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1 Introduction

Human microbiome research aims to understand how microbiome communities
interact with their host, respond to their environment, and influence disease [32].
High-throughput sequencing technologies have enabled researchers to characterize
the composition of the microbiome by quantifying richness, diversity, and abun-
dances. See [14] for a detailed review. However, complex environmental interactions
with the microbiome challenge our understanding of community function and its
impact on health [23]. Knowledge of the relations between microbial composition
and other covariates may help researchers design tailored interventions to help
maintain a healthy microbiome community [10, 33].

A popular approach for modeling the relation between microbial data and covari-
ates is the Dirichlet-multinomial (DM) regression model, since it appropriately
handles the compositional structure of microbiome data and accommodates overdis-
persion induced by sample heterogeneity and varying proportions among samples
[3, 11–13, 28, 34]. To identify potential covariates, penalized likelihood methods
have been developed to simultaneously estimate regression coefficients and perform
selection [3, 30]. These models typically have relatively short computation times
and demonstrate good predictive accuracy. However, it is challenging to incorporate
known relations between covariates into these models due to the requirement of
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complex optimization routines [30]. Additionally, they do not accommodate model
selection uncertainty while carrying out selection.

Alternatively, Bayesian variable selection methods are able to accommodate the
complex high-dimensional data structures found in microbiome studies and fully
account for model uncertainty over covariate selection. Commonly, spike-and-slab
priors for regression coefficients are embedded into hierarchical Bayesian models
to perform variable selection [8]. In this model formulation, regression coefficients’
priors depend on latent inclusion indicators which determine a covariate’s exclusion
or inclusion in the model. Bayesian DM regression models with spike-and-slab
priors were originally investigated by Wadsworth et al. [28] to identify KEGG
orthology pathways associated with microbiome data. Through simulations, they
demonstrate improved performance of their method on selecting covariates when
compared to alternative methods, including the penalized likelihood approach of
[3]. Recently, the work of Wadsworth et al. [28] was extended to accommodate
phylogenetic structure between taxa and known and unknown graphical relations
between covariates [11]. Additionally, researchers have leveraged data augmen-
tation techniques to efficiently embed DM regression models into joint modeling
frameworks, in order to investigate how the microbiome may mediate the relation
between dietary factors and phenotypic responses, such as body mass index [12].

In an effort to make advanced Bayesian methods available to researchers
studying the microbiome, we demonstrate how to apply the methods contained
in MicroBVS, a comprehensive R package for identifying covariates associated
with compositional data [11]. At the core of MicroBVS is a suite of Markov
chain Monte Carlo (MCMC) algorithms that generate posterior samples of model
parameters for inference. The MCMC algorithms are written in C++ to increase
performance time and accessed through R wrapper functions using Rcpp and
RcppArmadillo [5, 6]. The package includes various Bayesian variable selec-
tion methods for compositional data including Dirichlet-multinomial regression,
Dirichlet-tree multinomial regression, and the joint modeling approach proposed
in [12]. The package has built-in functionality to simulate data in user-specified
research scenarios to assess selection performance and conduct sensitivity analyses.
Additionally, various auxiliary R functions are incorporated to help researchers
assess convergence, draw inference from the MCMC samples, and plot results. The
package includes a vignette with worked examples using simulated data and access
to open-source data used in our analyses.

In Sect. 2, we describe Dirichlet-multinomial (DM) and Dirichlet-tree multino-
mial (DTM) regression models with spike-and-slab priors and discuss alternative
priors for inclusion indicators that accommodate known and unknown graphical
structures between covariates. In Sect. 3, we perform a sensitivity and simulation
study for Bayesian DM and DTM regression models and compare them to penal-
ization approaches. Section 4 illustrates the application of the MicroBVS package
to microbiome data collected in the Multi-omics Microbiome Study—Pregnancy
Initiative and a benchmark dataset to investigate the relations between gut microbial
taxa and dietary covariates. Section 5 provides concluding remarks.
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2 Methods

2.1 Dirichlet-Multinomial Regression Models for
Compositional Data

In this section, we introduce how to model compositional abundance data via a
Dirichlet-multinomial (DM) regression framework and then demonstrate how to
embed spike-and-slab priors for variable selection, similar to [28]. We first assume
that taxa counts yi = (yi,1, . . . , yi,K) follow a multinomial distribution

yi ∼ Multinomial(ẏi |pi), (1)

with ẏi =∑K
k=1 yi,k , and pi defined on the K-dimensional simplex

SK−1 =
{

(pi,1, . . . , pi,K) : pi,k ≥ 0,∀k,

K∑

k=1

pi,k = 1

}

.

To account for overdispersion, we specify a conjugate prior on the taxa probabilities,

pi ∼ Dirichlet(γi), (2)

with the K-dimensional vector γi = (γi,k > 0,∀k ∈ K), similar to [13] and [28].
Typically, the pi are integrated out of the model for computational convenience,
and the yi are modeled with a Dirichlet-multinomial(γi) [28]. To incorporate
covariate effects into the model, we use a log-linear regression framework for the
concentration parameters γi . Specifically, we set λi,k = log(γi,k) and assume

λi,k = αk + x′
iϕk, (3)

where ϕk = (ϕk1, . . . , ϕkP )′ represents the covariates’ potential relation with the
kth compositional taxon, and αk is a taxon-specific intercept term. Additionally, xi

represents a P -dimensional vector of observed covariates for individual i, e.g., age,
sex, medication use, and dietary factors. By exponentiating (3), we ensure positive
hyperparameters for the Dirichlet distribution.

2.2 Variable Selection Priors

For DM regression models, the number of potential models to choose from
when performing variable selection, 2PK , grows quickly even for small covariate
spaces. To induce sparsity in the model, we embed multivariate spike-and-slab
priors for variable selection that identify covariates that are associated with each
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compositional taxon [20, 24], as opposed to spike-and-slab constructions that select
variables as relevant to either all or none of the responses [2]. We assume that the
covariates’ inclusion in the model is represented by a latent K × P -dimensional
inclusion matrix ζ . As such, ζkp = 1 indicates that covariate p is associated with
compositional taxon k and 0 otherwise. The prior for ϕkp given ζkp follows a mixture
of a normal distribution and a Dirac-delta function at zero, δ0, and is commonly
referred to as the spike-and-slab prior. Specifically,

ϕkp|ζkp, r2
k ∼ ζkp · N(0, r2

k ) + (1 − ζkp) · δ0(ϕkp), (4)

where r2
k is set large to impose a diffuse prior for the regression coefficients included

in the model.
The DM model can incorporate different sparsity levels and can accommodate

various structural relations between covariates through the specification of the
prior probability of inclusion for each covariate, wkp. Commonly, a beta-binomial
distribution is assumed. With this prior, we let each ζkp follow a Bernoulli
distribution

p(ζkp|wkp) = w
ζkp

kp (1 − wkp)1−ζkp

and further assume wkp ∼ Beta(a, b). By integrating out wkp, we obtain

p(ζkp) = Beta(ζkp + a, 1 − ζkp + b)

Beta(a, b)
,

where the hyperparameters a and b can be set to impose different levels of sparsity
in the model. In practice, the authors in [28] suggest using a weakly informative
prior probability of inclusion by setting a + b = 2, where the prior expected mean
value m = a/(a + b). Thus, setting a = 0.1 and b = 1.9 reflects a prior belief that
5% of the covariates will be selected. A non-informative prior is assumed by setting
a = b = 1 (i.e., m = 0.50). See [28] for a detailed sensitivity analysis regarding
hyperparameter specification for DM regression models. To complete the model’s
specification, we assume that the intercept terms αk follow a N(0, σ 2

k ), where σ 2
k

are set large to impose diffuse priors.

2.3 Network Priors

Under the beta-binomial prior, inclusion indicators are assumed independent. In
other settings, researchers may be interested in incorporating prior information for
the probability of inclusion of a covariate based on known relations with other
covariates. For example, when covariates are chosen as gene expression levels, a
network of covariate interactions may be known based on biological information
[15, 25]. This graphical structure can be incorporated into the model via Markov
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random field (MRF) priors, which are parameterized to increase a covariate’s
inclusion probability if neighboring covariates in the graph are included. MRFs
are undirected graphical models for random variables whose distribution follows
Markovian properties.

To use this information to help guide variable selection, the prior probability of
inclusion for each covariate is set according to the given relations between covariates
x. Specifically, we assume an MRF prior on ζk that increases the probability of
inclusion for a covariate if covariates in its neighborhood in the graph are also
included. Given the graph G, an adjacency matrix that represents the relations
between covariates, the prior probability of inclusion for indicators ζk follows

p(ζk|G) ∝ exp(aG1′ζk + bGζ ′
kGζk),

where 1 is a P -dimensional vector of 1s and aG and bG control the global probability
of inclusion and the influence of neighbors’ inclusion on a covariate’s inclusion,
respectively. Previous studies have demonstrated how small increments in bG can
drastically increase the number of covariates included in the model [15, 25]. Li and
Zhang [15] provide a detailed description of how to select a value for bG. Note
that if there is no structure between covariates, the prior probabilities of inclusion
simplify to independent Bernoulli(exp(aG)/(1 + exp(aG))).

2.3.1 Unknown G

When less is known about the relations between covariates, the network structure,
G, can be inferred. Efficient sampling algorithms for learning the structure of high-
dimensional data with Gaussian graphical models [29] have allowed researchers to
embed them into Bayesian variable selection models that simultaneously perform
variable selection while learning the relations between covariates [19].

Let X ∼ MV N(0,�), where � = �−1 is a P × P precision matrix. Following
[29], we assume a hierarchical prior that models conditional dependence between
covariates through edge detection in an undirected graph. Let graph G contain P

nodes, corresponding to the set of potential covariates in the model. Let gst ∈ {0, 1}
represent a latent inclusion indicator for an edge between nodes s and t , for s < t .
The inclusion of edge gst corresponds to ωst �= 0, where ωst , 1 ≤ s < t ≤ P ,
are the off-diagonal elements of �. The prior distribution for � is the product of
P exponential distributions for diagonal components and P(P − 1)/2 mixtures of
normals for off-diagonal components of the precision matrix. Specifically,

p(�|G, v0, v1, θ)={C(G, v0, v1, θ)}−1
∏

s<t

N(ωst |0, v2
st )
∏

s

Exp (ωss |θ/2) I{�∈M+},

where Exp(·|θ/2) represents an exponential distribution with mean 2/θ ,
C(G, v0, v1, θ) is a normalizing constant, and I{�∈M+} is an indicator function
that constrains � to be a symmetric positive definite matrix. Here, v2

st = v1 if the
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edge inclusion indicator gst = 1, and v2
st = v0 if gst = 0. In practice, v0 > 0 is set

small to concentrate ωst around zero for excluded edges, and v1 > 0 is set large so
that ωst is freely estimated via a diffuse prior for included edges. The prior for the
edge inclusion indicator gst follows

p(G, v0, v1, θ, π) = {C(v0, v1, θ, π)}−1C(G, v0, v1, θ)
∏

s<t

{
πgst (1 − π)1−gst

}
,

where C(v0, v1, θ, π) is a normalizing constant and π represents the prior prob-
ability of inclusion for an edge. Following the recommendations of [29], the
specification of π should reflect prior belief in the sparsity of the graph, and θ is
typically set to one. The latter implies a relatively vague prior for ωss , since the data
are usually standardized prior to analysis. See [29] for more details regarding prior
specification.

2.4 Dirichlet-Tree Multinomial Models

In this section, we describe Bayesian variable selection for Dirichlet-tree multi-
nomial regression models, similar to [11]. The DM model described in Sect. 2.1
assumes that counts are negatively correlated. Alternatively, the Dirichlet-tree
multinomial model (DTM) inherits the DM’s ability to handle overdispersed
data, can model general correlation structures between counts, and can naturally
incorporate structural information [4, 17]. In microbiome research, this allows us
to model evolutionary relations among taxa represented by a phylogenetic tree
[11, 26, 27, 30].

To accommodate a tree-like structure among counts, the multinomial distribution
is deconstructed into the product of multinomial distributions for each of the sub-
trees in the tree, and the conjugate Dirichlet-tree prior is assumed [4]. Specifically,
let tree T have K leaf nodes and V internal nodes. Let Cv represent the set of child
nodes for each individual node v ∈ V . For each subject, the branch probability
between parent node v and child node c is represented as pi,vc, where

∑|Cv |
c=1 pi,vc =

1 and |Cv| is the number of child nodes of v. Under this parameterization, we
assume that yi,v = (yi,v1, . . . , yi,vC)′ follows a Multinomial(ẏi,v, pi,v), where
pi,v = {pi,vc, c ∈ Cv}. We assume a Dirichlet(γi,v) prior for each pi,v , where
γi,v = (γi,vc > 0,∀c ∈ Cv). Integrating the pi,v out, we model ẏi,v with a Dirichlet-
multinomial(γi,v) and take the product of the v Dirichlet-multinomial models for
each sub-tree, to obtain the Dirichlet-tree multinomial (DTM) distribution as

p(yi |γi, v ∈ V ) =
∏

v∈V

�(
∑

c∈Cv
yi,vc + 1)�(

∑
c∈Cv

γi,vc)

�(
∑

c∈Cv
yi,vc +∑c∈Cv

γi,vc)
×
∏

c∈Cv

�(yi,vc + γi,vc)

�(yi,vc + 1)�(γi,vc)
,

where � represents the gamma function. The generalized DM model and the
DM model are special cases of the DTM class of models [30]. Specifically, the
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generalized DM model can be represented as a DTM with a binary cascading tree
(i.e., at each level of the tree, the rightmost branch splits into two), and the DM can
be represented with a tree containing only one root node and K leaf nodes.

Similar to Eq. (3), covariate effects can be incorporated into the model using a
log-linear regression framework. Specifically, we set λi,vc = log(γi,vc) and assume

λi,vc = αvc + x′
iϕvcp,

where xi = (xi,1, . . . , xi,P )′ represents a set of measurements on P covariates
and ϕvc = (ϕvc1, . . . , ϕvcP )′. We assume that the intercept terms αvc follow a
N(0, σ 2

vc), where σ 2
vc are set large to impose vague priors on αvc. Similar prior

specifications for variable selection presented in Sect. 2.2 can be applied to each of
the DM components of this model.

2.5 Posterior Inference

In Bayesian inference, the posterior distribution is proportional to the product
of the likelihood of the data and the prior distributions for the parameters. For
both DTM and DM models, researchers have implemented Metropolis–Hastings
algorithms within a Gibbs sampler for inference [11, 28]. Since the DTM model is
a generalization of the DM model, we present a general MCMC algorithm in the
context of DTM models. Assuming a beta-binomial prior probability of inclusion,
the parameter space is described as � = {α,ϕ, ζ }, and the posterior distribution is

p(�|Y , x) ∝ f (Y |α,ϕ, ζ , x)p(α)p(ϕ|ζ )p(ζ ).

We use a two-step update approach to sample regression coefficients and inclusion
indicators for covariates, following [21].

A generic iteration of the MCMC algorithm is described as follows:

• Update each αvc—Metropolis step with random walk proposal from α′
vc ∼

N(αvc, 0.50). Accept proposal with probability

min

{
f (Y |α′,ϕ, ζ , x)p(α′

vc)

f (Y |α,ϕ, ζ , x)p(αvc)
, 1

}
.

• Jointly update a ζvcp and ϕvcp

– Between-Model Step: Randomly select a ζvcp term.

Add: If the covariate is currently excluded (ζvcp = 0), change it to ζ ′
vcp =

1. Then, sample a ϕ′
vcp ∼ N(ϕvcp, 0.50). Accept proposal with probability
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min

{
f (Y |α,ϕ′, ζ ′, x)p(ϕ′

vcp|ζ ′
vcp)p(ζ ′

vc)

f (Y |α,ϕ, ζ , x)p(ζvc)
, 1

}

.

Delete: If the covariate is currently included (ζvcp = 1), change it to ζ ′
vcp =

0 and set ϕ′
vcp = 0. Accept proposal with probability

min

{
f (Y |α,ϕ′, ζ ′, x)p(ζ ′

vc)

f (Y |α,ϕ, ζ , x)p(ϕvcp|ζvcp)p(ζvc)
, 1

}
.

– Within-Model Step: Propose a ϕ′
jp ∼ N(ϕjp, 0.50) for each covariate

currently selected in the model (ζvcp = 1). Accept each proposal with
probability

min

{
p(Y |α,ϕ′, ζ , x)p(ϕ′

vcp|ζvcp)

p(Y |α,ϕ, ζ , x)p(ϕvcp|ζvcp)
, 1

}

.

To include a known graphical structure and impose an MRF prior for selection,
the algorithm simply replaces p(ζ ) with p(ζ |G). If the relational structure between
the covariates is unknown, the posterior distribution of the model is redefined as

p(�|Y ,X) ∝ f (Y |α,ϕ, ζ ,X)f (X|�)p(α)p(�|G)p(ϕ|ζ )p(ζ |G)p(G),

where � = {α,ϕ, ζ ,�,G}. Note that this parameterization treats the covariates X

as random and not fixed. For implementation, the MCMC algorithm requires two
additional steps to simultaneously learn the graphical relations. We update � and G

following the approach outlined in [29].
For implementation, the algorithms are initiated at a set of arbitrary parameter

values and then used to generate samples of the posterior distribution. After burn-in,
the remaining samples are used for inference. To determine inclusion in the model,
the marginal posterior probability of inclusion (MPPI) for each of the covariates is
determined by taking the average of their respective inclusion indicator’s MCMC
samples. Note that a covariate has a unique inclusion indicator for each of the
taxon. Commonly, variables are included in the model if their MPPI ≥ 0.50 [1].
Alternatively, the authors in [18] propose using a threshold based on a Bayesian
false discovery rate (BFDR) to control for multiplicity.

3 Simulated Data

In this section, we demonstrate the selection performance for the DM and DTM
models using simulated data. For the DM models, we compared the performances
using different variable selection priors, i.e., a beta-binomial prior, an MRF prior
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with fixed graphical structure (i.e., G set to the truth and G learned a priori), and an
MRF prior with unknown graphical structure.

For variable selection, all models were assessed on the basis of sensitivity (1—
false negative rate), specificity (1—false positive rate), and Matthew’s correlation
coefficient (MCC) (a measure of overall selection accuracy). These are defined as

Sensitivity = TP

FN + TP

Specificity = TN

FP + TN

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TN, TP, FN, and FP represent the true negatives, true positives, false
negatives, and false positives, respectively. Covariates were determined to be
associated with the compositional and response data, respectively, if their MPPI
≥ 0.50 [1]. Results we report below were obtained by averaging over 30 replicated
datasets.

3.1 Simulation Study for DM Regression Models

Similar to simulation schemes adopted by [3, 12, 28], we simulated N = 100
subjects with P = 30 covariates and K = 75 compositional taxa. Covariates x

were simulated from a NP (0, �), where � was set to a block diagonal matrix with
one along the diagonal and three 5 × 5 exchangeable covariance structures (for the
first 15 covariates) with σij = 0.7, 0.5, and 0.3, respectively. In each of the replicate
datasets, we randomly selected 25 of the 2250 covariate–taxon combinations to
be associated with the compositional data. Corresponding regression coefficients
ϕ were randomly sampled from ±[0.75, 1.25]. Intercept terms α were simulated
from a Uniform[−2.3, 2.3]. The compositional data Y were sampled from a
Multinomial(ẏi , p

∗
i ), where ẏi ∼ Uniform[5,000, 10,000] and p∗

i ∼ Dirichlet(γ ∗
i ),

where γ ∗
i = (γ ∗

i,1, γ
∗
i,2, . . . , γ

∗
i,K). We let γ ∗

i,k = γi,k∑K
k=1 γi,k

1−d
d

, k = 1, . . . , K , where

γi,k was determined using Eq. (3), and d serves as an overdispersion parameter
which was set at 0.01. As a result, the data-generating model differs from our model
assumptions.

When running the MCMC algorithm, we set hyperparameters a = 1 and b = 9
for the beta-binomial prior and aG = log(0.1/0.9) for the MRF prior, representing a
prior expectation of 10% of the total number of covariates included in both models.
For the MRF prior with known graphical structure, we set bG = 0.2 and the graph
G equal to a P ×P -dimensional block diagonal matrix, with 3, 5×5 blocks of 1s for
the first 15 elements. Additionally, we set G equal to the graphical structure learned
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Table 1 Simulation results for the DM regression model with various inclusion indicator prior
assumptions. # Selected—the number of selected covariates and MCC—Matthew’s correlation
coefficient. Results are presented as mean (SD) over 30 replicate datasets

Prior # Selected Sensitivity Specificity MCC

beta-binomial 24.3 (3.2) 0.904 (0.092) 0.999 (0.001) 0.917 (0.062)

MRF fixed G-true 56.6 (13.8) 0.987 (0.028) 0.986 (0.006) 0.665 (0.083)

MRF fixed G-learned 43.8 (12.4) 0.975 (0.032) 0.991 (0.006) 0.748 (0.086)

MRF unknown G 42.6 (8.5) 0.979 (0.029) 0.992 (0.003) 0.766 (0.073)

using [29]. For the MRF prior with unknown graphical structure, we set bG = 0.2,
v0 = 0.01, v1 = 10, λ = 1, and π = 2/(P − 1), similar to [29]. Simulations were
run for 10,000 iterations and thinned to every 10th iteration. This resulted in 1,000
iterations, of which the first 500 iterations were treated as burn-in and the remaining
500 used for inference. Each run was initiated with ζpk = 0 and αk sampled from a
standard normal distribution.

Results are found in Table 1. Overall, the DM model with MRF prior and fixed
graphical structure among covariates had the highest number of selected covariates
on average. These results were expected since the baseline prior probability of
inclusion using the MRF (aG) was set to impose a 10% prior probability of
inclusion, similar to the beta-binomial model, and any graphical structure (known or
unknown) would only increase the probability of inclusion in the model. As a result,
the MRF with G fixed to the truth had the highest sensitivity overall. However,
since it typically overselected, it achieved the lowest specificity and MCC as well.
Overall, the DM with a beta-binomial prior had the highest MCC (∼92%). Lastly,
we observed a marginal improvement in selection performance when learning the
graphical structure simultaneously in the model versus a priori. It is important to
note that the MRF model with unknown graphical structure had similar performance
to the MRF with known graphical structure while additionally providing inference
on the relations among covariates.

3.2 DM Sensitivity Analysis

To assess the model’s sensitivity to hyperparameter settings, we set each of the
hyperparameters to default values and then evaluated the effect of manipulating
each term on selection performance. We investigated the model’s sensitivity to
specification of the beta-binomial prior hyperparameters a and b, MRF prior
hyperparameters aG and bG, and hyperparameters associated with the Gaussian
graphical models, v0, v1, and π . For the default parameterization, we set the
hyperparameters for the beta-binomial prior inclusion indicators to a = 1 and
b = 9. For the MRF priors, we set the hyperparameters aG = log(0.1/0.9) and
bG = 0.2. The default values for the Gaussian graphical model hyperparameters
were v0 = 0.01, v1 = 10, and π = 2/(P − 1). We ran our MCMC algorithm on
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Table 2 Sensitivity results
for the beta-binomial and
MRF prior probability of
inclusion parameters b and
bG, respectively, the
exclusion variance for
graphical edge selection v0,
and the prior probability of
edge inclusion π . #
Selected—the number of
selected covariates
MCC—Matthew’s
correlation coefficient.
Results are presented as mean
(SD) over 30 replicate
datasets

Prior b = 1 b = 99

beta-binomial # Selected 37.0 (9.4) 21.5 (2.5)

Sensitivity 0.97 (0.04) 0.83 (0.12)

Specificity 0.99 (0.00) 1.00 (0.00)

MCC 0.81 (0.09) 0.89 (0.08)

bG = 0.05 bG = 0.5

MRF fixed G # Selected 41.2 (10.9) 893.6 (72.4)

Sensitivity 0.97 (0.04) 1.00 (0.00)

Specificity 0.99 (0.00) 0.61 (0.03)

MCC 0.77 (0.09) 0.13 (0.01)

v0 = 0.001 v0 = 0.1

MRF unknown G # Selected 43.9 (10.7) 41.9 (9.8)

Sensitivity 0.98 (0.03) 0.97 (0.03)

Specificity 0.99 (0.00) 0.99 (0.00)

MCC 0.75 (0.09) 0.76 (0.08)

π = 0.02 π = 0.5

MRF unknown G # Selected 42.5 (11.6) 47.1 (12.3)

Sensitivity 0.98 (0.04) 0.98 (0.03)

Specificity 0.99 (0.01) 0.99 (0.01)

MCC 0.76 (0.09) 0.72 (0.08)

the 30 replicated datasets generated in the simulation study, using 10,000 iterations,
treating the first 5,000 iterations as burn-in, and thinning to every 10th iteration.

The results of the sensitivity analysis are presented in Table 2. As expected, we
found that increasing (decreasing) b in the beta-binomial prior reduced (increased)
the number of covariates selected in the model. Here, we observed a positive
relation between sensitivity and the prior probability of inclusion. However, since
the model overselected covariates with smaller b values, the specificity diminished
as a result. Using an MRF prior with a fixed underlying graphical structure, we
found that as bG increased, so did the number of selected covariates on average.
In our analysis, the models seemed to experience a phase transition, in which the
number of covariates selected in the model dramatically increased, for bG = 0.5.
See [15] for recommendations on selecting the appropriate bG in practice. With
unknown graphical structure, we found marginal differences in results relative to
changes in v0 and π .

3.3 Simulation Study for DTM Regression Models

For the DTM model, we compared selection performances to the penalized DTM
approach of [30]. We simulated N = 100 subjects with P = 75 covariates and
K = 30 compositional taxa. Covariates x were simulated from a NP (0, �), where
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σij = ω|i−j | and ω = 0.3. In each of the replicate datasets, we randomly selected
15 of the 4,350 covariate–branch combinations to be associated with the composi-
tional data. Corresponding regression coefficients ϕ were randomly sampled from
±[0.75, 1.50]. Intercept terms α were simulated from a Uniform[−1.3, 1.3]. The
multivariate count data Y were sampled from a DTM regression model with total
counts for each individual uniformly distributed between 7,500 and 10,000. For each
dataset, we simulated a random tree using sequential binary separation [7], in which
the parent node and subsequent internal nodes are split into two branches until the
total number of leaf nodes K is obtained.

We chose a beta-binomial inclusion prior and set a = 1 while varying b as b =
1, 9, and 99, to investigate the model’s sensitivity to hyperparameter specification.
The MCMC algorithms were run for 40,000 iterations, treating the first 20,000 as
burn-in and thinning to every 10th iteration. For the penalized approach of [30],
it is necessary to choose tuning parameters γ and λ, which control the sparsity of
the model. When γ = 0 and γ = 1, the model generates the lasso and group
lasso estimate, respectively. Following the recommendations of [30], we set γ =
{0.0, 0.25, 0.5, 1.0} and fit the model over a grid of λ values. The best model for
each γ was then chosen by minimizing the Bayesian information criterion [22].

Similar to the DM model, we found that the DTM was sensitive to the prior
probability of inclusion (Table 3). Specifically, as b increased (decreased), the
number of covariate–branch association decreased (increased), as expected. We
found that the model with b = 9 had the best selection performance overall
(MCC = 0.544), and the non-informative model (i.e., a = b = 1) showed the
worst performance overall (MCC = 0.219). All prior specifications achieved a
relatively high specificity (>0.97). Similar specificity results were found with the
penalized approach (Table 4). However, the penalized approach, regardless of tuning
parameter γ , had extremely low sensitivity, resulting in low MCC values as well.
When γ = 1, the penalized model did not select any covariate–branch terms (results
not shown).

Table 3 Simulation results for the Bayesian variable selection method for DTM regression models
at various prior probabilities of inclusion

Prior # Selected Sensitivity Specificity MCC

a = 1 and b = 1 135.0 (42.1) 0.642 (0.184) 0.971 (0.010) 0.219 (0.085)

a = 1 and b = 9 15.5 (5.2) 0.564 (0.239) 0.998 (0.001) 0.544 (0.202)

a = 1 and b = 99 5.2 (2.6) 0.293 (0.145) 1.00 (0.00) 0.491 (0.156)

Table 4 Simulation results for the penalized DTM regression approach of [30]. For each γ , the
optimal model is chosen over a grid of λ values using the Bayesian information criterion

γ # Selected Sensitivity Specificity MCC

0.0 47.5 (36.3) 0.122 (0.172) 0.989 (0.008) 0.071 (0.098)

0.25 28.3 (25.1) 0.107 (0.173) 0.994 (0.006) 0.090 (0.142)

0.50 17.3 (21.7) 0.071 (0.139) 0.996 (0.005) 0.076 (0.118)
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Table 5 Sensitivity results for high and low count associations with the Bayesian beta-binomial
(a = 1 and b = 9) and Penalized DTM regression models. # Selected— the number of selected
covariates and MCC—Matthew’s correlation coefficient. Results are presented as mean (SD) over
30 replicate datasets

Branch count Model # Selected Sensitivity Specificity MCC

High Bayesian 19.2 (3.5) 0.507 (0.106) 0.998 (0.001) 0.575 (0.097)

Penalized 49.6 (35.8) 0.800 (0.089) 0.993 (0.008) 0.629 (0.135)

Low Bayesian 17.7 (5.4) 0.466 (0.165) 0.999 (0.001) 0.546 (0.131)

Penalized 255.1 (320.1) 0.542 (0.220) 0.944 ( 0.074) 0.270 (0.189)

3.4 DTM Sensitivity Analysis

In this sensitivity analysis, we investigate how selection performance is affected by
branch count. Specifically, we simulated data similar to Sect. 3.3, with the exception
that we targeted high (upper quartile) and low (lower 50th percentile) branch count
regions in the tree when setting the associated terms. In the first (second) setting,
we activated 25 terms across 5 high (low) count branches. We applied the Bayesian
and penalized approaches used in the simulation study in this analysis and present
results for the best performing parameterizations. For the Bayesian approach, we
assumed a beta-binomial prior for inclusion indicators, (a = 1 and b = 9), and for
the penalized approach, we set γ = 0.50.

The results of our sensitivity analysis are presented in Table 5. Here, we found
that the Bayesian model was quite robust to branch counts. In both the high and
the low settings, it generated selection performance results similar to the simulation
study (MCC ∼ 0.55 ). The penalized method showed the best performance overall
when the covariates were associated with high branch counts (MCC = 0.63).
However, in the low branch count setting, it over-selected, which greatly reduced
its overall performance. Thus, in practice, the Bayesian method may be preferred
in more sparse settings, whereas the penalized approach may be better suited for
studies with higher numbers of taxa reads.

4 Applications

In this section, we apply the DM and DTM Bayesian variable selection methods to
data collected in two microbiome studies, in order to demonstrate how to implement
the MCMC algorithms provided in MicroBVS and how to draw inference on the
results. First, we apply the DM regression model with beta-binomial and MRF
priors for inclusion indicators to open-source data collected in the Multi-omics
Microbiome Study—Pregnancy Initiative (MOMS-PI) [9]. This study was funded
by the NIH Roadmap Human Microbiome Project with the aim of understanding
the relations between the microbiome and pregnancy-related health outcomes. Then,
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we demonstrate the functionality of the DTM regression model by applying it to a
benchmark dataset collected to study the relation between the dietary intake and the
human gut microbiome [31]. The data used in this analysis consist of 28 genera-
level OTU counts obtained from 16S rRNA sequencing and a corresponding set of
97 dietary intake covariates derived from diet information collected using a food
frequency questionnaire on 98 subjects.

4.1 Multi-omics Microbiome Study—Pregnancy Initiative
(MOMS-PI)

To demonstrate the application of the DM regression models with various inclu-
sion indicator priors, we use the open-source data collected in the Multi-omics
Microbiome Study—Pregnancy Initiative (MOMS-PI). Data were obtained from
the HMP2Data package in R, which contains observations on 596 subjects.
Women enrolled in the study provided microbiome samples from the mouth, skin,
vagina, and rectum longitudinally. We investigated relations between the vaginal
microbiome and cytokine abundances, which help regulate the composition of the
vaginal microbiome. For this analysis, we used baseline measures on 225 subjects
with accompanying cytokine abundances. The dataset is available as part of the
MicroBVS R package [11]. To install the package, follow the instructions in the
README found at http://github.com/mkoslovsky/MicroBVS. Once installed, load
the package, as well as the abundance, cytokine, and taxonomic data, into the R
environment by running:

329 library(MicroBVS)
330 data("momspi16S")
331 data("momspiCyto")
332 data("momspi16S_tax")

We further limited analyses to only those taxa identified in at least 10% of
participants (i.e., 123 taxa), to reduce the number of spurious relationships detected.
We also standardized the cytokine values before analysis. When running the model
with an MRF prior with an unknown graphical structure, cytokine abundances were
log transformed and centered. Prior to transformation, cytokine values ≤ 0 were
replaced with relatively small pseudovalues.

To fit the DM regression model with a non-informative beta-binomial prior for
inclusion indicators, simply run

333 model1 <- DMbvs_R(iterations = 50000, thin = 10,
334 z = momspi16S, x = momspiCyto,
335 prior = "BB", a = 1, b = 1, seed = 1)

For the results given below, we ran the model for 50,000 iterations, thinning to every
10th and setting the initial seed at 1 for reproducibility. To extract the results from
the DMbvs_R object, use the selected_DM() function as follows:

http://github.com/mkoslovsky/MicroBVS
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336 out <- selected_DM( model1, threshold = 0.5, burnin =
2500)

The out object contains a # Selected covariates × 2-dimensional matrix of
associations, where the first (second) column represents the row (column) of the
corresponding momspiCyto term selected using a burn-in of 2500 iterations and a
marginal posterior probability of inclusion threshold of ≥0.5, following the median
model approach [1]. Additionally, the out object contains the MPPIs for all of the
corresponding cytokine–taxon associations. Figure 1 presents a plot of the MPPIs
for each covariate–taxon pair, and Fig. 2 is a heatmap of identified associations’
regression coefficients. For this analysis, the model selected 43 covariate–taxon
associations.

Next, we ran the DM regression model with an MRF prior with an unknown
graphical structure as

337 model2 <- DMbvs_R(iterations = 50000, thin = 10,
338 z = momspi16S, x = momspiCyto,
339 prior = "MRF_unknown",
340 a_G = 0, b_G = 0.2, v0 = 0.01, v1 = 10,
341 pie = 2/(ncol(momspiCyto)-1), lambda = 1)

We assumed the baseline prior probability of inclusion, aG, equal to zero (analogous
to the non-informative beta-binomial prior), and the rest of the hyperparameters
were set similarly to our simulation study. Results from model2 can be extracted
using the selected_DM function as above. To extract the learned graphical
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Fig. 1 MOMS-PI study: resulting marginal posterior probability of inclusion from DM regression
model with beta-binomial priors for inclusion indicators. MPPI threshold of 0.50 indicated with
dotted line
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Fig. 2 MOMS-PI study: heatmap of cytokine-taxon associations identified with DM regression
model with beta-binomial priors. Taxa are indexed by genus and species

structure in the cytokine data, additionally set the argument G = T. This generates
an additional estimated_G element for the selected_DM object, which is
a # cytokines × # cytokines-dimensional adjacency matrix. A network plot of
the learned structure is presented in Fig. 3. With the MRF prior, the number
of included covariate–taxon associations increased to 64, as expected from the
simulation study. A plot of the MMPIs for model2 is presented in Fig. 4, and
the corresponding heatmap of identified association is presented in Fig. 5. To fit
the DM regression model with fixed graphical structure between covariates, set
the DMbvs_R function argument prior = "MRF_fixed" and G equal to an
adjacency matrix representing the assumed graphical structure. Additional examples
on simulated data can be found in the vignette provided with the MicroBVS
package.

4.2 Gut Microbiome Study

In this section, we demonstrate how to apply the DTM Bayesian variable selection
method to a benchmark dataset collected to study the relation between the dietary
intake and the human gut microbiome [31]. Previously, Wang and Zhao [30]
proposed a penalized DTM regression model to identify dietary intake covariates
associated with genus-level operational taxonomic units (OTUs) on a subset of
these data. We illustrate the Bayesian DTM model on the same subset. To load
the necessary R packages and data into the R environment, run

342 library(MicroBVS)
343 library(phyloseq)
344 data("Gut_micro")
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Fig. 3 MOMS-PI study: learned graphical structure of cytokine data

345 data("Gut_dietary")
346 data("tree")

The phylogenetic tree used in this example is presented in Fig. 6. We assumed
a non-informative beta-binomial prior for inclusion indicators (a = b = 1). The
MCMC algorithm was run for 150,000 iterations thinning to every 100th sample.
After a burn-in of 750 samples, inference was drawn from the remaining 750.

347 model_gut <- DTMbvs_R( iterations = 150000, thin =
100, tree = tree, Y = Gut_micro, X = Gut_dietary,

348 prior = "BB", seed = 1)

In this example, we used a Bayesian false discovery rate of 0.01 to determine a
covariate’s inclusion in the model. To identify the corresponding MPPI threshold for
inclusion, run the selected_DTM function to obtain the matrix of MPPIs. Then,
run the bfdr function at the prespecified error level, i.e., 0.01 in this application.
Next, run the selected_DTM function with the BFDR threshold, MPPI ≥ 0.89
in this example. To label the covariates, we supplied the column names for the
Gut_dietary matrix. While not shown here, the function also has an argument
for edge labels (edge_lab) to help with inference. See the vignette for more
details.
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Fig. 4 MOMS-PI study: resulting marginal posterior probability of inclusion for results from DM
regression model with MRF prior for inclusion indicators. MPPI threshold of 0.50 indicated with
dotted line

Fig. 5 MOMS-PI study: heatmap of cytokine-taxon associations identified with DM regression
model with MRF priors. Taxa are indexed by genus and species
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Fig. 6 Gut microbiome study: phylogenetic tree for identifying dietary intake covariates associ-
ated with genus-level OTUs in a Dirichlet-tree multinomial model regression

349 MPPI <- selected_DTM( model_gut, burnin = 750)$mppi_
zeta

350 bfdr_fit <- bfdr( MPPI, threshold = 0.01 )
351 out <- selected_DTM( model_gut, burnin = 750,
352 threshold = bfdr_fit$threshold,
353 cov_lab = colnames(Gut_dietary) )

For inference, we are interested in the dietary covariates associated with branches
along the path from a particular taxon to the root node. For demonstration, we
focus on two genera researchers that have previously targeted in these data [11, 30],
Bacteroides and Prevotella. To find the unique covariates associated with the
branches corresponding to Bacteroides, run the branch_covariates function
as below:

354 bact_cov <- branch_covariates( tree = tree, dtm_obj =
355 model_gut, covariate_name = colnames( Gut_dietary ),
356 branch_name = "Bacteroides", threshold = bfdr_fit\$

threshold )

This function generates a vector of the unique covariates associated with a given
taxon. Note that the branch_name provided must match an element in the
covariate_name vector. In Table 6, we present the dietary intake covariates
selected by the Bayesian DTM regression model for Bacteroides and Prevotella.
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Table 6 Gut microbiome study: dietary factors identified as associated with Bacteroides and
Prevotella using the DTM model with Bayesian variable selection

Bacteroides Prevotella

Protein Saturated fat

Saturated fat Palmitic fatty acid

Palmitic fatty acid Stearic fatty acid

Stearic fatty acid Natural food folate

Natural food folate Retinol equivalents of vitamin A

Vitamin E, food fortification Vitamin E, food fortification

Maltose Palmitelaidic trans fatty acid

Total trans c9,t11 conjug diene isomer 18:2 Linoleic

Isoleucine Total trans

Lysine Isoleucine

Phenylalanine Arginine

Histidine Serine

Serine Delphinidin, anthocyanidin

Naringenin, flavanone Petunidin, anthocyanidin

Delphinidin, anthocyanidin Proanthocyanidin, trimers

Petunidin, anthocyanidin

Proanthocyanidin, trimers

Proanthocyanidin, polymers

5 Conclusion

In this chapter, we have detailed the use of Dirichlet-multinomial-based approaches
with Bayesian variable selection for microbiome studies. We have explored various
priors for inclusion indicators using the DM regression model and additionally
demonstrated how to incorporate phylogenetic structure into the analysis using
DTM models. While we have only shown beta-binomial inclusion indicator priors
for the DTM model, the MicroBVS package can support MRF priors for DTM
models as well. Additionally, the MicroBVS package includes functionality to
implement the joint model proposed in [12] and additional code to simulate data
for each of these models. Step-by-step worked examples using simulated data are
provided in the vignette. Frequentist variable selection methods for microbiome data
are covered in Chap. 8.

The computational burden of the models described in this chapter is largely
dependent on the dimension of the data, tree complexity, prior specification, and the
sparsity of the model. For reference, the DTM model run in the gut microbiome
analysis took around 9 h to run 150,000 iterations (0.23 seconds/iteration) on a
2.5 GHz dual-core Intel Core i5 processor with 8 GB RAM. To maintain reasonable
computation times and selection performance, the authors in [11] recommend
applying DTM models to small-to-medium sized microbiome datasets, that is, with
less than 100 compositional components and moderate-to-large tree structures when
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B × P >> n. Larger datasets might be analyzed by employing the DM models,
which do not incorporate the phylogenetic tree. For comparison, the application
of the DM model with beta-binomial priors for inclusion indicators took 24 min
(0.14 s/iteration) to run with roughly four times as many taxa (123 versus 28). Using
the MRF prior with unknown graphical structure also increases the computation
time with larger covariate spaces. For our analysis of the MOMS-PI data, the
addition of the Gaussian graphical model increased the computation time to 36 min
(0.22 s/iteration). As an avenue for future work, variational inference approaches to
DM models have shown promising variable selection results [16].
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