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We introduce a method to draw causal inferences—inferences
immune to all possible confounding—from genetic data that
include parents and offspring. Causal conclusions are possible
with these data because the natural randomness in meiosis can
be viewed as a high-dimensional randomized experiment. We
make this observation actionable by developing a conditional
independence test that identifies regions of the genome con-
taining distinct causal variants. The proposed digital twin test
compares an observed offspring to carefully constructed synthetic
offspring from the same parents to determine statistical signifi-
cance, and it can leverage any black-box multivariate model and
additional nontrio genetic data to increase power. Crucially, our
inferences are based only on a well-established mathematical
model of recombination and make no assumptions about the rela-
tionship between the genotypes and phenotypes. We compare
our method to the widely used transmission disequilibrium test
and demonstrate enhanced power and localization.

transmission disequilibrium test (TDT) | family-based association test
(FBAT) | causal discovery | false discovery rate (FDR) | conditional
independence testing

The ultimate aim of genome-wide association studies (GWAS)
is to identify regions of the genome containing variants that

causally affect a phenotype of interest (1). This paper works
toward this goal by developing a test of a well-chosen conditional
independence hypothesis. Specifically, we consider the hypothe-
sis that a phenotype is independent of a group of genetic variants
after conditioning on all other observed genetic variation and the
genetic information of the subjects’ parents (Eq. 1). This allows us
to evaluate the potential causal role of the variants in the group.

Our method addresses a key difficulty arising in the analysis
of genetic datasets of increasing size: In this regime, any statisti-
cal association between a genetic variant and phenotype will be
detectable, including many irrelevant associations arising from
nongenetic factors, such as differing environmental conditions.
While there are existing methods to mitigate this problem (2–5),
such methods are not guaranteed to remove it entirely; the sever-
ity of the problem increases with large sample sizes, and current
methodology may result in many detectable associations that do
not represent interesting biological activity. Therefore, it is crit-
ical to move from detecting promising associations to rigorously
establishing causality. The most trustworthy way to ascertain that
a statistical association is causal is to use a randomized experiment
(6), and parent–offspring duo or trio data record such an experi-
ment in the sense that the locations of the recombination points
during meiosis are randomized by nature. Building on this, our
proposed method analyzes the placement of such sites to prov-
ably report only biologically meaningful regions of the genome.

Related Work. Geneticists have long exploited the randomness
in inheritance to identify meaningful associations (7–10). The
launching point for this work is the transmission disequilibrium
test (TDT) (11, 12), which checks whether a given allele is inher-
ited more or less frequently in affected progeny than expected by
chance. If the transmission frequency deviates from the baseline
frequency, the TDT reports an association. Beyond the original
TDT, additional techniques for analyzing more complex, par-

tially observed pedigrees (13–16) and using multiple markers
(17–19) have been developed; these are known as family-based
association tests. Moreover, these techniques can be extended
to study quantitative traits (20–23). To address the multiple-
comparisons problem arising from looking at many variants at
once ref. 24 shows how to decouple the selection of promising
markers from the final construction of a P value from family-
based association tests. These methods are robust both to mod-
eling assumptions about the relationship between the trait and
the genotypes and to population structure, namely, the presence
of subpopulations with different allele frequencies (e.g., ref. 25).
These existing methods, however, restrict the choice of test statis-
tic and do not resolve associations due to linkage disequilibrium
(LD)—correlations among sites along the genome.

Turning to the statistics literature, causal inference is con-
cerned with correcting for confounders: variables that create
statistical associations between quantities of interest even when
there is no causal relationship. The problem of learning the struc-
ture of the true underlying causal model from data is known as
causal discovery (e.g., refs. 26–28). General methods for causal
discovery exist, although they typically require a large number
of conditional independence tests and the assumption that such
tests can be carried out without any statistical error asymptot-
ically (29, 30). As a result, finite-sample results are rare. This
work also uses conditional independence testing as the foun-
dation for causal discovery but builds upon the conditional
randomization test (31) to give finite-sample statistical guar-
antees. Our approach is also related to that of knockoffs (31,
32), which provides finite-sample statistical guarantees and has
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been successfully deployed to analyze GWAS data (33–35),
although the connection with causal discovery was not previously
developed.

Our Contribution. We introduce the digital twin test: an approach
for finding causal regions in the genome that generalizes
the TDT and related methods. Our contribution has four
components:

1) Leveraging black-box models and subject matter knowledge.
The digital twin test increases power by incorporating any
multivariate model and subject matter information. Critically,
the error rate guarantees of the method do not rely what-
soever on the correctness of the prior information or of the
phenotype model.

2) Identifying distinct causal regions. The digital twin test prov-
ably localizes causal variants within explicit windows along
the genome, clearly showing the user when there are dis-
tinct causal effects. By contrast, although it is not widely
known, the TDT is testing a less exact global null, so spurious
findings arise from correlations among variants—see Linkage
Disequilibrium in the Trio Design for an example.

3) Testing multiple hypotheses. The digital twin test deals with
multiple comparisons in a precise way, controlling either the
family-wise error rate or the false discovery rate (FDR) with-
out the need for a conservative Bonferroni correction. The
heart of our solution is the creation of independent P val-
ues for disjoint regions, which can then be used with more
powerful multiple-testing procedures.

4) Establishing causality in the trio design. We formalize the
existing notion that family studies are immune to population
structure, showing how to leverage the trio design to make
causal inferences in a rigorous statistical sense. Our results
allow us to describe the properties of the TDT and some of
its variations for quantitative traits.

While our inferences are based on trio data, our method can
take advantage of additional case–control or population GWAS
data to greatly increase power while retaining the certified causal
inferences. Since trio samples are harder to collect than case–
control or population samples, traditional GWAS designs remain
critical, and accordingly we show how joint analysis of population
and trio samples can rigorously establish that detected associa-
tions are due to causal variants. Finally, we highlight that our
approach is flexible and naturally applies to binary, quantitative,
or time-to-onset phenotypes.

1. The Digital Twin Test
A. Setting. Human cells have 46 chromosomes organized into 23
pairs; one element in each pair is inherited from the mother and
one is from the father. In this work, we consider the case where
we measure single-nucleotide polymorphisms (SNPs), sites on
the genome where two possible alleles occur in the population,
encoded as 0 or 1. The set of observed alleles for one entire chro-
mosome is known as a haplotype. We consider the case where the
haplotypes of n subjects and their biological parents at p sites are
known, denoted as follows:

subjects: (X w
1 , . . . ,X w

p )∈{0, 1}n×p , w ∈{m, f };
mothers: (M w

1 , . . . ,M w
p )∈{0, 1}n×p ,w ∈{a, b};

fathers: (Fw
1 , . . . ,Fw

p )∈{0, 1}n×p , w ∈{a, b}.

For convenience we define the matrix of all offspring haplotypes
as X = (Xm ,X f )∈{0, 1}n×2p , the matrix of offspring geno-
types as X̄ =Xm +X f , and the set of all ancestral haplotypes
as A= (M a ,M b ,F a ,F b). For any matrix M , we let Mj be col-
umn j of M and M (i) be row i of M , with the exception that

Xj is defined as (X f
j ,Xm

j ). Finally, for any g ⊂{1, . . . , p} we let
Mg = (Mj )j∈g .

Our method takes the haplotypes as given, even though typi-
cally only the genotypes are directly measured in a GWAS study.
Haplotypes are then reconstructed algorithmically through phas-
ing (36). While experimental techniques are being developed
to directly measure haplotypes, these are not yet widespread.
We instead take the phased haplotypes as a reasonable approx-
imation, since phasing is known to be accurate with family data
(36–38). In a simulation using a synthetic population with known
ground-truth haplotypes, we find that our method performs
identically with known haplotypes and computationally phased
haplotypes (SI Appendix, section S.5).

Crucially, the distribution of the offspring genotypes X con-
ditional on the parental haplotypes A is known. Informally, the
model for a single offspring is this: For the haplotype Xm inher-
ited from the mother, the SNP Xm

j is inherited either from M a
j

or from M b
j , with equal probability. Furthermore, long continu-

ous blocks of Xm are jointly inherited either from M a or M b ,
with occasional switches at recombination sites; see Fig. 1 for
an illustration. This process was formalized as a hidden Markov
model (HMM) by Haldane (39); see The Haldane HMM for a
formal description. Throughout, we will leverage our knowledge
of the distribution of the offspring to carry out hypothesis tests.

B. The Hypothesis and Its Test. We now introduce a randomiza-
tion test to find regions of the genome that contain distinct
causal variants. Our method partitions the genome into disjoint
regions and then constructs a P value for the hypothesis that a
given region contains no causal SNPs. The special case where
the group is the entire genome corresponds to a test of the global
null: whether the trait is heritable or not.

Formally, let B |D denote the distribution of a random vari-
able B given the observed value of a random variable D , and
let B |= C |D denote that B is conditionally independent of C
given D . Let G be a partition of {1, . . . , p}. For each group of
SNPs g ∈G , we consider the hypothesis

H g
0 :Y |= Xg | (X−g ,A). [1]

In words, this is the hypothesis that knowing the SNPs in group
g is not informative about the response once we know the
remaining SNPs and the parental haplotypes. Conditioning on
the SNPs outside g ensures that any rejections reflect the exis-
tence of causal SNPs in the region g rather than elsewhere on
the chromosome. Conditioning on the parental haplotypes, A,
guarantees that the test yields valid causal inferences; we dis-
cuss this at length in Causal Inference in the Trio Design. While
any partition of the SNPs is permitted by the theory, we rec-
ommend taking continuous blocks of equal genetic length; see
The Haldane HMM. The size of the groups will affect the power;
larger group sizes correspond to weaker statistical statements
and hence the corresponding tests have higher power (e.g., refs.
35 and 40). For simplicity, this work assumes a prespecified par-
tition; see ref. 35 for a proposal for jointly analyzing multiple
resolutions in a closely related setting and ref. 41 for a discussion
of hierarchical testing in GWAS.

The digital twin test—presented in Algorithm 1—tests the null
hypothesis in Eq. 1 by creating synthetic offspring (the “digital

Fig. 1. A visualization of the process of recombination on a single
chromosome.
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twins”) from a subject’s parents, with the constraint that they
match outside the region g . That is, the synthetic offspring are
sampled from the distribution of

Xg | (X−g ,A). [2]

See Fig. 2 for an illustration.

Algorithm 1: The digital twin test.

I Compute the test statistic on the true data:

t∗=T ((X−g ,Xm
g ,X f

g ),Y ).

for k = 1, . . . ,K do
I Sample the digital twins (X̃m

g , X̃m
f ) from the

distribution in Eq. 2, independent from (Xm
g ,X f

g ) and Y
(see SI Appendix, section S.2 for an explicit sampler).
I Compute the test statistic using the digital twins:

tk =T ((X−g , X̃m
g , X̃ f

g ),Y ).

I Compute the quantile of the true statistic t∗ among the
digital twin statistics t1, . . . , tK :

v =
1 + #{k : t∗≤ tk}

K + 1
.

The digital twin test is a special case of the conditional
randomization test (31), so it is a valid test:

Proposition 1. Suppose that the distribution of X given A follows
the distribution in The Haldane HMM . Then, under the hypoth-
esis in Eq. 1, the distribution of the output v of Algorithm 1
stochastically dominates the uniform distribution.

Many existing tests fall into this family. Notably, the TDT is a
special case of the digital twin test with the test statistic

T (TDT)(X ) =

n∑
i=1

X̄
(i)
j I{Yi=1}, [3]

where IB denotes the indicator of event B , and the region g
is the entire chromosome containing site j (Linkage Disequilib-
rium in the Trio Design). Note that to calculate the P value, the
digital twin test uses an exact, finite-sample rejection threshold,
whereas the TDT uses an asymptotic approximation. Similarly,
the quantitative TDTs (21, 22) are also special cases of the
above procedure. Moreover, the digital twin test can exploit
arbitrary black-box machine-learning models, such as deep neu-
ral networks, gradient boosting, random forests, and penalized
regression to form a test statistic T (·) that incorporates informa-
tion from multiple sites in a data-driven way; see Eq. 4 below for
a concrete example. This is useful because more sophisticated
models can explain away more of the variation in the phenotype,
leading to more sensitive tests.

In sum, the digital twin test framework unifies many existing
procedures while incorporating varying disease models, subject

Fig. 2. A visualization of a digital twin. The gray shaded region represents
the group g; the digital twin always matches the true offspring outside this
region.

matter knowledge, fitting algorithms, principal component cor-
rections, screening and replication, and so on, without requiring
a new mathematical analysis for each case. While well-chosen
models will lead to more powerful tests, we emphasize that
the validity of the automatic, finite-sample inference does not
depend on the correctness of the chosen model.

C. Incorporating External GWAS Data. The digital twin test can
also leverage large external GWAS datasets that do not contain
trio observations to increase power. This is important because
such datasets are common and endowed with large sample sizes.
Specifically, we can use the external GWAS to find a powerful
test statistic T (·), as suggested by ref. 42. For example, sup-
pose we fit a penalized linear or logistic regression model on the
external GWAS data to obtain an estimated coefficient vector β̂.
Then, on the trio data, we can use the digital twin test with test
statistic

T (X ,Y ) =−
n∑

i=1

(β̂>X̄ (i)−Yi)
2

(this is the negative squared loss) for real-valued Y , or

T (X ,Y ) =−
n∑

i=1

−Yi log

(
e β̂>X̄ (i)

1 + e β̂>X̄ (i)

)

− (1−Yi) log

(
1

1 + e β̂>X̄ (i)

)
, [4]

(this is the negative logistic loss) for binary Y . In words, the dig-
ital twin test with this test statistic is asking, “Are the residuals
smaller when I use the real genotypes to predict the response,
compared to when I use the digital twin genotypes?” If the resid-
uals are systematically smaller, it must be because of a causal
effect, and the digital twin test rejects the null hypothesis.

To further increase power, the external GWAS data should
be used to prioritize the most promising regions; ref. 43 gives a
general discussion of incorporating weighted testing in GWAS
and ref. 44 shows how to use side information to improve the
ordering for knockoff testing. As a concrete example, when using
the test statistic in Eq. 4, one could order the hypothesis by a
decreasing value of

wg =
∑
j∈g

|β̂j | [5]

and then use the Selective SeqStep procedure (32) or an accumu-
lation test (45) to give a final selection set with guaranteed FDR
control. We numerically explore this approach in Simulation
Experiments.

D. Looking Everywhere with Independent P Values. Testing the
conditional nulls in Eq. 1 correctly addresses the scientific ques-
tion; indeed, the conditional nulls both provide localization
information and are guaranteed to detect only causal variants
(Causal Inference in the Trio Design). With these hypotheses in
hand, the analyst is likely to evaluate many separate regions of
the genome with a single study, so we must take care to con-
trol the number of false positives. Note that the digital twin test
can only yield P values as small as 1/K where K is the num-
ber of iterations of the digital twin sampling, unlike parametric
methods (e.g., ref. 46) which can yield very small P values. While
small P values are generally needed to account for multiple
comparisons when one looks at each variant individually, other
multiple-testing corrections are available when partitioning the
genome into regions and using conditional testing (33, 35). With
this end in mind, independent P values for different regions are
desirable for at least two reasons: First, they can be used with
powerful error-controlling procedures, such as SeqStep (32) and
accumulation tests (45); and second, with algorithms such as

Bates et al. PNAS | September 29, 2020 | vol. 117 | no. 39 | 24119
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the Benjamini–Hochberg procedure (47), it is well known that
dependent P values can lead to a high number of false positives
for a given dataset (48).

Motivated by these advantageous statistical properties, we
next develop a technical modification of the digital twin test that
yields independent P values. Loosely speaking, the idea is to
additionally condition on the boundary of each group. Because
of the Markovian structure, this makes the remaining behavior
within each group independent of all others. The details require
substantial additional notation, however, so they are deferred to
Constructing Independent P Values; see Algorithm 2 therein.

Theorem 1 (Independence of Null P Values). Suppose that X given
A follows the distribution in The Haldane HMM . Then Algorithm
2 (in Constructing Independent P Values) produces P values vg
satisfying the following:

1) For null groups g—according to Eq. 1—the distribution of vg
stochastically dominates the uniform distribution; i.e., vg is a
valid P value.

2) The P values for null groups are jointly independent of each other
and are independent of the nonnull P values.

The proof of Theorem 1 is provided in SI Appendix, section S.1.

E. Parent–Offspring Duos and Other Pedigrees. The digital twin
test can also be applied to offspring for whom only one par-
ent is genotyped, with a small adjustment. The modification is
simple: Whenever a parent is unknown, the algorithm fixes the
offspring’s haplotype from that parent (recall the offspring’s hap-
lotypes are observed). For example, if F a and F b are unknown,
then in Algorithm 1 we set X̃ f

g =X f
g in each iteration of the loop.

An analogous version of Theorem 2 continues to hold in this set-
ting, and so we still detect only causal regions.† Furthermore, the
digital twin test can be applied to data with a variety of pedigree
structures. One can select any set of duos or trios from the pedi-
gree, with the restriction that no offspring in a duo or trio is an
ancestor of any other offspring in another duo or trio.

F. Linkage Disequilibrium in the Trio Design. The TDT is testing the
null hypothesis

H TDT
0 :Y |= Xj |A. [6]

Because all sites on a chromosome are dependent, this null is
technically equivalent to the null in Eq. 1 when g is taken to
be the entire chromosome. By contrast, the digital twin test can
explicitly localize the causal signals into regions by basing the test
on smaller groups g in Eq. 1. Depending on the levels of LD,
interpreting the TDT discoveries as localizing important genetic
variation can lead to confusion. We now highlight this limitation
of the TDT with a practical example.

We create a synthetic population of 2,500 second-generation
admixed individuals whose parents are the children of one eth-
nically British individual and one ethnically African individual.
The haplotypes of the parents are real in the sense that they are
phased haplotypes from the UK Biobank dataset (49). For sim-
plicity, we create a binary synthetic response Y from a logistic
regression model with a single causal SNP. We choose a sig-
nal strength such that the heritability of the trait is 18% and
an intercept such that 20% of the observations have Y = 1.
The causal SNP is chosen at a site with a large difference in
allele frequency between the British and African populations.
Then, we carry out the TDT at each site and report the P
values in a Manhattan plot in Fig. 3. Note that even if we
demand that the P values are smaller than the genome-wide

†We simply condition on Xf rather than Fa and Fb for each unit where the father’s
haplotypes are unknown, and so on.

significance threshold of 5 · 10−8, the TDT reports discoveries
all across the chromosome. We compare this to an identi-
cal simulation composed only of British individuals in Fig. 3,
Center. Here, the TDT reports discoveries only near the true
causal SNP.

The TDT behaves differently in these two populations because
of the different correlation structure after conditioning on the
parental haplotypes. In the admixed population, there are large
correlations between sites far away, but not in the British pop-
ulation; see Fig. 3, Right. Because of the large LD in the
admixed population, testing the null in Eq. 6 cannot give
reliable information about the location of the causal SNP.
This weakness of the TDT has been noted before in in the
admixed setting (50). That work developed an analytical correc-
tion based on population-genetic quantities, whereas here we
address this problem using conditional independence testing.
Although the TDT can be confused by linkage disequilibrium,
both the TDT and the digital twin test are robust to con-
founding variables that can invalidate GWAS, which we turn
to next.

2. Causal Inference in the Trio Design
A. Establishing Causality. We now explain why it is possible to
draw causal inference from trio data by formulating the inher-
itance process as a high-dimensional randomized experiment.
The main idea is to condition on the parental haplotypes: Once
these are fixed the remaining randomness in meiosis is inde-
pendent of possible confounders, so the resulting inferences are
immune to these factors.

We begin with a concrete example of confounding in GWAS.
Suppose we have a genetic study involving individuals with either
French or German ancestries, and we wish to study whether a set
of SNPs Xg affects the cholesterol level Y . Next, suppose that
both the distribution of cholesterol levels and the distribution of
the SNPs Xg differ in the two populations. As a result, there is
a valid statistical association between Xg and Y , but this statis-
tical association may or may not represent a causal effect. That
is, if we manipulated the SNPs Xg , it may or may not change the
cholesterol levels of the subjects. The association could instead
be the result of a confounder; for example, if the consumption
of beer leads to higher cholesterol and Germans consume more
beer on average, then the SNPs Xg will be associated with Y ,
even if they have no causal effect. Since randomized experi-
ments detect only causal effects (51), to circumvent the above
problem we could, in principle, flip fair coins, set the values of
Xg accordingly immediately after conception, and then check
for an association with Y . While we of course do not carry out
such experiments on people, we can exploit a similar experiment
occurring in nature.

Consider a potential confounder Z , such as beer consumption
above. The critical observation is that for essentially all possible
confounders of concern in genetic studies, the distribution of a
set of SNPs Xg given the parental haplotypes does not change
given knowledge of Z , since the randomness in inheritance is
a result only of random biological processes independent of Z .
To make this precise, we define the following set of possible
confounders:

Definition 1 (External Confounder). We say that a random variable Z
is an external confounder if the distribution of the offspring’s haplo-
types given the parental haplotypes does not change given knowledge
of Z :

X | (A,Z = z )
d
= X | (A,Z = z ′) for any z and z ′. [7]

The relation in Eq. 7 is true for the offspring’s beer consumption,
for example, as well as for all environmental conditions occurring

24120 | www.pnas.org/cgi/doi/10.1073/pnas.2007743117 Bates et al.
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Fig. 3. Results of the TDT in two populations. (Left and Center) Manhattan plots on chromosome 22, which contains the one true causal SNP, indicated
with a dashed vertical line. The genome-wide significance threshold is shown with a gray horizontal line. Left panel shows an admixed population, whereas
Center panel shows a British population. (Right) A plot of the absolute correlations between the causal SNP and the other SNPs, conditional on the parental
haplotypes. The red solid and blue dotted-dashed curves indicate a smoothed 90% quantile of the absolute correlation with the causal SNP across the
chromosome, for the admixed and British populations, respectively.

after conception. Importantly, this implies that Z is independent
of the offspring’s SNPs Xg given the parental haplotypes and
remaining SNPs:

Z |= Xg | (X−g ,A).

This then implies that if there is an association between Y and
Xg after conditioning on the parental haplotypes and remaining
SNPs Xg , then the association is not due to the confounder Z :

Y 6 |= Xg | (X−g ,A) =⇒ Y 6 |= Xg | (X−g ,A,Z ).

Returning to the language of hypothesis testing, this proves
that if we test the null hypothesis in Eq. 1, we automatically
account for the random variable Z . We record this fact formally
next:

Theorem 2 (Conditioning on Parents Accounts for External Con-
founders). Let Z be an external confounder; i.e., Z satisfies Eq. 7.
Then, any valid test of the null hypothesis in Eq. 1 is also a valid test
of the stronger null hypothesis

H ′0 :Y |= Xg | (X−g ,A,Z ) [8]

that accounts for the confounder Z .
In words, if we test the hypothesis in Eq. 1, which is possible

based on observed trio data, then we have perfectly adjusted for
the confounder Z , even if it is not specified or measured in the
data. Thus, if we reject the null in Eq. 1, it cannot be the case
that Xg and Y are dependent due to an external confounder Z .
The digital twin test is such a test, so it is immune to external
confounders:

Corollary 1. Suppose that X given A follows the distribution in The
Haldane HMM . Then the digital twin test is a valid test of the
hypothesis in Eq. 8 that accounts for the (possibly unmeasured)
external confounder Z . That is, if the null in Eq. 8 holds, then the
distribution of the output v of Algorithm 1 stochastically dominates
the uniform distribution.

Note that this implies that the TDT is immune to external con-
founders, since it is a special case of the digital twin test. This is
a formal statement of the existing notion that the TDT is robust
to population structure (e.g., ref. 25).

B. Connection to Structural Equation Modeling. We next frame
these results within a structural equation model to make the con-
nection with the causal inference literature explicit, and we sim-
ilarly formulate our results in the potential outcomes framework
in SI Appendix, section S.3.

Consider a structural equation model involving the variables
A,X ,Y and the external confounder Z . For a response Y ,
we assume that X can only cause Y and not the reverse,

which is reasonable because a subject’s genotype is fixed after
conception. We further know that the parental haplotypes A
cause X and not the reverse. We also assume that Z causes Y
since the reverse case does not result in confounding. Finally,
by definition the external confounder Z is conditionally inde-
pendent of X given A, which implies that there is no causal
effect from X to Z . The corresponding structural equation
model is

(A,Z ) = fAZ (NAZ ), X = fX (A,NX ), Y = fY (X ,Z ,NY ),

where fAZ , fX , and fY are fixed functions and NAZ ,NX , and
NY are independent uniform [0, 1] random variables; see Fig. 4
for a graphical representation. Within this model, rejecting the
hypothesis in Eq. 1 implies that there is a causal effect from X
to Y . The digital twin test makes formal causal inferences in this
sense, and crucially, it does not require the analyst to specify or
restrict fAZ or fY .

C. Discussion of Possible Confounders. Virtually all confounders
of concern in genetic studies do not affect the transmission of
the genetic information from parents to offspring and are thus
external confounders which are correctly accounted for in the
trio design by Theorem 2. We list the most important examples
below:

• Environmental conditions after conception. The mechanism
for producing X from A is unaffected by anything occurring
after conception.

• Population structure, ethnic composition, and geographic loca-
tion. The mechanism for producing X from A does not change
with subpopulation information, ethnicity, or geographic
location.

Fig. 4. A graphical depiction of the causal argument in Causal Inference
in the Trio Design. A shows that the random variable Z can create an asso-
ciation between Xg and Y , even if there is no causal effect. B shows that
conditional on the parental haplotypes A, the external confounder Z is inde-
pendent of the offspring’s genotype Xg. As a result, Z cannot be responsible
for the remaining association between the genotype Xg and the trait Y .
Note that in our hypothesis test we also condition on X−g, which is omitted
from the figure for simplicity.
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• Cryptic relatedness. The presence of distantly related individu-
als in a sample does not change the distribution of X given A,
even if this relatedness is unknown and unspecified.

• Family effects, altruistic genes. Information about the qual-
ity of the environment caused by parental behavior does not
impact the distribution of X given A.

• Assortive mating. Tests of the null in Eq. 8 condition on the
observed mating pattern, making them immune to this form of
confounding.

By contrast, the following are not external confounders:

• Germline mutations. A few environmental factors of the par-
ents can affect the inheritance process, such as the exposure
of a parent to radiation, which changes the distribution of the
offspring by increasing the frequency of mutations. While this
does affect the model for inheritance in principle, we do not
expect this to practically invalidate tests of the null in Eq. 8. In
any case, this is a narrow set of possible confounders.

• Unmeasured SNPs. In typical studies, only a subset of SNPs is
sequenced. Knowledge of a subject’s unmeasured SNPs gives
additional information about the distribution of X given A, so
the unmeasured SNPs are not external confounders. Since we
condition on X−g and recombination events are rare, however,
our method is effectively independent of the unmeasured SNPs
outside the region g .

Finally, we note that there is potential for selection bias in
all genetic studies, since some individuals are more likely to be
included in a sample. Tests of the null in Eq. 8 are more robust
to this bias, as any potential selection bias due to external con-
founders, such as geographic location, is automatically accounted
for by Theorem 2. However, if a SNP Xj causally influences the
probability of inclusion in a study, then it is not null according to
our null in Eq. 8, so it may be detected.

3. Simulation Experiments
In this section, we examine the performance of the digital twin
test in semisynthetic examples, focusing on the binary response
case so that the standard TDT can serve as a benchmark. We
form our parent–offspring population by taking real haplotypes
from the UK Biobank dataset and sample offspring according
to the recombination model in The Haldane HMM. In each
experiment, we sample the offspring once and then repeat the
generation of the synthetic phenotype multiple times, indicating
the SE with error bars. When presenting the results, we index
the signal strength by heritability: a [0, 1] -valued scale defined
in SI Appendix, section S.5. An R package implementing the
methods below together with notebook tutorials is available at
https://github.com/stephenbates19/digitaltwins (52).

A. Testing the Global Causal Null. We first examine the ability of
the digital twin test to test the global causal null. In this sim-
ulation, we test only one hypothesis, so we seek to control the
usual type I error rate at the α= 0.05 level. We create a syn-
thetic population of n = 2, 500 parent–child trios and generate a
binary valued response coming from a sparse logistic regression
model

log

(
P(Yi = 1)

P(Yi = 0)

)
=β0 +β>X̄ (i), [9]

with 10 nonzero entries of β of equal value, chosen uniformly
at random. The intercept β0 is chosen so that the fraction of
cases is 50%, 20%, or 5%. We use p = 6, 820 SNPs from chromo-
some 20, which has width 63 Mb. We emphasize that the above
gives a well-defined structural equation model on (X ,Y ), and

the nonzero entries of the coefficient vector β correspond to the
SNPs that have a causal effect.‡

To illustrate how the digital twin test can be used for confir-
matory analysis, we make an external GWAS dataset using 7, 500
nontrio observations from the UK Biobank (not included in our
previous sample) and generating phenotypes with the same rule
as above. We use these GWAS data to fit an `1-penalized logis-
tic regression model (with regularization parameter chosen by
cross-validation) to obtain a predictive model for the trait. We
denote as β̂ the resulting coefficient estimate. Then, we apply
the digital twin test on the trio data with the feature importance
statistic in Eq. 4 to produce a single P value, rejecting when it
falls below α= 0.05.

We take the TDT as a natural benchmark, interpreting its out-
put in two alternative ways. First, we take the minimum P value
after applying the TDT at every SNP and then Bonferroni cor-
rect it (this does not use the nontrio GWAS data). Second, we
compute the Bonferroni-adjusted minimum P value only on the
coordinates with nonzero coefficients in the lasso fit β̂ on the
external GWAS data. Because β̂ is sparse, this method has a less
severe Bonferroni correction and may be more powerful than the
other TDT procedure.

Since all three methods are valid tests of the null hypothe-
sis that there is no causal SNP on the chromosome, we directly
compare their power in Fig. 5, using 20 independent realizations
for each data point. We find that the digital twin test has higher
power than the TDT, even when the latter attempts to leverage
the external GWAS as a screening step. The leftmost point in
each panel is the null case with zero heritability; the empirical
error of the digital twin test does not exceed the nominal level of
α= 0.05 in any of the three cases.

B. Localization. We now examine the ability of the digital twin
test to identify causal regions. Here, we use p = 591, 513 SNPs
on chromosomes 1 to 22, split into 532 predetermined groups of
size approximately 5 Mb. The response is again generated from
the logistic regression model in Eq. 9, and the number of nonzero
coefficients in the true causal model is varied as a control param-
eter. We consider a sample of n = 10, 000 trios with an external
GWAS of size 50, 000 used to fit a logistic regression model β̂ as
in the previous section. The fitted coefficients β̂ are used to form
the test statistic in Eq. 4. Here, we take the nominal level for the
FDR to be α= 0.2. Each experiment is repeated 10 times. Addi-
tional technical details about these simulations can be found in
SI Appendix, section S.5.

We compare the following procedures:

• Digital twin test–accum. We apply the digital twin test at each
of the groups to obtain one P value per group. We also use the
external GWAS data to order the regions from most to least
promising as in Eq. 5 and use an accumulation test (45) to pro-
duce a final set of discoveries. This method is guaranteed to
control the FDR.§

• TDT–Screen–BH. For each group, we apply the TDT to the
SNPs with nonzero entries of β̂, the model fit on the external
GWAS. Then, we report the minimum P value after adjusting
it with Bonferroni. Finally, we apply the Benjamini–Hochberg
procedure to report a set of groups. This method assumes the
TDT P values are valid for the group null hypothesis in Eq. 1,

‡The reader may wonder about the identifiability of this model. Note that both X and Y
are random variables, so provided that the distribution of X(i),m + X(i),f is not contained
in a subspace of rank less than p, then this model is identified.

§Strictly speaking, this procedure controls a modified version of the FDR (45), but the
difference will be unimportant in settings with a large number of discoveries. This is a
property of the accumulation test, not the digital twin test, and other procedures can
be used for standard FDR control.
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Fig. 5. Power of the digital twin test compared to TDT benchmarks for testing the full-chromosome causal null.

which is not fully correct, so this method does not have formal
guarantees.

• TDT–BH. We proceed as above, except that we apply the TDT
to all SNPs. This method also incorrectly assumes the TDT P
values are valid for the group null hypothesis in Eq. 1, so it does
not have formal guarantees.

We report the results in Fig. 6. The digital twin test has gen-
erally comparable power to the screened TDT method with
Benjamini–Hochberg, with moderate power improvements for
traits caused by many SNPs. We report on a similar experiment
with a continuous response in SI Appendix, section S.5.

Although the TDT benchmarks empirically control the FDR
here, we emphasize that they test the full-chromosome null in
Eq. 6, so they are not valid for our goal of localizing the causal
SNPs into the given groups. The group hypothesis in Eq. 1 can
be rigorously tested by a test of the null in Eq. 6 only if the SNPs
in different groups are independent. If the TDT-based group
P values were valid, these two benchmarks would control the
FDR. This is a reasonable approximation within this experiment,
because the groups are wide and the population is homogeneous,
so the LD decays rapidly. However, this assumption fails in other
cases, as we turn to next.

C. Spurious Discoveries with the TDT. We have seen in Linkage Dis-
equilibrium in the Trio Design an example where the TDT makes
false discoveries throughout the chromosome because it does
not account for LD. Here, we revisit this example more care-
fully, demonstrating that the TDT-based benchmarks above can
dramatically fail to control type I errors for the group hypotheses.

For simplicity, we perform the TDT at each SNP and report
a SNP as significant if the P value is below the genome-wide
significance level, 5 · 10−8. We use this demanding threshold to
emphasize that even the most conservative existing methods vio-
late type I error control here. Proceeding as in the previous
experiment, we split the chromosome into 25 groups of size 2
Mb and consider the procedure that reports a group as signif-
icant if any SNP therein has a P value below the genome-wide
significance threshold. Each experimental setting is repeated 20
times. Fig. 7 shows that this TDT benchmark badly violates FDR
control, suggesting all of the other less conservative TDT bench-
marks will also fail to control the FDR in this setting. We report
additional metrics about the TDT in SI Appendix, Fig. S.4. By
contrast, the digital twin test controls the FDR because its P
values are valid for the conditional null hypotheses in Eq. 1.

4. Analysis of Autism Spectrum Disorders
We apply the digital twin test to study the genetic basis of
autism spectrum disorder (ASD) using a dataset of 2,565 parent–
child trios from the Autism Sequencing Consortium (ASC) (53),
accessed through dbGaP (54, 55); see SI Appendix, section S.4 for
details about the sample and data processing. ASD has complex
genetic roots, with variability arising from common SNPs, copy
number variation, and de novo gene-disrupting mutations (56,
57). It has been theoretically conjectured (58) and empirically
observed (59) that common variants have only small effects on
ASD. As a result, only recently have individual SNPs been impli-
cated by GWAS, and the first individual SNPs appear in ref. 60,
where five SNPs were reported at the genome-wide significance
level. One such SNP, rs910805 (an intergenic variant on chro-
mosome 20), was also genotyped in the ASC trio data, and we

Fig. 6. Performance of the digital twin test and TDT in the binary-response full-genome simulations from Localization. Here, error bars give one SD and
the dashed horizontal line indicates the nominal FDR level.
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Fig. 7. Performance of the digital twin test and TDT in an admixed pop-
ulation. The dashed horizontal line (Top row) indicates the nominal FDR
level for the digital twin test. Because the TDT is using the genome-wide
significance level, the nominal FDR level for the TDT is less than 0.05.

test its causal validity with the digital twin test. Note, however,
that the ASC trio data were used as part of ref. 60, so our results
here must be viewed as a practical demonstration and not as an
independent replication of these findings.

Since we do not have a corresponding cohort of nontrio obser-
vations, we use the digital twin test with the test statistic in Eq. 3
and report the results in Table 1. We test groups centered around
SNP rs910805 of increasing size, ranging from 1 Mb to the whole
chromosome (in which case this digital twin test is equivalent to
the TDT). For large enough groups, we find significance at the
α= 0.05 level—we are testing only one SNP so we do not need
to achieve the genome-wide significance level. We are unable to
reject at finer resolutions; smaller groups correspond to funda-
mentally more demanding statistical hypotheses, and the effect
size here is small. Our analysis suggests that the observed asso-
ciation with rs910805 is not due to confounding and that there is
instead a causal variant in its vicinity.

Discussion
We have developed a statistical test to rigorously establish that
a genomic region contains causal variants; the inferences are
based only on variation arising in meiosis, a randomized exper-
iment performed by nature. Next, we highlight the two most
important limitations of this work. First, our method currently
relies on computationally phased haplotypes. Although phasing
is typically accurate for family data and numerical experiments
show that the digital twin test works well with computationally
phased data (SI Appendix, section S.5), it would be interesting to
thoroughly understand the robustness to phasing errors. Second,
to operate at practical resolutions, our method requires many
parent–child trios or duos, which are more challenging to collect
than unrelated individuals. As such, contemporary studies geno-
typing entire populations [e.g., in Iceland (61) and Finland (62)]
are particularly promising because they simultaneously address
the challenges of accurate phasing and obtaining data from both
parents and offspring. Here, drawing conclusions from GWAS
that are provably immune to confounding variables is appeal-
ing, making the digital twin test a tantalizing way to confirm
candidate GWAS discoveries.

Turning to the statistical aspect of this work, our finite-sample
causal conclusions come from the fact that 1) we measure a ran-
dom variable A that blocks the relevant confounders and 2) we
exactly know the distribution of X given A. This statistical form
may appear in other settings. Concretely, for any random vari-
ables A,X ,Y , and Z such that the relationship in Definition
1 holds, Theorem 2 holds as well. More generally, for a struc-
tural equation model on vectors (A,X ,Y ,Z ), if A satisfies the
back-door criterion (63) with respect to X and Y , then tests of
the hypothesis Eq. 1 detect only causal effects. One can then
leverage conditional testing techniques, such as the conditional
randomization test or knockoffs, to make causal inferences with
finite-sample guarantees.

A. Constructing Independent P Values
Here, we present a technical refinement of the digital twin test
(still testing the null hypothesis in Eq. 1) that produces indepen-
dent P values for disjoint null groups. The core idea is that for each
individual, we determine which groups contain a recombination
event; then, we generate the digital twins only in those groups,
sampling from a modified version of the distribution Eq. 2. By
construction, these digital twins will have recombination events in
the same groups as the true observations, but the recombination
events will be randomly perturbed. This separates the random-
ness used to test each region. We then show how to create feature
importance statistics that ignore the randomness in other regions.
As a result, the tests in different regions are fully decoupled.

To begin, let G denote the collection of disjoint groups of
SNPs that we wish to test. We will assume that each group
g is a continuous block of the form {g−, g−+ 1, . . . , g+} for
endpoints g−≤ g+ in {1, . . . , p}. Also, let B⊂{1, . . . , p} be
the set of SNPs that form the boundary of some group:
B= {j : j = g− or j = g+ for some g ∈G}.

For simplicity, we consider a single observation and define
Um ∈{a, b}p and U f ∈{a, b}p to be the underlying ancestral
states for the two haplotypes X f and Xm . We first sample from
the posterior distribution conditional on the data based on the
HMM described in The Haldane HMM and then condition on
Um
B and U f

B. This conditioning splits the distribution of (X f
g ,U f

g )
and (Xm

g ,Um
g ) into independent HMMs across the groups g ∈

G ; see ref. 64 for a general discussion of this conditioning idea.
In the modified digital twin test, each digital twin will be sampled
from the distribution of

(X f
g ,Xm

g ) | (Um
B ,U f

B,A). [10]

This is essentially the same as in the original digital twin test, which
instead samples from Eq. 2, because the valuesUm

B ,U f
B are almost

perfectly determined by the data X f
−g and Xm

−g , since the mea-
sured SNPs are dense and recombination is rare. Sampling from
the distribution in Eq. 10 is straightforward: We simply sample
Um

g and U f
g , an HMM sampling operation, and then from this we

sample Xm
g and X f

g from the emission distribution.
We now introduce additional notation that will be needed

to describe the digital twin sampling. Given U f ,(i) and
Um,(i), for each observation i = 1, . . . ,n , let Rm,(i) = {g ∈G :

U
m,(i)
g− 6=U

m,(i)
g+ } be the set of groups where individual i has

an odd number of recombinations (for small groups, there will
typically be exactly one recombination). Define Rf ,(i) in the anal-
ogous way. Now, let Dm = {(i , j ) : j /∈ g for all g ∈Rm,(i)} be the

Table 1. Analysis of ASD with digital twin test at different
resolutions

Resolution 1 Mb 2 Mb 3 Mb 4 Mb Full chromosome

P value 0.237 0.146 0.100 0.0168 0.011
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set of observations and sites in groups with an even number of
recombinations. Define Df in the analogous way. The upcoming
algorithm will hold X

m,(i)
j for (i , j )∈Dm fixed when generating

the digital twins.
Next, we define the masked version of X which is safe to use

in the feature importance statistics; feature importance statis-
tics using the masked version of X will operate independently
in different groups. The masked version is defined as

X
(mask,m)(i)
j =

{
X

m,(i)
g if (i , j )∈Dm ,

E [X
m,(i)
g |Ma ,Mb ,Um

B ] otherwise,

X
(mask,f)(i)
j =

{
X

f,(i)
g if (i , j )∈Df ,

E [X
f,(i)
g |Ma ,Mb ,U f

B] otherwise,

[11]

for each observation i = 1, . . . ,n . The entries of Xm in groups
with no recombination events will remain unchanged in both the
digital twins and X (mask,m)(i). On the other hand, for groups with
observed recombinations, the digital twins will vary, so, for these
entries, we set X (mask,m) to be a constant: the average imputation
based on the parental haplotypes and (Um

B ,U f
B). These condi-

tional expectations can be computed easily, due to the Markov
property. Note that, since there are very few groups with recom-
bination events, most entries of X (mask,m) will be equal to those
of Xm , and most entries of X (mask,f) will be equal to those of X f .
For instance, with groups of size 1 Mb we will have that over 99%
of the entries match.

With the notation in place, we can finally present the
procedure in Algorithm 2.

Algorithm 2 : The digital twin test with independent P values

I Sample Um and U f given (Xm ,X f ,A) according to the
HMM in The Haldane HMM (see SI Appendix, section S.2
for an explicit sampler).

I Define X (mask,m) and X (mask,f) according to Eq. 11.
for g ∈G do
I Compute the test statistic on the true data:

t∗=T (X
(mask,m)
−g ,X

(mask,f)
−g ,Xm

g ,X f
g ,Y ).

for k = 1, . . . ,K do
I For observations i such that g ∈Rm,(i), sample X̃

m,(i)
g

from the distribution in Eq. 10, independent of
X f ,Xm ,U f ,Um and Y (see SI Appendix, section S.2
for an explicit sampler). Otherwise, set X̃m,(i)

g =X
m,(i)
g .

Sample X̃ f
g analogously.

I Compute the test statistic on the digital twins:

tk =T (X
(mask,m)
−g ,X

(mask,f)
−g , X̃m

g , X̃ f
g ,Y ).

I Compute the quantile of the true statistic t∗ among the
digital twin statistics t1, . . . , tK :

vg =
1 + #{k : t∗≤ tk}

K + 1
,

randomly breaking any ties.

The null P values produced by this algorithm are jointly inde-
pendent, which we record in Theorem 1 in The Digital Twin Test.
The proof is given in SI Appendix, section S.1.

B. The Haldane HMM
In service of our tests of the hypothesis in Eq. 1, we for-
mally describe the distribution of offspring’s genotype given the

parental haplotypes. In particular, the process by which a sub-
ject’s two haplotypes arise from the parental haplotypes was for-
malized by Haldane as an HMM (39). Without loss of generality,
we describe the model for a single observation on one chromo-
some; in the general case, each chromosome of each observation
is an independent instance of this model. For concreteness, we
focus on Xm .

Let the random vector Um ∈{a, b}p indicate the following:

Um
j =

{
a if site j is from the mother’s ‘a’ haplotype,

b if site j is from the mother’s ‘b’ haplotype.

Our model is that Um is distributed as a Markov chain, where
P(Um

1 = a) = 1/2, and

P(Um
j = um

j−1 |Um
1:(j−1) = um

1:(j−1)) =
1

2
(1 + e−2dj ).

Here, dj is the genetic distance between SNPs j − 1 and j ,
which is fixed and known. Note that the genetic distance is not
always proportional to the physical distance due to recombina-
tion hotspots: regions that have more frequent recombination
events (65, 66). Conditional on Um , each Xm

j is independently
sampled from

P(Xm
j =M

(um
j )

j |Um
j = um

j ) = 1− ε.

Here, ε is the probability of a de novo mutation, which for
humans is about 1 · 10−8 (67). The analogous HMM describes
the distribution of X f given F a and F b , which is taken to be
independent of Xm given A.

C. Sampling Full-Chromosome Digital Twins
In this section, we explicitly describe how to sample the dig-
ital twins in Algorithm 1 for the simple case where g is an
entire chromosome. Explicit samplers for other cases require
substantial additional notation, so we instead present them in
SI Appendix, section S.2. For convenience, we consider a single
observation, i.e., n = 1. Without loss of generality, we consider
one chromosome; different chromosomes are independent, so
this is sufficient. In addition, for u ∈{a, b} we define u = a when
u = b and u = b when u = b, i.e., the complementary ancestral
strand. A digital twin X̃m is simply an independent draw from
the model in The Haldane HMM. This is sampled as follows:

1) (Hidden ancestral states) Sample um
1 uniformly from {a, b}.

2) For j = 2, . . . , p, independently sample um
j as

um
j =

um
j−1 with probability 1

2
(1 + e−2dj ),

um
j−1 otherwise.

3) (De novo mutations) For each j = 1, . . . , p, independently
sample X̃m

j as

X̃m
j =

{
M

um
j

j with probability 1− ε,
1−M

um
j

j otherwise.

The digital twin X̃ f is sampled analogously.

Data Availability. Some study data are available. An R package implement-
ing the methods below together with notebook tutorials is available at
https://github.com/stephenbates19/digitaltwins (52).
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