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Increased availability of high-throughput technologies has generated an ever-growing number of omics
data that seek to portray many different but complementary biological layers including genomics, epige-
nomics, transcriptomics, proteomics, and metabolomics. New insight from these data have been obtained
by machine learning algorithms that have produced diagnostic and classification biomarkers. Most
biomarkers obtained to date however only include one omic measurement at a time and thus do not take
full advantage of recent multi-omics experiments that now capture the entire complexity of biological
systems.
Multi-omics data integration strategies are needed to combine the complementary knowledge brought

by each omics layer. We have summarized the most recent data integration methods/ frameworks into
five different integration strategies: early, mixed, intermediate, late and hierarchical. In this mini-
review, we focus on challenges and existing multi-omics integration strategies by paying special atten-
tion to machine learning applications.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The advent of powerful and inexpensive screening technologies
[1] recently produced huge amounts of biological data that opened
the way to a new era of therapeutics and personalized medicine
[2]. Treatment efficiency and adverse effects can differ vastly
between individuals due to differences in age, sex, genetics and
environmental factors (e.g., anthropometric and metabolic sta-
tuses; dietary and lifestyle habits [3,4]). The aim of precision med-
icine is thus to design the most appropriate intervention based on
the biological information of each individual [5].

Clinical information and omics data can be directly retrieved
from databases or collected with screening technologies for disease
[6], class prediction [7], biomarkers discovery [8], disease subtyp-
ing [6], improved system biology knowledge [9], drug repurposing
and so on. Each type of omics data is specific to a single ‘‘layer” of
biological information such as genomics, epigenomics, transcrip-
tomics, proteomics, metabolomics, and provides a complementary
medical perspective of a biological system or an individual [1]. In
the past, single-omics studies were done in hope of discovering
the causes of pathologies and helping select an appropriate treat-
ment. We now realize that such approaches are overly simplistic.
Most diseases affect complex molecular pathways where different
biological layers interact with each other. Hence the need for
multi-omics studies that can encompass several layers at once
and draw a more complete picture of a given phenotype [10]. With
multiple omics, faint patterns in gene expression data can be rein-
forced with epigenomics [11] for example. Complementary infor-
mation can be exploited to better explain classification results
[12], improve prediction performances [13,14] or understand com-
plex molecular pathways [15] that would be out of grasp for single-
omics studies. However, multi-omics studies include data that dif-
fer in type, scale and distribution, with often thousands of variables
and only few samples. Additionally, biological datasets are com-
plex, noisy, with potential errors due to measurement mistakes
or unique biological deviations. Discovering pertinent information
and integrating the omics into a meaningful model is therefore dif-
ficult and a great number of methods and strategies have been
developed in recent years to tackle this challenge [6,16]. If the inte-
gration is not done correctly, adding more omics might not result
in a significant increase of performance, but will increase the com-
plexity of the problem along with computational time.

A way to classify existing approaches is therefore needed in
order to select appropriate methods and find good practices. Zitnik
et al. (2019) [17] differentiated two types of integration. Either hor-
izontal integration, which studies the same omics across different
groups of samples or vertical integration, which examines multiple
omics variables on the same samples. In this mini-review, we focus
on vertical integration, where each omics dataset (or omics block)
has the same rows (samples), but different variables (omics fea-
tures). We also assume that the datasets are already processed,
normalized or scaled depending on the omics’s type. In the current
literature, general reviews on vertical integration [18–21] often
classify methods based on mathematical aspects, usually whether
or not they are Bayesian, Network-based, deep learning-based,
kernel-based, or matrix factorization-based methods. In this
review, we are also interested in presenting general integration
strategies for multi-omics datasets and sorting methods based on
how they are used, which we believe to be more intuitive and prac-
tical than using their underlying mathematical basis as only classi-
fication. For that purpose, Ritchie et al. (2015) [22] introduced three
integration approaches for vertical integration (called meta-
dimensional in the review): concatenation-based integration com-
bines datasets before analysis, transformation-based integration
performs mapping or data transformation of each datasets before
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analysing the transformed datasets and model-based integration
that performs analysis separately on each dataset before combin-
ing the results. Our work continues and extends those three cate-
gories to five distinct integration strategies and rename them to
early (concatenation-based), mixed (transformation-based), late
(model-based), intermediate and hierarchical. The names for the
integration strategies are inspired from Zitnik et al. (2019) [17],
but it is important to clarify that their classification (early, late
and intermediate) is mainly different from ours.

This review presents the most recent advances in multi-omics
analysis, with a special focus on the integration strategy. It is
intended for computational biologists looking for general
approaches and ideas in handling their omics datasets. For more
specific reviews on multi-omics integration, we suggest several
other reviews either methodologically oriented on subject such
as variable selection [23], dimensionality reduction [24], autoen-
coders [25], clustering [26,27] or network-based methods
[10,11,28,29], or biologically oriented on subjects like metabolo-
mics [30,31], phosphoproteomics [32], toxicology [33], host inter-
actions [34,35] and others [36–39].

2. Challenges

Multiple challenges arise when integrating multi-omics data-
sets. Some are more general to machine learning analysis such as
the presence of missing values or class imbalance and existing
reviews already cover those subjects: Song et al. (2020) [40] and
Mirza et al. (2019) [41].

Some are more specific and include the noisiness and complex-
ity of omics datasets, which naturally occurs in biological data. Rel-
evant patterns are sometimes subtles and involve many molecules
from different omics layers. Finding those patterns across multiple
datasets is therefore a difficult task. Moreover, when conducting
omics or multi-omics experiments, the gathering of large amounts
of biomedical data can often be done only on a small sample of
patients for economical reasons, scarcity of the phenotype of inter-
est, lack of volunteers, etc. This results in datasets with a number of
variables greatly exceeding the number of samples. This issue is
called the curse of dimensionality and machine learning algorithms
tend to overfit these highly dimensional datasets, which decreases
their generalizability on new data [42]. Another challenge is their
heterogeneity which must be handled correctly as omics can have
different data distribution or data types (e.g., numerical, categori-
cal, continuous, discrete, etc.). Additionally, omics datasets can dif-
fer vastly in size (number of features), as a typical gene expression
dataset will have tens of thousands of variables, while a metabolo-
mics dataset can have a few thousands. Those discrepancies
between omics can hinder their integration and produce an imbal-
ance in the learning process. The different integration strategies
presented in this mini-review address those problems differently
by either reducing the number of variables, transforming the input
data into a more exploitable representation, integrating at the end
of the analysis, etc. More details about the strategies and tools
available will be given in the next section of this review.

Class imbalance occurs when the distribution of classes in the
learning data is biased, which can be a significant problem when
working on rare events, such as an uncommon trait in a popula-
tion. Several methods can be used to resolve this problem
[14,15], such as sampling and cost-sensitive learning. Sampling
tries to balance the dataset before the integration process, where
either the majority class is randomly under sampled, or the minor-
ity class is oversampled by creating new artificial observations, or a
combination of both methods. Cost-sensitive learning is directly
integrated in the algorithm and balances the learning process by
giving more weight to misclassified minority observations.



M. Picard, Marie-Pier Scott-Boyer, A. Bodein et al. Computational and Structural Biotechnology Journal 19 (2021) 3735–3747
Missing data can take many forms ranging from variables with
missing values to sample with missing omics data. If enough sam-
ples are available, removing the rows with missing data, namely
listwise deletion, may be acceptable. If not, different statistical
methods can be used to impute the missing values. A comprehen-
sive review can be found in Song et al. (2020) [16]. Moreover, some
machine learning methods can directly handle missing values like
Random Forest 17 or K-Nearest Neighbor 18 or more recent meth-
ods [19,20].

3. Main integration strategies

From multiple omics datasets, each having the same rows rep-
resenting samples (patients, cells) and different columns repre-
senting biological variables grouped by omics (gene expression,
copy number variation, miRNA expression, etc.), different goals
could be achieved such as sample classification, disease subtyping,
biomarker discovery, etc. Machine learning (ML) models are com-
monly used to analyze complex data, but the integration of multi-
ple noisy and highly dimensional datasets is not straightforward.
Hence, multiple integration strategies have been developed, each
one of them having pros and cons. Assuming each dataset has been
pre-processed according to its omics data, the datasets could sim-
ply be assembled with sample wise concatenation and the result-
ing matrix used as input to ML models (Early integration, section
3.1). But in practice, most ML models will struggle to learn on such
a complex dataset, particularly if the number of samples is low.
Other strategies rely on transforming or mapping the datasets to
reduce their complexity, either independently (Mixed integration,
section 3.2) or jointly (Intermediate integration, section 3.3). An
opposite strategy can also be adopted (Late integration, section
3.4), which does not combine data and analyzes each omics dataset
separately. The prediction of each model is assembled afterward
for a final decision. Finally, the hierarchical strategy (section 3.5)
integrates the omics datasets by taking into account the known
regulatory relationships between omics as presented by the central
dogma of molecular biology [43]. In the next sections, we will first
introduce dimensionality reduction methods (Section 3.0) as a
powerful tool and secondary processing step and then present
the different integration strategies in more detail (Section 3.1–3.5).

3.1. Dimensionality reduction for multi-omic integration

A sometimes necessary step in multi-omics analysis is dimen-
sionality reduction, that is the process of reducing the number of
variables in order to decrease the dimensionality and noise of a
dataset. It is an optional simplification step and can be used
regardless of the chosen integration strategy, but some (early
and intermediate integration) often require prior dimensionality
reduction to be more effective.

Two distinct approaches exist: feature selection which simply
removes noisy and redundant variables and feature extraction,
which combines the original variables into new and more mean-
ingful variables. With an early integration, dimensionality reduc-
tion should be done on the concatenated matrix in order to take
into account all the omics during the process. If dimensionality
reduction is carried out separately on each dataset, a potential loss
of information could ensue by not including every feature, the
approach would then fall under one of the other integration strate-
gies. In the next two sections we will quickly outline the most
commonly used methods in both approaches, specific reviews on
the subject can be found here [23,24].

3.1.1. Feature selection
Most omics datasets possess a high dimensionality which is in

itself difficult to handle, but the problem is accentuated in multi-
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omics studies due to the number of datasets. One solution is to
apply feature selection in order to simplify the integration process.
Feature selection determines a smaller set of features which sup-
posedly keeps most of the relevant information while reducing
the dimensionality of the dataset. In addition to improving com-
puting efficiency, removing features decreases complexity and
noise which often results in higher performances and a reduced
risk of overfitting for ML models. A low number of variables also
makes the resulting models more interpretable. When a lot of vari-
ables are removed, feature selection can also deal on its own with
the block scaling problem by evening out the number of features in
each omics block [44].

Feature selection (FS) methods are organized into three classes,
filter-based, wrapper-based and embedded methods. Filter-based
methods are independent of any machine learning models and
usually implement statistical analysis to find the most relevant
variables while avoiding redundant features. They can be based
on correlation (e.g., CFS [45], RCA [46]), distance (e.g., ReliefF
[47]) or information gain [48] (e.g., mRMR [49]). Wrapper methods
repeatedly apply a predictive ML model on different sets of fea-
tures and those that improve the overall quality of the model are
kept. Recursive feature elimination is the most common one, it
starts by fitting a model with all the variables and gradually
removes those which do not contribute to the model perfor-
mances. These methods are focused on predictive power and can
be used with any supervised ML models, but are limited by their
computing efficiency if the dataset is large, which is often the case
when studying omics. Finally, embedded methods are algorithms
with feature selection built directly in the classifier. Among those
embedded methods, the two most widely used are tree-based fea-
ture importance [50] and regularization. Regularization methods
combine a loss function which evaluates the goodness of fit of
the model, with a penalization function that punishes its complex-
ity by favoring a smaller number of features. Compared to wrapper
methods, they also resort to ML models, but are less computation-
ally expensive. Due to the vast extent of regularization methods,
we will not discuss it further and invite our reader to Wu et al.
(2019) [23] and Vinga (2021) [51] for more information.

Feature selection can be applied to the separate omics datasets
followed by concatenation. By definition it would no longer be an
early integration as models would have been applied to each omics
block independently. However, one might want to select variables
while considering all omics together as it takes into account the
redundancy of features across omics and might find more relevant
features that single-omics studies will miss. The most straightfor-
ward way is to apply feature selection on the concatenated omics
datasets. This strategy faces some of the same challenges described
in the early integration section, that is balancing the influence of
the different omics blocks, the increased complexity as well as
additional computing time which would preclude the use of wrap-
per methods that are too computationally expensive.

3.1.2. Feature extraction
Feature extraction (FE) methods aim to transform the input fea-

tures into another set of variables, that are linear or non-linear
combinations of the original features. Their objective is to extract
features in a way that the new variables keep the relevant informa-
tion, while being less noisy and redundant. Learning from a smaller
set of features also decreases complexity and improves computing
efficiency. FE methods are often used in an exploratory manner to
visualize data and expose important features, but they can also
reduce the interpretability of a model as the extracted features
are no longer biological measurements.

The most widely used FE method is Principal Component Anal-
ysis (PCA) [52]. PCA builds new variables called principal compo-
nents, uncorrelated linear combinations of the original features
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that maximize the description of variance in the dataset. It is how-
ever sensitive to outliers and cannot handle non-linear trends in
the data. Several extensions have thus been developed to correct
those problems including Kernel PCA [53] or Bayesian PCA [54].
Other similar methods include Principal Coordinates Analysis
(PCoA) [55], Correspondence Analysis (CA) [56] and Independent
Component Analysis (ICA) [57] may answer some of the shortcom-
ings of PCA.Most FEmethods are also being developedwith sparsity
constraints, often integrating regularizationmethods such as LASSO
or elastic net in order to remove useless or redundant features.
Sparse FE methods can be used for feature selection and include
Sparse PCA (sPCA) [58], Sparse Canonical Correlation Analysis
(CCA) [59], Sparse Non-Negative Matrix Factorization (Sparse
NMF) [60], Sparse CA [61], etc. For example, Park et al. (2020) [62]
used sPCA on each omics dataset and concatenated the retrieved
PCs as a new dataset used as input to a Cox regression analysis.

FE methods can be used separately on each omics dataset to
facilitate integration and for block scaling [24,63] in a mixed inte-
gration fashion, or applied on the concatenated multi-omics data-
sets (early integration). The extracted features are then useful as
input to ML models or for clustering. However, those approaches
often lead to unwanted redundancy and suboptimal results
[64,65]. Intermediate methods solve this problem by jointly ana-
lysing the datasets, resulting in FE methods capable of taking into
account all variables simultaneously, more in Section 3.3.

However, those methods will struggle to explore multi-omics
datasets as applying them on the concatenated omics usually gives
poor results. Thus, feature extraction methods are often used on
each omics dataset separately for either block scaling [24,63], or
after concatenation of the extracted features for clustering or other
downstream analysis.

3.2. Early integration

The early integration is based on the concatenation of every
datasets into a single large matrix. This process increases the num-
ber of variables, but the number of observations stays the same.
Consequently, several integration challenges are exacerbated by
this process resulting in a more complex, noisy and high dimen-
sional matrix, which makes learning difficult. Additionally, the size
difference between omics datasets can promote a learning imbal-
ance as the algorithm spent more time learning on the omics with
the biggest number of variables, overlooking the other omics
[66,67]. Early integration also ignores the specific data distribution
of each omics, which can potentially misguide ML models into
finding irrelevant patterns that simply reflect the features’ mem-
bership to the same omics. A conclusion found for example in a
comparison study done by Spicker et al. (2008) [66]. Nevertheless,
early integration is still commonly used as it has some clear advan-
tages including its simplicity, easy implementation and mostly,
combining variables from each omics allows ML models to directly
uncover interactions between the different layers. It is also not
known to what extent the aforementioned drawbacks influence
the downstream analysis and it is possible that the performances
of some ML models are not significantly lessened.

Approaches using the early integration strategy need at least to
address the complexity of the composite matrix, often by reducing
its number of variables through feature selection or dimensionality
reduction methods. Then, most ML models can be used for analysis,
but in recent years, Deep Learning (DL) [68] has been commonly
used as it is flexible and powerful enough to accurately detect rel-
evant patterns even from the concatenated data. For instance, Xie
et al. (2019) [69] fed both multi-omics and clinical data to the input
layer of an artificial neural network, itself linked to a Cox Propor-
tional hazard model (Cox-PH) in order to predict survival of
patients with cancer. For a similar goal, Chaudhary et al (2018)
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[70] implemented instead of the common fully connected neural
network an autoencoder to reduce the dimensionality of the
multi-omics matrix and extract meaningful and compact DL-
based variables on which clustering was done with the k-mean
algorithm.

Although they are highly adaptive and often achieve superior
performances with big datasets, one of the most challenging issues
with neural networks is their black box nature, that is their lack of
interpretability. Particularly in biomedical studies, having a good
predictive model is not enough and an understanding on how
genes and other molecules are implicated in the underlying biolog-
ical process is necessary. The transparency of machine learning
results may also lead to new biological discoveries. As several
methods have been developed for interpreting neural networks
models, we invite our reader to other reviews [71,72]. Most of
those strategies focus on explaining the final decision of the algo-
rithm and identifying biomarkers, but some DL models [73,74] can
directly find relevant biological pathways during the learning pro-
cess (Fig. 1). The basic idea behind this approach is to utilize known
biological pathways to define the architecture of the neural net-
work. The input layer representing biological entities (molecules,
genes, proteins, etc.) is connected to a second layer where each
node is a known molecular pathway. Connections between nodes
are made only if the molecule is known to take part in the pathway,
resulting in a sparse interaction between the first two layers. The
pathway layer is then fully connected to hidden layers. When
training the model, all the connections are updated and the final
prediction of the network is directly interpretable by looking at
which nodes are activated. The drawback of such methods is that
they cannot discover new interactions or make use of little studied
proteins or genes if their implication in a pathway has not yet been
discovered.

Additionally, the early strategy allows the inference of hetero-
geneous networks using methods such as Mixed Graphical Models
(MGM) [75,76], which expand from Gaussian Graphical Models
that assume normal distribution of variables to a mixed model.
MGM regresses each variable against every other using either lin-
ear regression or logistic regression depending on the type of vari-
able (continuous or discrete/categorical). Another method, based
on decision trees, is Graphical Random Forest [44,77], which com-
putes a Random Forest on each variable using every other feature
as predictors. Features that are ranked as important by the impor-
tance measure of Random Forest are considered to interact with
the selected variable. MGM as well as Graphical Random Forest
can integrate prior knowledge [78,79]. Additionally, Zhong et al.
(2019) [80] developed mixed Directed Acyclic Graph (mDAG)
which can infer causal interactions based on variables with differ-
ent distributions and can potentially be used in multi-omics stud-
ies. More information on inferring heterogeneous networks from
multi-omics data can be found in the reviews [76,81].

3.3. Mixed integration

Themixed integrationstrategyaddresses the shortcomingsof the
early integration by transforming independently each omics dataset
into a simpler representation. The new representation can be less
dimensional and less noisy which facilitates analysis. Moreover,
mostheterogeneities betweenomicsdatasets such as thedata’s type
or size differences are removed in the new representation. The com-
bined representation can then be analysed by classical ML models.
Wewill present three transformationmethods, kernel-basedmeth-
ods, graph-based methods and Deep Learning (DL).

3.3.1. Kernel learning
Kernel models are powerful ML models able to implicitly oper-

ate in a high dimensional space in which linear relationships



Fig. 1. Structure of an interpretable artificial neural network. The input layer is followed by an additional pathway layer, where each node corresponds to a known molecular
pathway. If a molecule is known to be involved in a pathway, a connection is made between the two. Hence, important pathways implicated in the outcome are activated
with bigger weights during training. Figure inspired from Deng et al. (2020) [73].
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between observations can be found. Consequently, kernels can nat-
urally be used to infer pairwise similarities of samples [82], taking
the form of a similarity matrix that can be used for downstream
analysis using ML models such as Support Vector Machines
(SVM) [83], Partial Least Squares (fKPLS) [84] or a Cox model
(kernel-fusion Cox) [85]. Different types of kernels exist such as
linear, gaussian, polynomial, sigmoid, etc., thus providing different
similarity measures for the same data. Because one of them can be
more suitable than the other depending on the type of omics and
its data distribution, the right kernel is often found with cross-
validation. Multiple Kernel learning (MKL) [86] can integrate dif-
ferent omics blocks by first computing a kernel for each dataset
(the kernel can be of different types), and combining them to pro-
duce a global similarity matrix which describes samples across all
multi-omics datasets. The best way to combine the different ker-
nels is found experimentally by learning their appropriate weights.
Two different approaches exist [87], either using a wrapper strat-
egy such as SimpleMKL [88] or using an optimization algorithm
such as SpicyMKL [89] or SMO-MKL [90].

Recently, Zhang et al. (2016) [91] and He et al. (2021) [92] both
used SimpleMKL on five different omics datasets, with a prelimi-
nary feature selection using mRMR [49] to increase performances.
However, Zhang et al. applied for each dataset the same kernel type
(Gaussian), whereas He et al. used two different types (Gaussian
and Polynomial). On the other hand, SIMLR [93] and its multi-
omics extension CIMLR [94] compute several gaussian kernels with
varying hyperparameters for each omics and assume that the glo-
bal kernel matrix better reflects similarity between samples and
naturally reflects possible clusters. Wang et al. (2017) [93] shows
that the constructed similarity measure outperforms standard sim-
ilarity measures.

MKL can also be used in an unsupervised and exploratory man-
ner [95,96]. The resulting similarity space produced by the multi-
omics kernel can be used as input by well-known algorithms such
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as PCA (kPCA) [53] or k-means (kernel Power k-means) [97]. Since
the samples are no longer described by their input features, but by
the new feature space describing their similarities, interpretation
of the unsupervised model can be more challenging. For example,
Speicher and Pfeifer (2015) [96] used unsupervised MKL on gene
expression, methylation and copy number data for cancer subtype
discovery, but could only assess for each cancer type the relative
importance of each omics. Ideally, one would want to retrieve
the importance of specific variables to better explain the results.
Thus, a method based on random permutation and kPCA was intro-
duced by Mariette and Villa-Vialaneix (2017) [95] to address this
problem. The importance of a variable is measured by randomly
permuting its value between samples and its influence can be esti-
mated in the PCs space obtained with kPCA, in the same way as
regular PCA.
3.3.2. Graph-based
A mixed strategy based on graphs consists of modelling each

omics into a separate graph before analysis. Three approaches
can consequently be used. The first one is to combine them into
a single homogeneous network through fusion. The second
approach is to build a multi-layer (or multiplex) network with
inter-layer connections. Once a unique network is obtained, utiliz-
ing the principle of guilt-by-association, nodes close to each other
are assumed to share related biological functions. Therefore, find-
ing pertinent modules is often done in order to classify nodes with
unknown functions or reveal activated pathways. In contrast to
modules, random walks can connect distant nodes within the net-
work to reveal potential long-distance interactions. Random walks
simulate an imaginary particle starting at a seed node and moving
randomly to other nodes in order to explore the network’s topol-
ogy. After several iterations, a stationary probability distribution
is obtained, which depicts the topological properties of the seed
node and can be used to reveal its importance or its similarity to



M. Picard, Marie-Pier Scott-Boyer, A. Bodein et al. Computational and Structural Biotechnology Journal 19 (2021) 3735–3747
other nodes. Finally, the third approach does not rely on integrat-
ing several networks, but on learning graph-based variables from
each of them, which can be used as input to other ML models.

The first approach of building homogeneous networks often
relies on creating patient similarity networks for each omics, in
which patients are nodes and weighted edges describe their simi-
larities. Then, all networks are combined using a fusion method
such as Similarity Network Fusion (SNF) [98] or its variation Affin-
ity Fusion (ANF) [99] which is implemented with block normaliza-
tion. Recently, Wen et al. (2021) [100] introduced Random Walk
with Restart for multi-dimensional data Fusion (RWRF) which
authors say is a more effective fusion method. One advantage of
such methods is that the network doesn’t get more complex with
additional omics as their overall size is based on the number of
samples, not the number of features. The resulting integrated
graph can then be used as input for ML models [99,101,102] for
clustering, subtype discovery or survival prediction.

The second approach relies on building multi-layer networks,
where each layer represents an omics and interactions between
omics are either inferred or retrieved from interaction or pathways
databases. We invite our readers to the review of Lee et al. (2019)
[29] for more information on multi-layer networks inference.
Studying the overall topology of the network can reveal important
molecules and perturbed pathways leading to specific phenotypes.
Several methods can explore the network’s topology including
shortest paths, random walks and other variations for multi-layer
networks. In order to do gene reprioritization, Valdeolivas et al.
(2019) [103] for example recently developed two new algorithms
based on random walks for multiplex networks that can explore
the different layers of physical and functional interactions between
omics. For a similar goal, Shang and Liu (2020) developed iRANK
[104], a variation of the PageRank algorithm [105] that they uti-
lized on a multi-layer network composed of epigenomics data,
gene expression data and protein–protein interactions network. A
different approach was used by Murodzhon et al. (2017) [15]
who developed OmicsNet, a weighted multi-layer network made
of omics layers as well as a biological concept layer and phenotype
layers. Specific nodes can then be associated with phenotypes by
calculating along the weighted path an integrated score which
can model a plausible signaling cascade. The results can be used
for biomarker discovery or predictive analysis. Moreover, Liu
et al. (2013) [106] proposed an interesting method to inspect a
multi-layer network, recently improved by others [107,108],
where the activity of known molecular pathways present in the
network is assessed by random walks. Active pathways are pre-
dicted by their concentration of important nodes (differentially
expressed, associated with disease, topological importance, etc.).
New features are then constructed based on the activity values of
pathways and used with ML models for subtype classification or
survival prediction tasks.

The third approach utilizes graph embedding methods which
can learn low dimensional representation of the nodes and their
surroundings from each network. The new graph-based features
are then combined and fed to other ML models for prediction, clas-
sification, etc. Existing reviews on graph embedding methods
[109,110] go into more details, we will only present some recent
cases. For example, DTINet [111] used random walk-based embed-
ding on multiple interaction and similarity networks of proteins,
drugs and diseases in order to detect similar nodes and predict
new drug-target interactions (DTI). DTInet uses a dimensionality
reduction method (DCA [112]) to reduce the multiple embeddings
to a unique embedding for drug features and target features. Xuan
et al (2019) [113] used a similar approach, but showed that the
dimensionality reduction might remove too much information
and instead used an ensemble learning approach with Gradient
Boosting Decision Tree, which also deals with class imbalance as
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the number of unknown DTIs is higher than the number of known
DTIs. Additionally, the graph-based variables can be compacted
even further using autoencoders [114,115] (Deep Learning , section
3.2.5). DeepDR [115] for example combined the different features
obtained for each graph with a multi-modal autoencoder. The bot-
tleneck layer containing the integrated information was later fed to
a collective Variational Autoencoder [116] (cVAE) for DTIs
prediction.

Multiple Kernel Learning (MKL) (Section 3.2.4) can also be used
as graph embedding methods. In order to establish which molecu-
lar pathways are involved in breast cancer, Manica et al. (2019)
[117] developed PIMKL which combines MKL with prior knowl-
edge in the form of interaction networks and annotated genes or
pathways. Kernel functions were designed to encode the topologi-
cal information of known pathways, which can also be combined
with the multi-omics datasets. The overall process allows the map-
ping of samples from the omics space to an interaction space (edge
space), which explicitly reveals the underlying biological mecha-
nisms. Additionally, Tepeli et al. (2021) [118] developed PAMOGK
which introduced a graph kernel to determine sample similarity
from graph data and predict subgroups of patients.

Additionally, Graph Neural Networks (GNN) [119] and its
upgrade Graph Convolutional Neural Networks (GCN), are specifi-
cally designed to receive graph data as input. GCNs have also been
developed for DTIs prediction [120] or node classification [121].
Going further than simple link prediction, Zitnik et al. (2018)
[122] have used a GCN called Decagon to predict the presence of
side effects between two drugs as well as the side effects’ type.
GCN can also embed entire networks, which is mostly applied on
drugs (which can be considered as graphs of atoms) and the result-
ing molecular embedding can be combined with multi-omics data-
sets to increase prediction performances [123]. More information
on deep learning for biological networks can be found in Muzio
et al. (2021) [124]. General integration of multi-omics data with
deep learning is the subject of the next section.

3.3.3. Artificial neural networks
Artificial neural networks (NN) are powerful ML models made

of many neurons organized in layers. They can be used directly
on the concatenated omics (Section 3.1 Early integration) or sepa-
rately on each omics (Section 3.4 Late integration), but it can also
be utilized to learn meaningful latent representations (deep
learning-based features) from each datasets by processing them
in separate layers. The latent representations can be seen as new
deep variables learned by the different layers of the model, which
can be easily concatenated or connected to other neural networks
for more analysis. Thus, the hidden layers of a NN can be consid-
ered as successive feature extraction layers, while only the final
output layer can produce a prediction. Some NN architectures are
specialized in learning a pertinent latent representation, such as
Autoencoders (AE) and Restricted Boltzmann Machines (RBM).
Both models are unsupervised neural networks that reproduce
the original data from a compressed representation encoded
within the central or bottleneck layer of the network. The fewer
neurons in this layer, the more compact the representation is.
The new representation is then useful as input for other ML models
and particularly for clustering [125].

Among the deep learning models developed for multi-omics
integration, we can present MOLI [13,127], which retrieved DL-
based features using subnetworks on each omics dataset and con-
catenate the obtained deep features. Then, a final neural network is
used on the concatenated deep features for prediction of drug
activity. Using a similar approach, Islam et al. (2020) [128] pre-
dicted breast cancer subtypes using the concatenated features,
but they learned them through convolution neural networks
applied on gene expression and copy number variation datasets.



Fig. 2. Example of a mixed artificial neural network. Each omics block is first reduced to a latent representation using independent Stacked Sparse Autoencoders (SAE). The
new representations learned are integrated in a final shared layer. The common representation is used for downstream analysis such as prediction or clustering.
Figure inspired from Xu et al. (2019) [126].
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Instead of concatenating the deep features obtained for each omics
block, another approach is to simply connect them to a shared
layer. For example Xu et al. (2019) [126] (Fig. 2) first used stacked
Sparse Autoencoders (SAE) on each omics dataset and integrated
the results into a final layer. The resulting shared representation
was fed to a deep flexible neural forest for predicting cancer sub-
types. Similarly, Yang et al. (2021) [129] developed a multimodal
autoencoder capable of taking all omics datasets as input, com-
pacting them into the central layer, or bottle-neck layer of the
autoencoder and reconstructing them at the end. The resulting
deep features generated in that common layer take into account
all omics and were also used for the discovery of cancer subtypes.

3.4. Intermediate strategies

We describe as intermediate integration any methods capable
of jointly integrating the multi-omics datasets without needing
prior transformation and without relying on a simple concatena-
tion. They generally output new constructed representations, one
common to all omics and some omics-specific, on which further
analysis can be done. This step reduces the dimensionality and
complexity of the multi-omics datasets. However, they are most
often used after feature selection and robust pre-processing as
the heterogeneity between datasets can prevent them from work-
ing correctly. Only a few methods were developed with the ability
to find semi-shared structures, that is patterns shared between
some omics but not all. Such methods include SLIDE [130] for
example. Ideally, to limit the loss of information that occurs by
selecting features independently for each omics, an intermediate
feature selection method could be used such as the extension of
mRMR developed by EL-Manzalawy et al. (2018) [65]. It selects
features by taking into account their complementarity within
and across omics blocks. The same results cannot be achieved
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by simply applying mRMR on each dataset, nor by applying
mRMR on the concatenated dataset. Some intermediate strategies
are also designed as multi-block feature extractions methods and
can be utilized for exploratory purposes or as basis for down-
stream analysis, in the same way as a regular feature extraction
(Section 3.0).

Intermediate methods are often formulated with the assump-
tion that the different datasets share a common latent space, which
can reveal the underlying biological mechanisms. Among those
methods, extensions of the widely used Non-negative Matrix Fac-
torization (NMF) [131] have been developed including joint NMF
[132] and integrative NMF [133,134]. Both methods infer a com-
monmatrix depicting the latent relationships between every omics
dataset, but while joint NMF uses the common space to identify
modules of correlated multi-omics data, integrative NMF imple-
ments sample clustering and subtype discovery. Other similar
methods are presented in Table 1. The main advantage of such
intermediate methods is their ability to discover the joint inter-
omics structure, while also highlighting the complementary infor-
mation contained in each omics. We won’t go into further details
as the number of multi-block dimensionality reduction methods
is substantial and still increasing, for more information, specific
reviews have been written on the subject [14,26,135].

Other methods originally developed for two datasets were
extended to multi-omics including Canonical Correlation Analysis
(CCA) [136,137] or Co-Inertia Analysis (CIA) [138]. The difference
between them and the other presented in Table 1 is that they do
not construct a common space, but infer omics specific factors
while maximizing some joint measure such as correlation of
co-inertia. We won’t go into further details as the number of
multi-block dimensionality reduction methods is substantial and
still increasing, for more information, specific reviews have been
written on the subject [14,26,135].



Table 1
A non-exhaustive list of multi-block dimensionality reduction methods for multi-omics datasets. NMF: Non-negative Matrix Factorization, MOFA: Multi-Omics Factor Analysis,
JIVE: Joint and Individual Variation Explained, MO: multi-omic.

Method Principle Purpose Recent applications

jNMF/intNMF/nNMF [132,133,139] Matrix factorization Disease subtyping,
module detection,
biomarker discovery

jNMF found biomarkers in MO and pharmacological data
connected to drug sensitivity in cancerous cell lines [140].
intNMF identified Glioblastoma and breast cancer subtypes
from MO and clinical data [134].

MOFA/MOFA+ [141,142] Bayesian Factor Analysis biomarker discovery,
systemic knowledge

MOFA found new biomarkers and pathways associated with
Alzeihmer’s disease based on MO data including proteomics,
metabolomics, lipidomics [143].MOFA + found predictive
biomarkers from DNA methylation and gene expression data in
cardiovascular disease [144].

iCluster [145] Gaussian latent variable model
Generalized linear regression
Bayesian integrative clustering

Disease subtyping,
biomarker discovery

iCluster was used to identify subtypes of esophageal carcinoma
from genomic, epigenomic and transcriptomic data [148].

iClusterPlus [146] iClusterPlus was used to identify subtypes of non-responsive
samples with ovarian cancer from different omics datasets
[149].

iClusterBayes [147] iClusterBayes was used to identify predictive biomarkers and
clinically relevant subtypes on MIB cancer from 5 different
omics [150].

JIVE/aJIVE [151,152] Matrix factorization Disease subtyping,
systemic knowledge,
module detection

JIVE was used as a dimension reduction technique to improve
survival prediction of patients with glioblastoma from mRNA,
miRNA and methylation data [153].

Integrated PCA 64 Generalized PCA Visualization,
prediction

iPCA was used as a dimension reduction technique to improve
prediction of outcome on lung cancer from CpG methylation
data, mRNA and miRNA expression [154].

SLIDE [130] Matrix factorization Disease subtyping,
module detection,
biomarker discovery

SLIDE was used on DNA methylation data and gene, protein and
miRNA expression for subtyping patients with breast cancer
[130].
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3.5. Late integration

For handling multi-omics datasets, the most straightforward
integration strategy is to apply machine learning models sepa-
rately on each dataset and then combine their respective predic-
tions, namely Late integration. Its strength relies on its capacity
to use readily available tools designed specifically for each omics
type, and compared to the other strategies, it does not suffer the
challenges of trying to assemble different kinds of data. For exam-
ple, Sun et al.(2019) [155] built neural networks for each dataset
consisting of gene expression, copy number data and clinical infor-
mation and linearly aggregated their predictions into a single final
prediction for cancer prognosis. A more complex aggregation func-
tion was used by Wang et al. (2020) [156] where the authors
trained Graph Convolutional Neural Networks on each omics
(and their respective patient similarity networks) to recover initial
classification predictions. The single-omics predictions were then
utilized to construct a cross-omics tensor, which was forwarded
to a View Correlation Discovery Network (VCDN) that makes a final
class prediction based on the individual omics predictions and the
latent cross-correlation between omics.

The shortcoming of such integration strategy is that it cannot
capture inter-omics interactions and at no point in the learning
process can the different machine learning models share knowl-
edge and utilize the complementarity information between omics.
Combining predictions is simply not enough to accurately exploit
multi-omics data and understand the underlying biological mech-
anisms of diseases. For that reason, and because it boils down to
multiple single-omics analysis, we will not discuss it further.
3.6. Hierarchical integration

A challenge in system biology is to understand the modular
organization structured at the molecular level. A new trend is to
incorporate these regulatory effects in the integration strategy to
better reflect the nature of multidimensional data. Hierarchical
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strategy bases the multi-omics integration on the inclusion of the
prior knowledge of regulatory relationships between the different
layers. For example, a strategy for genotype-phenotype integration
based on existing knowledge of cellular subsystems could follow
this logic: genotypic variations in nucleotides can give rise to
change in gene expression or functional changes in proteins which
in turn could ultimately affect the phenotype. Therefore, hierarchi-
cal integration strategies often use external information from
interaction databases and scientific literature. Moreover, because
omics are organized in sequential fashion, the challenges of
multi-omics integration are not exacerbated and can be dealt with
separately for each dataset.

Some methods for supervised hierarchical integration include
Bayesian analysis of genomics data (iBAG) [157], linear regulatory
modules (LRMs) [158] and Assisted Robust Marker Identification
(ARMI) [159] and Robust Network [160]. Hierarchical integration
methods are often designed to study specific regulatory relation-
ships. For example, iBAG has been developed to investigate associ-
ations between epigenetic and gene expression regulation. The
framework uses hierarchical modeling to combine the data from
methylation and gene expression to study the associations with
patient survival. Robust Network has developed an approach for
modeling the gene expression (GE) and copy number variation
(CNV) regulation that describe the dominant cis-acting CNV effects
compare to trans-acting CNVs. This approach could be extended to
other regulation relationships such as gene expression by methyla-
tion and microRNAs. Additionally, hierarchical integration can be
used to infer gene regulatory networks (GRN) from multi-omics
datasets. For instance, Zarayeneh et al. (2016) [11] developed a
GRN inference method by taking into account interaction effects
between gene expression, Copy Number Variations (CNV) and
DNA methylation. Their method utilized the epigenomic data to
better predict regulatory interactions and achieved significantly
better results on simulated data, compared to two other GRN infer-
ence methods SGRN [161] and DCGRN [162]. For more information
on inference methods for GRN, we recommend Wani and Raza
(2019) [28].
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Finally, Fortelny and Bock (2020) [163] developed a neural net-
work model in which each node corresponds to a biological entity
such as a protein or a gene and each edge with a known interac-
tion. The layout of the network follows the flow of information in
the cell, with the input layer being gene expression and the follow-
ing layers being transcription factors, signalling proteins, receptors,
etc. The advantage of this DL model is that it is directly inter-
pretable by looking at the activated nodes.
4. Summary and outlook

In this mini-review, we presented the different strategies avail-
able to handle multi-omics datasets integration. Most integration
approaches developed in recent years tend to first modify and
transform each dataset using different machine learning models
known as Mixed integration, in order to reduce their complexities
and heterogeneities and facilitate their subsequent integration and
analysis. While it can give informative results, each dataset is
transformed independently, potentially resulting in a loss of infor-
mation and a final model that can still suffer from noise or redun-
dant information. Ideally, at any point of the learning process, each
omics dataset should be assessed while considering the other data-
sets, so that the complementary information could be best
exploited. The early and intermediate integration strategies do
solve this problem by integrating all datasets beforehand, but the
large matrix resulting from an early integration is difficult to
exploit by most ML models and intermediate integration often
relies on unsupervised matrix factorization, which has difficulty
incorporating the considerable amount of pre-existing biological
knowledge. Another methodology, hierarchical integration, is
explicitly designed with the prior understanding of how the differ-
ent omics layers interact with each other. However, only few such
methods have been developed and are often tailored for specific
omics types, which makes them less generalizable than other
approaches. Additionally, they are dependent on prior data, which
prevents them from exploring and discovering new biological
mechanisms and pathways.

Another issue to tackle is whether or not ‘‘More is better”, quot-
ing from Huang et al. (2017)[19]. Adding omics datasets for the
only sake of adding more data might not always be a good idea.
They carry more information and can potentially reveal pathways
from different biological layers, but the additional data could also
bring more noise, redundancy and an increased computational
time than relevant information. Additionally, while multi-omics
integration often leads to better results [126,154,164], some have
shown that it is not always the case [26,165]. Worse performances
could arise if the model is not suited for a particular goal or for par-
ticular multi-omics datasets. Some models cannot handle massive
matrices, outliers, highly correlated variables, noise, etc., issues
that are exacerbated in multi-omics studies. It is also possible that
the omics are not correctly integrated [165]. We believe that if the
machine learning model and the integration strategy are chosen
judiciously, multi-omics should always surpass single-omics per-
formances, but knowing in advance the proper integration strategy
is not always feasible. There are not yet any general rules of thumb
to foresee which method will achieve better results and most
benchmarks generally conclude that the best approaches have to
be chosen depending on the initial data. Nevertheless, based on
recent trends, we can begin to notice effective approaches. For
example, the early integration is being more and more outper-
formed when compared to other integration strategies
[13,65,66,164]. We believe that an early integration cannot handle
too many datasets, especially when their heterogeneity is great
and we suggest instead the mixed strategy which is tailored to deal
with such challenges. The complementarity of datasets and their
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relative pertinence should also be taken into account, as some
omics will contain less or possibly no useful information
[153,166]. Depending on the studied pathology, some omics will
be more appropriate than others. In the same way, specific combi-
nations of omics (metabolomics + proteomics, genetics + epigenet
ics, etc.) should be more fruitful than others and an understanding
of those interactions is necessary. Based on the literature and bio-
logical knowledge collected on a specific topic, one could infer
which omics layer should be retained or disregarded. Otherwise,
the influence of each omics block should be determined during
the analysis. For example, the mixed integration generally assumes
equal importances and reshape the omics into similar representa-
tions. Thus in order to adjust their influences, their appropriate
weights can usually be learned during training in the case of super-
vised learning. For unsupervised learning, it remains a challenge.
This issue can be elegantly tackled by intermediate methods as
they produce multi-omics and omics specific outputs which reveal
the complementarity and benefits of each omics.

Furthermore, progress is continuously being made and new
tools for multi-omics integration are continually being proposed.
Network-based integrations are very promising, particularly for
their ability to use pre-existing interaction networks and known
molecular pathways as well as their straightforward interpreta-
tion. The exploration of multi-layer heterogeneous networks is just
beginning and will surely continue to grow and gain in predictive
and explanatory power as most of the tools currently used were
designed for single-omics layers. The advances of deep learning
are also quite compelling. Their flexible architectures facilitate
the integration of multiple omics datasets, which can also be com-
bined with biomedical images or other types of data, offering a bet-
ter grasp of a patient’s pathology. However, due to its large number
of parameters, DL models are hard to train, must be tuned precisely
and often experience overfitting. Their performances rely heavily
on the availability of samples, which is still limited. An interesting
way to deal with this issue is transfer learning [167], machine
learning models are pretrained on larger and general datasets on
which they can learn basic patterns and are then fine-tuned on
the more specific dataset of interest. Transfer learning is widely
used in image recognition, but is not yet regularly used in multi-
omics studies. Deep learning also suffers from the reputation of
not being easily interpretable, which is a major obstacle in biomed-
ical studies. We have presented in this mini-review some examples
of interpretable DL models, but more research must be done in
order to confirm their capabilities and whether or not they can
be adapted for different purposes.

With the ever-growing access to biological data, multi-omics
research will be performed more and more often, and it is
urgent that we identify the best practices, tools and strategies
for their integration. In that aspect, benchmark studies are also
particularly useful and should be done more frequently. With
the notable exception of Herrmann et al. (2020) [168] which
focused on survival prediction methods for multi-omics data,
most benchmarks focus on clustering and dimensionality reduc-
tion methods [14,26,27,135,169–171]. Thorough comparisons of
other ML models have not been made for multi-omics datasets,
and we have yet to know if the deep learning prowess made
in other fields of pattern recognition can be reproduced in bioin-
formatics [172].

4.1. Search strategy

This mini-review presents methods and strategies for multi-
omics integration. The goal is not to produce an extensive list of
articles and tools currently being used in the bioinformatic com-
munity, as the subject is too wide and not fit for a mini-review.
The goal is more to display general trends and interesting ideas



M. Picard, Marie-Pier Scott-Boyer, A. Bodein et al. Computational and Structural Biotechnology Journal 19 (2021) 3735–3747
about the subject, with a particular focus on new and original
methods developed in the past three years.

Articles and reviews were searched on PubMed with the key-
words multi-omics / multiomics / machine learning multi-omics
/ deep learning multi-omics / network multi-omics / multi-omics
integration / multi-block omics. Reviews published after 2015
were prioritized as well as methods and tools published after
2017, unless an older method was recently improved upon in a
recent publication. This preliminary search produced approxi-
mately 1,000 results. Then, publications were kept only if the tool
presented could manage at least two omics (exception was made
for the hierarchical integration which is more specific). Addition-
ally, we focused mostly on popular publications developing new
approaches rather than on publications using existing tools to
answer biological problems. In order to restrain the length of the
mini-review and promote an easier reading experience, an effort
was made not to include too similar articles. Altogether, these cri-
teria resulted in the current publications presented in the mini-
review.
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