to the
analysis of haplotypes of up to 100 marker SNPs.
To improve the efficiency of the E-M algorithm to
allow for large numbers of SNPs in the initial
haplotype frequency estimation procedure, hap-
lotypes are built up locus-by-locus, ‘‘culling’’
phase assignments with low probability at each
stage, in the same way as SNPHAP (http://www-
gene.cimr.cam.ac.uk/clayton/software/snphap.
txt). The algorithm could be used to analyse all
SNPs in a candidate region, or a subset of tag
SNPs selected to take advantage of the underlying
patterns of LD between markers. Analysis of all
SNPs may provide more ‘‘refined’’ clustering of
haplotypes, but will be considerably less cost
efficient than the tag SNP subset in terms of
genotyping. However, the joint analysis of many
SNPs across large candidate regions, or complete
chromosomes in a genome scan, would not be
realistic because of the effects of recombination on
the clustering process and the expected inaccura-
cies in the phase assignment process. We could
consider breaking the candidate region into
‘‘blocks’’ of strong LD, and to treat each block as
independent. Alternatively, we could treat the
candidate region as a sliding window of adjacent
SNPs, with independent analyses performed
within each window, and appropriate correction
for multiple testing. We would expect peaks in the
posterior probability of association to indicate the
most likely regions to harbour genes contributing
to disease risk, and this may help to prioritise
further genotyping in an attempt to refine loca-
tion.
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APPENDIX A1

GLOSSARY OF NOTATION

yi phenotype of individual i: 0 unaf-
fected and 1 affected

Gim genotype of individual i at marker
SNP m

xil response of individual i for lth cov-
ariate

Hj jth most frequent marker SNP haplo-
type consistent with genotype data

hj estimated relative frequency of
haplotype Hj
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Pi number of phase assignments consis-
tent with marker SNP genotype of
individual i

H
p
i1;H

p
i2


 �
pair of marker SNP haplotypes con-
stituting pth phase assignment con-
sistent with genotype of individual i

cj log-odds of disease for marker SNP
haplotype Hj

fj log-relative risk of disease for marker
SNP haplotype Hj, treating most
common haplotype, H1, as baseline

K number of clusters of marker SNP
haplotypes

Ck marker SNP haplotype centre of clus-
ter k

T Hj

� �
cluster assignment of haplotype Hj in
tessellation T

bk log-odds of disease for cluster k
gl regression parameter for lth covariate
m mean cluster log-odds of disease
sB standard deviation of cluster log-odds

of disease
sC standard deviation of covariate re-

gression parameters
r posterior probability of haplotype

association
y additional model parameters:

g; m;sB;sCf g

APPENDIX A2

DETAILS OF THE MCMC ALGORITHM

We have developed a reversible jump Metropo-
lis-Hastings MCMC algorithm to approximate the
posterior density function f Z jDð Þ, given by
equation (1) where Z ¼ C;K;b; g; m;sB;sCf g, and
observed data D ¼ y;G; x;hf g. For each iteration

of the algorithm, a new set of parameter values, Z0,
is proposed, according to predetermined weights,
w, summarised in Table IV. The proposed para-
meter values are substituted for the current set,
provided that

D
f Z0 jDð Þ
f Z jDð Þ4e;

where e is a standard uniform random variable,
and D denotes the Hastings’ ratio of proposal
probabilities,

D ¼ t Z0 ! Zð Þ
t Z ! Z0ð Þ :

Otherwise, the current set of parameter values is
retained. The possible changes to the parameter
set are summarised below, where e is a standard
uniform random variable.

Change 1: Propose a cluster birth. The proposed
number of clusters is given by K¼K+1. Select a
position, kn, at random for the new cluster in the
list of ordered cluster centres. Select a haplotype,
Hj, at random from H, that is not already a cluster
centre so that C0k� ¼ Hj. Generate a new cluster
log-odds, b0k� , at random from a N(m,s2

B) distribu-
tion. Then,

C0k ¼Ck and b0k ¼ bk if kok�

C0k ¼Ckþ1 and b0k ¼ bkþ1 if k4k�:

To ensure reversibility, the Hastings ratio

D ¼ w2 K0ð Þ
w1 Kð Þ f b0k� jsB

� �
Change 2: Propose a Cluster Death. The pro-

posed number of clusters is given by K¼K�1.
Select a cluster, kn, at random for death. The

TABLE IV. Possible changes to the current parameter set in the reversible jump MCMC algorithm

Relative weights wj (K)

Change j Proposal Parameters K¼1 1oKon K¼n

1 Cluster birth K, C, T, b 0.385 0.25 0
2 Cluster death K, C, T, b 0 0.25 0.455
3 Cluster centre swap C, T 0 0.1 0
4 Cluster centre change C, T 0.154 0.1 0
5 Cluster log odds b 0.092 0.06 0.109
6 Covariate regression coefficient g 0.092 0.06 0.109
7 Mean cluster log-odds m 0.092 0.06 0.109
8 Cluster log-odds SD sB 0.092 0.06 0.109
9 Covariate regression coefficient SD sC 0.092 0.06 0.109
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proposed cluster centres and log-odds are then
given by

C0k ¼Ck and b0k ¼ bk if kok�

C0k ¼Ckþ1 and b0k ¼ bkþ1 if k4k�:

To ensure reversibility, the Hastings ratio

D ¼ w1 K0ð Þ f bk� jsBð Þ
w2 Kð Þ

Change 3: Propose a Cluster Centre Swap. The
following proposal procedure is carried out K
times. Select a pair of clusters, k1 and k2, at
random. The proposed cluster centre swap is
given by

C0k1 ¼Ck2 and b0k1 ¼ bk2

C0k2 ¼Ck1 and b0k2 ¼ bk1:

The Hastings ratio D ¼ 1.

Change 4: Propose a cluster centre change. The
following proposal procedure is carried out K
times. Select a cluster k at random. Select a
haplotype, Hj, at random from H, that is not
already a cluster centre so that C0k ¼ Hj. The
Hastings ratio D ¼ 1.

Change 5: Propose a new cluster log-odds. The
following proposal procedure is carried out K
times. Select a cluster k at random. The proposed
log-odds for the selected cluster is given by
b0k ¼ bk þ nB e� 0:5ð Þ, where nB denotes the max-

imum change in the parameter value. The Hast-
ings ratio D ¼ 1.

Change 6: Propose a new covariate regression
coefficient. The following proposal procedure is
carried out L times. Select a covariate l at random.
The proposed regression coefficient for the se-
lected covariate is given by g0l ¼ gl þ nC e� 0:5ð Þ,
where nC denotes the maximum change in the
parameter value. The Hastings ratio D ¼ 1.

Change 7: Propose a new prior mean cluster log-
odds. The proposed mean is given by
m0 ¼ mþ nM e� 0:5ð Þ, where nM denotes the max-
imum change in the parameter value.

Change 8: Propose a new prior cluster log-odds
standard deviation. The proposed standard devia-
tion is given by s0B ¼ sB þ nSB e� 0:5ð Þ, where nSB

denotes the maximum change in the parameter
value. To ensure reversibility, s0B ¼ �s0B if sBo0.
The Hastings ratio D ¼ 1.

Change 9: Propose a new prior covariate regres-
sion coefficient standard deviation. The proposed
standard deviation is given by s0C ¼ sC þ
nSC e� 0:5ð Þ, where nSC denotes the maximum
change in the parameter value. To ensure rever-
sibility, s0C ¼ �s0C if sCo0. The Hastings ratio
D ¼ 1.
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