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Abstract  24 

Single cell Hi-C (scHi-C) analysis has been increasingly used to map the chromatin architecture 25 

in diverse tissue contexts, but computational tools to define chromatin contacts at high resolution 26 

from scHi-C data are still lacking. Here, we describe SnapHiC, a method that can identify 27 

chromatin loops at high resolution and accuracy from scHi-C data. We benchmark SnapHiC 28 

against HiCCUPS, a common tool for mapping chromatin contacts in bulk Hi-C data, using scHi-29 

C data from 742 mouse embryonic stem cells. We further demonstrate its utility by analyzing 30 

single-nucleus methyl-3C-seq data from 2,869 human prefrontal cortical cells. We uncover cell-31 

type-specific chromatin loops and predict putative target genes for non-coding sequence variants 32 

associated with neuropsychiatric disorders. Our results suggest that SnapHiC could facilitate the 33 

analysis of cell-type-specific chromatin architecture and gene regulatory programs in complex 34 

tissues.  35 

  36 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422543doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422543


3 
 

Main text 37 

Transcriptional regulatory elements communicate with each other dynamically in the 3D nuclear 38 

space to direct cell-type-specific gene expression during development1-3. Understanding the 39 

transcriptional regulatory programs requires a high resolution view of the 3D chromatin 40 

architecture in the cell. Technologies have been developed to map chromatin architecture in 41 

single cells to explore the heterogeneity of chromatin organization in complex tissues4-13. However, 42 

it is still challenging to identify chromatin loops at the necessary resolution to delineate spatial 43 

proximity between transcriptional regulatory elements due to the extreme sparsity of the single 44 

cell chromatin contact matrix. The current strategy to identify chromatin loops from aggregated 45 

single cell Hi-C data from the same cell type with existing loop calling methods14-18 requires a 46 

large number of cells (>500-1,000), which is both cost prohibitive and impractical for the rare cell 47 

types in a complex tissue. Simulation studies19 showed that the sensitivity of existing loop calling 48 

methods decays exponentially with the decrease in the number of contacts. Here, we report single 49 

nucleus analysis pipeline for Hi-C (SnapHiC), a new computational framework that fully exploits 50 

the power of single cell Hi-C (scHi-C) data to identify chromatin loops at high resolution and 51 

accuracy.  52 

 53 

SnapHiC identifies chromatin loops at 10-kilobase (Kb) resolution from scHi-C data by maximizing 54 

the usage of information from each single cell (Fig. 1a and Methods). Specifically, SnapHiC first 55 

imputes chromatin contact probability between all intra-chromosomal bin pairs with the random 56 

walk with restart (RWR) algorithm20 in each individual cell. Next, it converts the imputed contact 57 

probability into the normalized contact probability stratified based on linear genomic distances. 58 

SnapHiC then applies the paired t-test using all cells to identify loop candidates (see details in 59 

Methods). To remove false positives, SnapHiC considers a bin pair as a loop candidate only 60 

when it has significantly higher normalized contact probability than expected by chance based on 61 

both the global background and the local background. Finally, SnapHiC groups the loop 62 

candidates into discrete clusters using the Rodriguez and Laio’s algorithm21, and identifies the 63 

summit(s) within each cluster.  64 

 65 

To benchmark the performance of SnapHiC against a commonly used method, HiCCUPS14 66 

designed for bulk Hi-C data analysis, we applied it to the published scHi-C data5 generated from 67 

mouse embryonic stem (mES) cells. We sub-sampled 10, 25, 50, 75, 100, 200, 300, 400, 500, 68 

600, 700 and 742 cells from this dataset, and determined the intra-chromosomal loops at 10Kb 69 

resolution from 100Kb to 1Mb range. For each sub-sampling, we also pooled the scHi-C data and 70 
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identified chromatin loops at 10Kb resolution within the same distance range using HiCCUPS. 71 

For each sub-sampling dataset, SnapHiC found more chromatin loops than HiCCUPS, suggesting 72 

that SnapHiC has a much higher sensitivity than HiCCUPS (Fig. 1b and Supplementary Table 73 

1-3). Even from 75 cells, SnapHiC identified 1,219 loops, whereas HiCCUPS found only 2 loops. 74 

Additionally, HiCCUPS-identified loops tended to be a subset of SnapHiC-identified loops. For 75 

example, SnapHiC and HiCCUPS identified 15,896 and 559 loops from 742 cells, respectively, 76 

and 511 (91.4%) of HiCCUPS-identified loops are re-captured by SnapHiC (Supplementary 77 

Table 1). Moreover, SnapHiC achieves higher reproducibility than HiCCUPS for loop calling 78 

between replicates (for each replicate with 371 cells, 50.8% vs. 38.7%, paired t-test p-value = 79 

7.86e-8, see details in Methods). 80 

 81 

We used the F1 score, the harmonic mean of the precision and recall, to evaluate the overall 82 

performance of each method (see details in Methods). To calculate the F1 score, we combined 83 

long-range chromatin interactions identified by HiCCUPS from bulk in situ Hi-C data22, with 84 

interactions identified by MAPS from H3K4me3 PLAC-seq data23, cohesin24 and H3K27ac HiChIP 85 

data25, all from mES cells as a reference loop list (Supplementary Table 4). At each sub-86 

sampling of scHi-C data, SnapHiC consistently attained a greater F1 score than HiCCUPS (Fig. 87 

1c, Supplementary Fig. 1). The reliability of SnapHiC-identified loops can be further supported 88 

by two additional lines of evidence: 1) Significantly focal enrichment can be observed from 89 

aggregate peak analysis (APA) plots of SnapHiC-identified loops from the different number of 90 

cells (except for 10 cells) on aggregated scHi-C contact matrix from 742 cells (Supplementary 91 

Fig. 2); 2) For the SnapHiC-identified loops that have CTCF binding on both ends, there is a clear 92 

preference in convergent orientation – ranging from 63.6% to 78.7% when at least 50 cells are 93 

used for loop calling (Supplementary Table 5), as predicted by the loop extrusion model14,26. 94 

 95 

The advantage of SnapHiC is more obvious when the number of cells profiled is limited. As 96 

illustrated in Fig. 1d (see also Supplementary Fig. 3), SnapHiC detected previously verified long-97 

range interactions at Sox2, Wnt6, and Mtnr1a loci27,28 with as few as 75 or 100 cells, whereas 98 

HiCCUPS required at least 300-600 cells to detect the same loops. Taken together, the above 99 

results suggest that SnapHiC allows for the identification of chromatin loops from a small number 100 

of cells with high sensitivity and accuracy, underlining its potential utility in scHi-C data generated 101 

from complex tissues. 102 

 103 
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To demonstrate the utility of SnapHiC for analysis of scHi-C data from complex tissues, we applied 104 

SnapHiC to the published single-nucleus methyl-3C-seq (sn-m3C-seq) data13 from human 105 

prefrontal cortex, which simultaneously profiled DNA methylome and chromatin organization from 106 

the same cells. In this study, 14 major cell types were identified using CG and non-CG methylation. 107 

We applied SnapHiC to each of the 14 cell clusters and identified 817 ~ 27,379 loops at 10Kb 108 

resolution (Fig. 2a and Supplementary Table 6). Consistent with our observation on mES cells, 109 

SnapHiC identified more loops than HiCCUPS for all cell clusters, and more than 78% of 110 

HiCCUPS-identified loops are captured by SnapHiC (Supplementary Table 7-8). Except for 111 

oligodendrocytes, which have >1,000 cells, SnapHiC found ~4-70 folds more loops than 112 

HiCCUPS in other 13 cell types. We also calculated the F1 scores of SnapHiC- and HiCCUPS-113 

identified chromatin loops in oligodendrocytes, microglia, and eight neuronal subtypes, and 114 

benchmarked against promoter-centered chromatin contacts previously identified from H3K4me3 115 

PLAC-seq analysis of purified oligodendrocytes, microglia, astrocytes and neurons 116 

(Supplementary Table 9)29. Again, SnapHiC achieved much greater F1 scores than HiCCUPS 117 

in each cell cluster (Fig. 2b and Supplementary Fig. 4).  118 

 119 

The accuracy and sensitivity of SnapHiC are further supported by several lines of evidence. First, 120 

APA analysis confirms that SnapHiC-identified loops show significant enrichment of contacts 121 

compared to their local background on the aggregated contact matrix from cells in the 122 

corresponding cluster (Supplementary Fig. 5). Next, SnapHiC-identified loops correlate with cell-123 

type-specific chromatin accessibility, histone acetylation, and gene expression. For this analysis, 124 

we focused on four distinct cell types, astrocytes, L2/3 excitatory neurons, oligodendrocytes and 125 

microglia, in which ATAC-seq, H3K27ac ChIP-seq and RNA-seq data are available29,30. To 126 

minimize the effect of cell number variation between different cell types, we randomly selected 127 

the same number of cells (N=261) from astrocytes, oligodendrocytes and microglia to match the 128 

number of cells available from L2/3 excitatory neurons, and applied SnapHiC to identify loops 129 

from these sub-sampled data (Supplementary Table 10). We found that most chromatin loops 130 

are cell-type-specific (Supplementary Table 11, see details in Methods). Further analysis 131 

showed that the anchors of cell-type-specific loops show significantly higher ATAC-seq and 132 

H3K27ac ChIP-seq signals in the matched cell type compared to those in the other three cell 133 

types (Fig. 2c). In addition, we found 407, 616, 860 and 1,002 genes whose promoters link to 134 

astrocyte-, microglia-, oligodendrocyte- and L2/3 excitatory neurons-specific loops, respectively 135 

(Supplementary Table 12). These genes show significantly higher expression levels in the 136 

matched cell type than those in the other three cell types (Fig. 2c) and are associated with gene 137 
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ontology terms31 related to cell-type-specific biological processes (Fig. 2d). Taken together, our 138 

results suggest that SnapHiC can detect chromatin contacts reliably from single cell Hi-C data in 139 

complex tissues.    140 

 141 

How sequence variations determine the phenotypic traits and propensity to human diseases is 142 

one of the fundamental questions in biology32. It is generally believed that many disease-143 

associated non-coding variants contribute to disease etiology by perturbing the transcriptional 144 

regulatory sequences and affecting target gene expression33-35.  The current catalogs of genes 145 

and candidate regulatory sequences in the human genome33-37 still lack the information about the 146 

target genes of annotated candidate cis-regulatory elements, making it a challenge to interpret 147 

the biological roles of non-coding risk variants. We used SnapHiC-identified loops in the four brain 148 

cell types (astrocytes, microglia, oligodendrocytes and L2/3 excitatory neurons) to assign 149 

candidate target genes to non-coding GWAS SNPs. We first collected 30,262 genome-wide 150 

significant (p-value<5e-8) non-coding GWAS SNP-trait associations from seven neuropsychiatric 151 

disorders and traits, including Alzheimer’s diseases38 (AD), attention deficit hyperactivity 152 

disorder39 (ADHD), autism spectrum disorder40 (ASD), bipolar disorder41 (BIP), intelligence 153 

quotient42 (IQ), major depressive disorder43 (MDD) and schizophrenia44 (SCZ), resulting in a total 154 

of 28,099 unique GWAS SNPs (Supplementary Table 13). We then focused on 3,639 SNP-155 

disease associations (3,471 unique GWAS SNPs), where the corresponding SNPs reside within 156 

active enhancers of astrocytes, neurons, microglia or oligodendrocytes defined in the previous 157 

study29 (Supplementary Table 13). Using SnapHiC loops from the matching cell types (L2/3 158 

excitatory neurons to represent neurons, all four cell types with 261 cells), we found 788 SNP-159 

disease-loop-gene linkages, connecting 445 SNP-disease associations (416 unique GWAS SNPs) 160 

to 189 genes via 175 loops (Supplementary Table 14). Notably, such a list of GWAS SNP-161 

interacting genes includes several known disease risk genes, including APOE (AD), GRIN2A (IQ), 162 

INPP5D (AD), RAB27B (MDD), SORL1 (AD), THRB (IQ), and ZNF184 (SCZ and MDD). Fig. 2e 163 

shows an illustrative example of gene APOE, which is specifically expressed in astrocyte. We 164 

found two astrocyte-specific chromatin loops, connecting the TSS of APOE to two active 165 

enhancers in astrocyte, ~150Kb and ~200Kb downstream, respectively. These two enhancers 166 

also contain two AD-associated GWAS SNPs, rs112481437 and rs138137383. Our data suggest 167 

that APOE is the putative target gene of these two GWAS SNPs only in astrocytes. 168 

 169 

In summary, we describe SnapHiC, a novel method customized for sparse single cell Hi-C 170 

datasets to identify chromatin loops at high resolution and accuracy. Re-analysis of published 171 
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single cell Hi-C data from mES cells demonstrate that SnapHiC greatly boosts the statistical 172 

power in loop detection. Application of SnapHiC to sn-m3C-seq data from human prefrontal 173 

cortical cells reveals cell-type-specific loops, which can be used to predict putative target genes 174 

of non-coding GWAS SNPs. SnapHiC has the potential to facilitate the study of cell-type-specific 175 

chromatin spatial organization in complex tissues.  176 

 177 

Code availability 178 

SnapHiC software package with a detailed user tutorial and sample input and output files can be 179 

found at: https://github.com/HuMingLab/SnapHiC.  180 
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Figure 1. SnapHiC reveals chromatin loops at high resolution and accuracy. (a) Overview 197 

of SnapHiC workflow. The first step of SnapHiC is to convert the binary contact matrix to 198 

normalized contact frequency for each individual cell. Next, SnapHiC applies the paired t-test to 199 

identify candidate chromatin loops by comparing the normalized contact frequency of any given 200 

bin pair with its local and global background. Finally, SnapHiC merges nearby candidate loops 201 

into clusters and identifies the summit(s). Due to the sparsity of the raw count matrix of scHi-C 202 

data, the SnapHiC-identified loops can be visualized by the percentage of the outlier cells matrix. 203 

(b) The number of chromatin loops at 10Kb resolution identified by SnapHiC and HiCCUPS from 204 

different numbers of mES cells. (c) F1 score (the harmonic mean of the precision and recall) of 205 

SnapHiC- and HiCCUPS-identified loops from different numbers of mES cells. (d) (Top) 206 

Chromatin loops around Sox2 (left), Wnt6 (middle), and Mtnr1a (right) gene identified from 100 207 

mES cells using SnapHiC at 10Kb resolution. The black arrow points to the interaction verified in 208 

the previous publications27,28 with CRISPR/Cas9 deletion or 3C-qPCR. (Bottom) Comparison of 209 

the performance of SnapHiC and HiCCUPS (applied on aggregated scHi-C data) from the 210 

different number of mES cells at these three regions. If the previously verified interaction (black 211 

arrow) is recaptured, it is labeled as “Y”; otherwise, it is labeled as “N”. 212 
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Figure 2. Application of SnapHiC to sn-m3C-seq data from human prefrontal cortex 230 

uncovered chromatin loops in diverse brain cell types. (a) (Left) t-SNE visualization of 14 231 

major cell types identified in human prefrontal cortex in Lee et al. study13 using CG methylation of 232 

non-overlapping 100Kb genomic bins. ODC: oligodendrocyte. Astro: astrocyte. MG: microglia. 233 

OPC: oligodendrocyte progenitor cell. Endo: endothelial cell. L2/3, L4, L5 and L6: excitatory 234 

neuron subtypes located in different cortical layers. Pvalb and Sst: medial ganglionic eminence-235 

derived inhibitory subtypes. Ndnf and Vip: CGE-derived inhibitory subtypes. NN1: non-neuronal 236 

cell type 1. (Right) The number of cells and SnapHiC-identified loops in each of the 14 cell types. 237 

(b) F1 score (the harmonic mean of the precision and recall) of SnapHiC- and HiCCUPS-identified 238 

loops for oligodendrocytes (ODC), microglia (MG) and eight neuronal subtypes. (c) Boxplot of 239 

ATAC-seq log2(CPM+1) value (left), H3K27ac ChIP-seq log2(CPM+1) value (middle) and RNA-240 

seq log2(FPKM+1) value (right) in astrocyte, microglia, oligodendrocytes and neurons at the 241 

anchors of Astro-specific, MG-specific, ODC-specific, L2/3-specific SnapHiC loops summarized 242 

in Supplementary Table 11. ***p < 2.2e-16; **p < 1e-10; *p < 1e-7 by the paired Wilcoxon signed-243 

rank test. (d) Top seven enriched gene ontology (GO) terms of genes associated with cell-type-244 

specific SnapHiC loops. (e) (Left) SnapHiC-identified loops from astrocyte and microglia around 245 

gene APOE. There is no loop identified in this genomic region from oligodendrocytes or L2/3 246 

excitatory neurons, so no corresponding tracks are shown. Two astrocyte-specific loops linking 247 

the APOE promoter (highlighted in grey) and the active enhancers in astrocyte (highlighted in 248 

pink) containing two AD-associated GWAS SNPs are marked by black arrows. Only APOE TSS-249 

distal AD-associated GWAS SNPs are shown in the figures (residing in the region chr19: 250 

45,440,000-45,630,000). (Right) Matrix of the percentage of cells with significantly higher 251 

normalized contact frequency (percentage of outlier cells with normalized contact frequency>1.96) 252 

for 261 astrocytes. The SnapHiC-identified loops from astrocyte are marked by black squares. 253 
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Supplementary Figure 1. Comparison of the precision and recall values of SnapHiC- and 

HiCCUPS-identified loops from mES cells. The precision and recall values are calculated for 

the loops identified by SnapHiC and HiCCUPS from different numbers of mES cells. These values 
are also used to calculate the F1 score in Fig. 1c. 
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Supplementary Figure 2. SnapHiC-identified loops from different sub-sampling of mES 

cells show significant enrichment over their local background. Aggregate peak analysis 

(APA) of SnapHiC-identified loops from different sub-sampling of mES cells examined on 
aggregated scHi-C contact matrix of 742 cells. 
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Supplementary Figure 3. Visualization of selected SnapHiC-identified loops. From left to 

right: aggregated scHi-C contact matrix of 100 mES cells, aggregated scHi-C contact matrix of 

742 mES cells, bulk in situ Hi-C contact matrix from mES cells (replicate 1 from Bonev et al. 
study22) and % of outlier cells matrix of 100 mES cells at 10Kb resolution; from top to bottom: 

Sox2 locus, Wnt6 locus, and Mtnr1a locus. Black squares represent the SnapHiC-identified loops 

from 100 mES cells, which are shown in Fig. 1d as purple arcs. For comparison, the HiCCUPS-

identified loops from the deepest available bulk in situ Hi-C data of mES cells (combining all four 

replicates from Bonev et al. study22) are marked as blue squares.  
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Supplementary Figure 4. Comparison of the precision and recall values of SnapHiC- and 

HiCCUPS-identified loops for ten cell clusters from human prefrontal cortex. The precision 

and recall values are calculated for the loops identified by SnapHiC and HiCCUPS for 
oligodendrocytes (ODC), microglia (MG), and eight neuronal subtypes. These values are also 

used to calculate the F1 score in Fig. 2b. 
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Supplementary Figure 5. SnapHiC-identified loops from each of the 14 cell clusters 

identified from sn-m3C-seq data of the human prefrontal cortex show significant 

enrichment over their local background. Aggregate peak analysis (APA) of SnapHiC-identified 
loops for each of the 14 cell clusters demonstrated in Fig. 2a examined on the aggregated contact 

matrix from the matching cell clusters. 
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Supplementary Figure 6. Illustration of different types of the local background used for 

SnapHiC loop calling. For each 10Kb bin pair of interest (red), its horizontal background, vertical 

background, lower left background and donut background are the blue, green, yellow and grey 
areas, respectively. The circle background, which is also the local neighborhood, is the union of 

the blue, green, yellow and grey areas. 
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Supplementary Figure 7. The relationship between the number of cells and the running 

time of SnapHiC analysis. We tested the running time of SnapHiC on scHi-C data from 25, 50, 

100, 200, 300 and 400 mES cells (10Kb resolution, searching for loops between 100Kb to 1Mb 
genomic distance). SnapHiC consists of two steps: (1) applying the random walk with restart 

(RWR) algorithm to impute contact probability within every single cell, and (2) integrating imputed 

contact probability matrices from all single cells to identify chromatin loops. The running time of 

each step and the sum of both steps against the number of cells is plotted.  
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Supplementary Table Legends 264 

 265 

Supplementary Table 1. Summary of SnapHiC- and HiCCUPS-identified loops from mES scHi-266 

C data. Related to Fig. 1b. 267 

 268 

Supplementary Table 2. SnapHiC-identified loops from 10, 25, 50, 75, 100, 200, 300, 400, 500, 269 

600, 700 and 742 mES cells (Column D in Supplementary Table 1). 270 

 271 

Supplementary Table 3. HiCCUPS-identified loops from 10, 25, 50, 75, 100, 200, 300, 400, 500, 272 

600, 700 and 742 mES cells (after filtering, Column F in Supplementary Table 1). 273 

 274 

Supplementary Table 4. HiCCUPS-identified loops from bulk in situ Hi-C data, MAPS-identified 275 

significant interactions from H3K4me3 PLAC-seq, cohesin HiChIP, and H3K27ac HiChIP data, 276 

which are used as the reference loop list after pooling to calculate precision, recall values and the 277 

F1 score in Fig. 1c and Supplementary Fig. 1. 278 

 279 

Supplementary Table 5. CTCF motif orientation analysis for SnapHiC-identified loops from 280 

different numbers of mES cells. 281 

 282 

Supplementary Table 6. SnapHiC-identified loops from 14 different cell clusters demonstrated 283 

in Fig. 2a (Column D in Supplementary Table 8). 284 

 285 

Supplementary Table 7. HiCCUPS-identified loops from 14 different cell clusters demonstrated 286 

in Fig. 2a (after filtering, Column F in Supplementary Table 8). 287 

 288 

Supplementary Table 8. Summary of SnapHiC- and HiCCUPS-identified loops from 14 different 289 

cell clusters demonstrated in Fig. 2a. 290 

 291 

Supplementary Table 9. MAPS-identified interaction lists of human microglia, oligodendrocytes, 292 

and neurons based on the Nott. et al. study29, which are used to calculate precision, recall values 293 

and the F1 score in Fig. 2b and Supplementary Fig. 4. 294 

 295 

Supplementary Table 10. SnapHiC-identified loops from astrocytes, microglia and 296 

oligodendrocytes after sub-sampling (261 cells for each cell type). 297 
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Supplementary Table 11. Cell-type-specific SnapHiC loops identified from astrocytes, microglia, 298 

oligodendrocytes, and L2/3 excitatory neurons after sub-sampling (261 cells for each cell type). 299 

 300 

Supplementary Table 12. Genes whose promoter overlaps with cell-type-specific SnapHiC loops 301 

identified from astrocytes, microglia, oligodendrocytes, and L2/3 excitatory neurons after sub-302 

sampling (261 cells for each cell type). Related to Fig. 2c, 2d and Supplementary Table 11.  303 

 304 

Supplementary Table 13. Non-coding GWAS SNPs associated with seven neuropsychiatric 305 

disorders with p-value < 5x10-8 and the SNPs residing in the active enhancers of astrocytes, 306 

microglia, oligodendrocytes or neurons defined in the previous publication29.  307 

 308 

Supplementary Table 14. Predicted 788 SNP-disease-loop-gene quadruplets using SnapHiC-309 

identified loops in astrocytes, microglia, oligodendrocytes and L2/3 excitatory neurons (261 cells 310 

for each cell type).  311 

  312 
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Methods 313 

Single-cell Hi-C (scHi-C) data processing 314 

For scHi-C data from mES cells5, we downloaded the raw fastq files of all diploid serum cells (in 315 

total 1,175 cells). We first aligned scHi-C read pairs for each single cell to mm10 genome with 316 

BWA-MEM with the “-5” option to report the most 5’ end alignment as the primary alignment, and 317 

the “-P” option to perform Smith-Waterman algorithm to rescue chimeric reads. We only used 318 

primary alignments in the next steps. We then de-duplicated read pairs with the Picard tool to 319 

keep only one read pair at the exact same position. We further applied two filtering steps to 320 

remove read duplications: (1) we split each chromosome into consecutive non-overlapping 1Kb 321 

bins, and only kept one contact for each 1Kb bin pair, (2) we removed 1Kb bins which contact 322 

with more than 10 other 1Kb bins, since they are likely mapping artifacts. We found that the 323 

number of contacts per cell for these 1,175 cells has a bimodal distribution, therefore we selected 324 

the top 742 cells with >150,000 contacts per cell for downstream analysis. 325 

 326 

Single-nucleus methyl-3C-seq (sn-m3C-seq) data processing 327 

For sn-m3C-seq data from human prefrontal cortex, we performed data processing using 328 

reference genome hg19 as described in the previous study13. After this processing, we also 329 

applied two additional filtering steps to remove read duplications as described in the “Single-cell 330 

Hi-C (scHi-C) data processing” section. Similar to scHi-C data from mES cells, we also observed 331 

a bimodal distribution in the number of contacts per cell for all 4,238 cells. Again, we selected the 332 

top 2,869 cells with >150,000 contacts per cell for downstream analysis. The method for clustering 333 

and cell type annotation for these 2,869 cells was the same as previously described13. 334 

 335 

SnapHiC algorithm  336 

Step A. Contact probability imputation using the random walk with restart (RWR) algorithm.   337 

We first partitioned each autosomal chromosome into consecutive non-overlapping bins at a pre-338 

specified resolution (10Kb in this study) and dichotomized contact for each 10Kb bin pair (binary 339 

contact matrix with 1 indicating non-zero contact and 0 otherwise). Next, we modeled each 340 

autosomal chromosome as an unweighted graph, where each 10Kb bin is one node, and each 341 

non-zero contact between any two 10Kb bins is one edge. We also added edges to all adjacent 342 

10Kb bins. We then implemented the random walk with restart (RWR) algorithm20 with the restart 343 

probability 0.05 to impute the contact probability between all intra-chromosomal 10Kb bin pairs. 344 

We used the Python “NetworkX” package to construct the graph, and adopted the “linalg.solve” 345 

function in the Python “SciPy” package to solve the linear equation in the RWR algorithm. In 346 
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addition, we distributed the analysis for different chromosomes in different cells between different 347 

processors using the Python “mip4py” package to speed up the computation.  348 

 349 

We further evaluated whether the contact probability imputed by the RWR algorithm in each single 350 

cell contains systematic biases, including effective fragment size, GC content and mappability, 351 

which are known systematic biases in bulk Hi-C data45. Specifically, for each of the 742 mES 352 

scHi-C profiles, we used the RWR algorithm to impute the contact probability between all intra-353 

chromosomal 10Kb bin pairs (𝑖, 𝑗) within 1Mb genomic distance, denoted as 𝑥𝑖𝑗. Let 𝐹𝑖, 𝐺𝐶𝑖  and 354 

𝑀𝑖  represent the effective fragment size, GC content and mappability of the 10Kb bin 𝑖, which are 355 

calculated according to our previous work45. We define 𝑓𝑖𝑗 = 𝐹𝑖 ∗ 𝐹𝑗, 𝑔𝑐𝑖𝑗 = 𝐺𝐶𝑖 ∗ 𝐺𝐶𝑗 , and 𝑚𝑖𝑗 =356 

𝑀𝑖 ∗ 𝑀𝑗 , as the measure of three types of bias for each 10Kb bin pair. We then calculated the 357 

Pearson Correlation Coefficient between the contact probability 𝑥𝑖𝑗  and 𝑓𝑖𝑗 , 𝑔𝑐𝑖𝑗  and 𝑚𝑖𝑗 , 358 

respectively, for each of the 19 autosomal chromosomes in one cell. Next, we used the average 359 

Pearson Correlation Coefficient (aPCC) across all chromosomes as the measurement of bias in 360 

each cell. Among all 742 cells, the mean of aPCC is 0.0110, 0.0085 and -0.0016 for effective 361 

fragment size, GC content and mappability, respectively. The standard deviation of aPCC is 362 

0.0068, 0.0113 and 0.0029 for effective fragment size, GC content and mappability, respectively. 363 

These results suggest that the systematic biases in imputed contact probabilities in scHi-C data 364 

are negligible, thus normalization against effective fragment size, GC content or mappability is 365 

not needed. 366 

 367 

Step B. Contact probability normalization based on 1D genomic distance. 368 

Since the contact probability between any two genomic loci is strongly dependent on their 1D 369 

genomic distance, normalization of the imputed contact probability against 1D genomic distance 370 

is needed before loop calling. To achieve this, we first removed the bin pairs residing in the first 371 

50Kb or the last 50Kb of each chromosome, which often have unusually high imputed contact 372 

probability due to the edge effect of the RWR algorithm. We then stratified all intra-chromosomal 373 

10Kb bin pairs by their 1D genomic distance. Specifically, let 𝑥𝑖𝑗 represent the contact probability 374 

between bin 𝑖 and bin 𝑗. Define the set 𝐴𝑑 as all bin pairs (𝑖, 𝑗) with the 1D genomic distance 𝑑. 375 

For simplicity, we only considered bin pairs (𝑖, 𝑗) in the upper triangle of the contact matrix where 376 

𝑖 < 𝑗. We removed the top 1% bin pairs in 𝐴𝑑  with the highest contact probability, and then 377 

computed the mean 𝜇𝑑  and the standard deviation 𝜎𝑑  of the contact probability using the 378 

remaining bin pairs in 𝐴𝑑. We further calculated the normalized contact probability (i.e., Z-score), 379 
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defined as 𝑧𝑖𝑗 = (𝑥𝑖𝑗 − 𝜇𝑑)/𝜎𝑑, for all bin pairs in 𝐴𝑑. For single cells with very few contacts, the 380 

imputed contact probabilities 𝑥𝑖𝑗 at specific 1D genomic distance 𝑑 are close to zero, leading to 381 

very small standard deviation 𝜎𝑑 and numerical errors in the Z-score transformation. To avoid this 382 

issue, when 𝜎𝑑 is less than 1e-6, we defined 𝑧𝑖𝑗 = 0 for all bin pairs in 𝐴𝑑. After the calculation 383 

described above, bin pair (𝑖, 𝑗) with higher normalized contact probability 𝑧𝑖𝑗 suggests that bin 𝑖 384 

and bin 𝑗 are more likely to interact with each other than the other genomic loci pairs.   385 

 386 

Step C. Identification of loop candidates. 387 

To minimize false positives in loop calling results, we defined a bin pair as a loop candidate only 388 

if it shows higher contact probability compared to both its global and local background. Specifically, 389 

we required the loop candidate to satisfy the following criteria: 390 

 391 

(1) Its average normalized contact probability of all single cells is greater than 0 (i.e., with respect 392 

to global background).  393 

 394 

(2) More than 10% of all single cells have normalized contact probability above 1.96 at the loop 395 

candidate (i.e., Z-score>1.96, corresponding to p-value<0.05, with respect to global background). 396 

 397 

(3) For each 10Kb bin pair (𝑖, 𝑗), we defined its local neighborhood as all 10Kb bin pairs (𝑚, 𝑛) 398 

such that 30Kb ≤ 𝑚𝑎𝑥{𝑑(𝑖, 𝑚), 𝑑(𝑗, 𝑛)} ≤ 50Kb (Supplementary Fig. 6), where 𝑑(𝑖, 𝑚)  is the 399 

genomic distance between the center of bin 𝑖 and the center of bin 𝑚. Here we did not consider 400 

the bin pairs within 20Kb of bin pair (𝑖, 𝑗) as part of its local neighborhood because they can be 401 

part of the same loop cluster centered at bin pair (𝑖, 𝑗). We then compared the normalized contact 402 

probability at bin pair (𝑖, 𝑗) with the mean of the normalized contact probability of all 96 10Kb bin 403 

pairs within its local neighborhood region, and applied the paired t-test across all single cells to 404 

obtain a p-value. We further converted p-values into false discovery rates (FDRs) using the 405 

Benjamin-Hochberg procedure, again stratified by 1D genomic distance. The loop candidates 406 

must have FDR<10% and t-statistics greater than 3 in the paired t-test (i.e., with respect to local 407 

background). 408 

 409 

(4) Motivated by the HiCCUPS algorithm14, we also required the loop candidate to have at least 410 

33% higher average normalized contact frequency than its circle, donut and lower left background 411 
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and 20% higher average normalized contact frequency than its horizontal and vertical background 412 

(Supplementary Fig. 6) (i.e., with respect to local background). 413 

 414 

(5) Finally, we removed the loop candidates with either end having low mappability score (≤0.8), 415 

or overlapping with the ENCODE blacklist regions 416 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-417 

mouse/mm10.blacklist.bed.gz for mm10 and 418 

https://www.encodeproject.org/files/ENCFF001TDO/ for hg19). The sequence mappability for 419 

each 10Kb bin is calculated based on our previous study45, and it can be downloaded from 420 

http://enhancer.sdsc.edu/yunjiang/resources/genomic_features/.  421 

 422 

Step D. Clustering of loop candidates and identifying the summit(s) as final outputs. 423 

For each loop candidate (𝑖, 𝑗), we defined its surrounding area as all 10Kb bin pairs (𝑚, 𝑛) such 424 

that 𝑚𝑎𝑥{𝑑(𝑖, 𝑚), 𝑑(𝑗, 𝑛)} ≤ 20Kb, where 𝑑(𝑖, 𝑚) is the genomic distance between the center of 425 

bin 𝑖 and the center of bin 𝑚. We defined a loop candidate as a singleton if there is no other loop 426 

candidate within its surrounding area, and removed all singletons from downstream analysis since 427 

the singletons are likely to be false positives.  428 

 429 

To group the remaining non-singleton loop candidates into clusters, we adopted the Rodriguez 430 

and Laio’s algorithm21. Specifically, for each loop candidate (𝑖, 𝑗), we first counted the number of 431 

loop candidates in its adjacent neighborhood regions: (𝑚, 𝑛): 𝑚𝑎𝑥{𝑑(𝑖, 𝑚), 𝑑(𝑗, 𝑛)} ≤ 10Kb, and 432 

defined this number as its local density 𝜌(𝑖, 𝑗) . Next, we calculated the minimum Euclidean 433 

distance between the loop candidate (𝑖, 𝑗) and any other loop candidate with higher local density 434 

on the same chromosome, defined as 𝛿(𝑖, 𝑗): 435 

𝛿(𝑖, 𝑗) = min
(𝑚,𝑛):𝜌(𝑚,𝑛)>𝜌(𝑖,𝑗)

√(𝑖 − 𝑚)2 + (𝑗 − 𝑛)2. 436 

If the loop candidate (𝑖, 𝑗) has the highest local density (i.e., 𝜌(𝑖, 𝑗) = 9), 𝛿(𝑖, 𝑗) is defined as: 437 

𝛿(𝑖, 𝑗) = max
(𝑚,𝑛)

√(𝑖 − 𝑚)2 + (𝑗 − 𝑛)2. 438 

We then selected the loop candidates which have high local density 𝜌, and are relatively far away 439 

from the other loop candidates with higher local density, i.e., high 𝛿, as loop cluster centers. To 440 

determine the cutoff values of 𝜌 and 𝛿 for such centers, we implemented an algorithm similar to 441 

the ROSE algorithm46, which is used to identify super-enhancers. Specifically, let 𝜌𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 442 

represent the maximal value of 𝜌 and 𝛿 of all loop candidates on each chromosome, respectively. 443 

We defined 𝜌′(𝑖, 𝑗) = 𝜌(𝑖, 𝑗)/𝜌𝑚𝑎𝑥 and 𝛿′(𝑖, 𝑗) = 𝛿(𝑖, 𝑗)/𝛿𝑚𝑎𝑥 such that both 𝜌′(𝑖, 𝑗) and 𝛿′(𝑖, 𝑗) are 444 
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within range [0,1]. We then defined 𝜂(𝑖, 𝑗) = 𝜌′(𝑖, 𝑗) ∗ 𝛿′(𝑖, 𝑗), ordered all loop candidates by their 445 

𝜂 in the descending order, and plotted the rank of 𝜂 against the value of 𝜂. In this plot, we selected 446 

the reflection point such that the slope at the reflection point is one. All loop candidates with 𝜂 447 

larger than 𝜂 at the reflection point were chosen to be the loop cluster centers. After finding the 448 

loop cluster centers, we assigned each remaining loop candidate to the same loop cluster as its 449 

nearest neighbor with higher local density 𝜌.  450 

 451 

Within each loop cluster, we defined the loop candidate with the lowest FDR as the first summit 452 

of the cluster. For the first summit (𝑖, 𝑗), we defined its surrounding area as all 10Kb bin pairs 453 

(𝑚, 𝑛)  such that 𝑚𝑎𝑥{𝑑(𝑖, 𝑚), 𝑑(𝑗, 𝑛)} ≤  20Kb, and removed all loop candidates within its 454 

surrounding area. Next, we selected the loop candidate with the lowest FDR among the remaining 455 

ones (if there is any) as the second summit of this cluster. We then removed all loop candidates 456 

within the surrounding area of the second summit in the same way as we did for the first summit, 457 

and searched for the third summit (if there is any) with the lowest FDR among the remaining loop 458 

candidates. Such procedure was iterated until there are no loop candidates left in this cluster. 459 

Notably, one loop cluster may contain multiple summits. SnapHiC algorithm outputs a file 460 

containing the summit(s) of each loop cluster as its final chromatin loop list.  461 

 462 

Identification of chromatin loops with SnapHiC. 463 

We applied SnapHiC to scHi-C data from 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700 and 464 

742 mES cells and each of the 14 cell clusters from sn-m3C-seq data of human prefrontal cortex 465 

to call chromatin loops at 10Kb resolution between 100Kb and 1Mb region on autosomal 466 

chromosomes.  467 

 468 

We did not take bin pairs within 100Kb into consideration because they do not have complete 469 

information in their local neighborhood (refer to “SnapHiC algorithm”). We also evaluated the bin 470 

pairs beyond 1Mb distance. When we extended the maximal genomic distance from 1Mb to 2Mb 471 

for loop calling using scHi-C data from 742 mES cells, only 4.6% SnapHiC-identified loops (758 472 

out of 16,654) are between 1Mb and 2Mb. Therefore, we restricted our loop calling from 100Kb 473 

to 1Mb genomic distance for all the datasets mentioned in this study. In practice, we also suggest 474 

using 1Mb as the maximal 1D genomic distance for loop calling to save computational cost.   475 

 476 

Visualization of scHi-C and sn-m3C-seq data using percentage (%) of outlier cells matrix. 477 
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We first computed the % of outlier cells (i.e., the proportion of cells with normalized contact 478 

probability > 1.96), and then took the integer ceiling of 100 * (% of outlier cells) to create a count 479 

matrix. We then used the Juicer47 software to convert the count matrix into a .hic file and visualize 480 

it in Juicebox48.   481 

 482 

Computational cost (memory, time) of SnapHiC. 483 

To assess the relationship between the number of cells and running time, we tested the running 484 

time of SnapHiC on 25, 50, 100, 200, 300 and 400 mES cells (10Kb resolution, searching for 485 

loops between 100Kb to 1Mb genomic distance) and found its running time increases linearly with 486 

the increase of cell numbers (Supplementary Fig. 7). 487 

 488 

As described in our GitHub website (https://github.com/HuMingLab/SnapHiC), SnapHiC consists 489 

of two steps: (1) applying the random walk with restart (RWR) algorithm to impute contact 490 

probability within each single cell, and (2) integrating imputed contact probability matrices from all 491 

single cells to identify significant chromatin loops. Since the RWR algorithm can be applied to 492 

each chromosome in each single cell in parallel, in step 1, using as many processors as possible 493 

(e.g., maximal N = # of cells * # of chromosomes) can speed up the computation. Resolution and 494 

chromosome size are two important factors to determine the required memory per processor in 495 

step 1. For human or mouse genome at 10Kb resolution, we recommend allocating at least 30GB 496 

of memory for each processor. In the benchmarking experiments shown in Supplementary Fig. 497 

7, we used 45 processors (15 nodes, 3 processors per node) for step 1, where each node has 498 

96GB of memory, and it takes around 2.4 hours to process 100 cells.   499 

 500 

In step 2, since the computation is performed jointly for all cells and separately for each 501 

chromosome, we recommend using the same number of processors as the number of 502 

chromosomes. Using more processors than that will be a waste of computing resources. It is also 503 

important to ensure that each processor has access to sufficient memory for the computation over 504 

all cells, and the amount of memory needed is correlated with the range of 1D genomic distance, 505 

the bin resolution, and to a less extent to the number of cells. Increasing the number of cells, 506 

slightly adds to the memory usage, however, since we only load the indices in the matrix that are 507 

used in each step of the computation, this increase in memory usage is sublinear in regard to the 508 

increase in the number of cells. In the benchmarking experiments shown in Supplementary Fig. 509 

7, we used 20 processors (5 nodes, 4 processors per node) for step 2, where each node has 510 

96GB of memory, and it takes around 0.7 hours to process 100 cells in step 2.    511 
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 512 

Generation of aggregated contact matrix for scHi-C and sn-m3C-seq data. 513 

We pooled contacts from single cells of interest to create the aggregated contact matrix in .hic 514 

format using Juicer with KR normalization47. Only intra-chromosomal contacts >2Kb away are 515 

used.  516 

 517 

Identification of HiCCUPS loops from aggregated contact matrix. 518 

We applied the HiCCUPS14 to the aggregated contact matrix after pooling the contacts from single 519 

cells of interest and calling loops at 10Kb resolution with the following parameters: “--520 

ignore_sparsity -r 10000 -k KR -f.1 -p 2 -i 5 -t 0.02,1.5,1.75,2 -d 20000”. Due to the sparsity of the 521 

aggregated contact matrix generated using single cell data, KR normalization may not always 522 

converge. Therefore, for some datasets, no HiCCUPS loops can be identified on specific 523 

chromosomes where KR-normalized matrices are not available.  524 

 525 

To ensure a fair comparison of HiCCUPS-identified loops with SnapHiC-identified loops, we 526 

further filtered the HiCCUPS-identified loops by selecting the intra-chromosomal ones within 527 

genomic distance 100Kb~1Mb and removing the loops whose anchor bins have low mappability 528 

(≤0.8) or overlap with the ENCODE blacklist regions (refer to Step C in “SnapHiC algorithm”). 529 

 530 

Definition of loop overlap. 531 

Let bin pair (𝑖, 𝑗) represent a loop in set 𝐴. We define it overlaps with a loop in set 𝐵, if and only if 532 

there exists a loop (𝑚, 𝑛) in set 𝐵 such that max(𝑑𝑖𝑚, 𝑑𝑗𝑛) ≤ 20Kb, where 𝑑𝑖𝑚 is the 1D genomic 533 

distance between the middle base pair of bin 𝑖 and the middle base pair of bin 𝑚. We allow up to 534 

20Kb gap in the definition of loop overlap, since SnapHiC outputs summits, and bin pairs within 535 

20Kb of the summit can be part of the same loop cluster. 536 

 537 

Sub-sampling of scHi-C and sn-m3C-seq data. 538 

For scHi-C data from mES cells, we randomly permuted the order of all 742 cells, and selected 539 

the first 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700 cells from all 742 cells to create a series 540 

of sub-sampled datasets. Notably, the dataset with fewer cells is always a subset of the dataset 541 

with more cells. 542 

 543 

For sc-m3C-seq data from human prefrontal cortex, we randomly permuted the order of all 338 544 

astrocytes, 323 microglia and 1,038 oligodendrocytes and selected the first 261 astrocytes, 545 
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microglia and oligodendrocytes to create the sub-sampled datasets for astrocytes, microglia and 546 

oligodendrocytes, respectively.  547 

 548 

Reproducibility of SnapHiC- and HiCCUPS-identified loops.  549 

Suppose we have two sets of loop list 𝐴 and 𝐵. Let 𝑃𝐴 represent the proportion of loops in set 𝐴 550 

overlapped with loops in set 𝐵 (up to 20Kb gap, see Definition of loop overlap) and let 𝑃𝐵 551 

represent the proportion of loops in set 𝐵 overlapped with loops in set 𝐴. We used (𝑃𝐴 + 𝑃𝐵)/2 to 552 

measure the reproducibility of loops in the two sets.  553 

 554 

To test the reproducibility of SnapHiC and HiCCUPS, we first randomly split all 742 mES cells 555 

into two groups where each group consists of 371 cells, and then applied SnapHiC and HiCCUPS 556 

to identify loops for each group. The reproducibility of SnapHiC- and HiCCUPS-identified loops 557 

between two sets of 371 cells are calculated as described above. We repeated such random 558 

splitting and loop calling analysis ten times, and reported the mean of reproducibility of SnapHiC-559 

and HiCCUPS-identified loops. We further used the paired t-test to evaluate the statistical 560 

significance of the difference in reproducibility between these two methods. 561 

 562 

Generation of the reference loop lists for calculation of precision, recall and F1 score. 563 

For mES cells, the HiCCUPS loops at 10Kb resolution from bulk in situ Hi-C data were called as 564 

previously described23 using the pooled datasets of all 4 biological replicates from Bonev et al. 565 

study22. MAPS pipeline was applied to H3K4me3 PLAC-seq data23, cohesin HiChIP data24 and 566 

H3K27ac HiChIP data25 to call significant interactions at 10Kb resolution within 1Mb genomic 567 

distance. We combined the above four loop lists and further filtered by selecting the intra-568 

chromosomal loops within genomic distance 100Kb~1Mb and removing loops where anchor bins 569 

have low mappability (≤0.8) or overlap with the ENCODE blacklist regions to create the final 570 

reference loop list (Supplementary Table 4). 571 

 572 

For oligodendrocytes, microglia and eight neuronal subtypes from human prefrontal cortex, we 573 

used MAPS-identified interactions from H3K4me3 PLAC-seq data of purified oligodendrocytes, 574 

microglia and neurons as their reference loop list, respectively (provided in Supplementary Table 575 

5 in Nott et al. study29). We first filtered the list by selecting the intra-chromosomal loops with 576 

genomic distance 100Kb~1Mb and removing loops where anchor bins have low mappability (≤0.8) 577 

or overlap with the ENCODE blacklist regions. We further selected the loops in which at least one 578 
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end contains active promoters of the corresponding cell type to create the final reference loop list 579 

(Supplementary Table 9). 580 

 581 

Calculation of precision, recall and F1 score. 582 

Let 𝑁 represent the number of loops in the reference loop list for the cell type of interest. Suppose 583 

SnapHiC (or HiCCUPS) identifies 𝑀 loops from the same cell type, and 𝑚 of them overlapped 584 

with loops in the reference loop list (see Definition of loop overlap). The precision is calculated 585 

as 𝑚/𝑀. Suppose among all 𝑁 loops in the reference loop list, 𝑛 loops overlapped with SnapHiC- 586 

(or HiCCUPS-) identified loops. The recall is calculated as 𝑛/𝑁. Notably, 𝑚 and 𝑛 may not be 587 

equal since we allow up to a 20Kb gap between two overlapped loops. The F1 score is the 588 

harmonic mean of the precision and recall and is calculated as below: 589 

 590 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 = 2 ∗

𝑚/𝑀 ∗ 𝑛/𝑁
𝑚/𝑀 + 𝑛/𝑁. 591 

 592 

For mES cells, we used all SnapHiC- or HiCCUPS-identified loops for the above calculation. For 593 

oligodendrocytes, microglia and eight neuronal subtypes, we only selected the SnapHiC- or 594 

HiCCUPS-identified loops in which at least one anchor contains active promoters of the 595 

corresponding cell type for this calculation, since the available reference loop lists are called from 596 

H3K4me3 PLAC-seq data, which can only detect interactions centered at promoter regions. 597 

 598 

Aggregate peak analysis (APA). 599 

We used the Juicer47 software with the command “java -jar juicer_tools_1.19.02.jar apa -r 10000 600 

-k KR -u input.hic loops.txt APA” to perform the aggregate peak analysis. We reported “P2LL” 601 

(also known as the APA score) and “ZscoreLL” to evaluate the enrichment of SnapHiC-identified 602 

loops with respect to the lower left background. 603 

 604 

CTCF motif orientation analysis. 605 

We obtained the CTCF ChIP-seq peaks of mES cells from a previous study49, and used FIMO50 606 

with default parameters and the CTCF motif (MA0139.1) from the JASPAR51 database to search 607 

for CTCF sequence motifs among those CTCF ChIP-seq peaks. Based on this CTCF motif list, 608 

we then selected a subset of testable SnapHiC-identified loops in which both ends contain either 609 

a single CTCF motif or multiple CTCF motifs in the same direction. Finally, we calculated the 610 

proportion of convergent, tandem and divergent CTCF motif pairs among all testable loops. 611 
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 612 

Visualization of CTCF and H3K27ac ChIP-seq data from mES cells. 613 

We downloaded the signal tracks from the ENCODE portal33,52 (https://www.encodeproject.org/) 614 

with the following identifiers: ENCFF230RNU (for H3K27ac) and ENCFF069PTO (for CTCF) for 615 

Fig. 1d.  616 

 617 

Definition of cell-type-specific SnapHiC loops. 618 

We used the SnapHiC loops identified from sub-sampled astrocytes, microglia, oligodendrocytes 619 

datasets, and L2/3 excitatory neurons (all with 261 cells) to define cell-type-specific loops. 620 

Specifically, we defined a loop identified from one cell type as cell-type-specific, if it did not overlap 621 

(up to 20Kb gap, see Definition of loop overlap) with loops identified from any of the other three 622 

cell types. 623 

 624 

Selection of genes associated with cell-type-specific SnapHiC loops. 625 

We first used the Gencode v34 (GRCh37) to obtain the location of transcription start site (TSS) 626 

for 19,079 protein-coding genes in human autosomal chromosomes, and then selected genes 627 

where TSS overlaps cell-type-specific loops for astrocytes, L2/3 excitatory neurons, microglia and 628 

oligodendrocytes, respectively.  629 

 630 

Processing of ATAC-seq and H3K27ac ChIP-seq data from four brain cell types. 631 

The ATAC-seq and H3K27ac ChIP-seq data from human astrocytes, oligodendrocytes, microglia 632 

and neurons are from the previous study29 and are processed with ENCODE ATAC-seq and ChIP-633 

seq pipelines as previously described29. The normalized bigwig tracks with RPKM as the Y-axis 634 

are generated for visualization in Fig. 2e. 635 

 636 

Processing of RNA-seq from four brain cell types. 637 

The RNA-seq data from human astrocytes, oligodendrocytes, microglia and neurons are acquired 638 

from the previous study30. The alignment and quantification are performed with pipeline: 639 

https://github.com/ren-lab/rnaseq-pipeline. Briefly, we first aligned RNA-seq raw reads to hg19. 640 

Next, we used Gencode GTF gencode.v19.annotation.gtf for hg19 with STAR53 following the 641 

‘ENCODE’ options outlined in the STAR manual 642 

(http://labshare.cshl.edu/shares/gingeraslab/www-643 

data/dobin/STAR/STAR.posix/doc/STARmanual.pdf). We then used Picard 644 

(http://broadinstitute.github.io/picard/) to remove PCR duplicates. We also generated the 645 
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normalized bigwig tracks with RPKM (reads per kilobase of a transcript, per million mapped reads) 646 

as the Y-axis for visualization in Fig. 2e. 647 

 648 

Enrichment analysis of ATAC-seq or H3K27ac ChIP-seq signals at cell-type-specific loops. 649 

To quantify the intensity of ATAC-seq or H3K27ac ChIP-seq signals at cell-type-specific loops in 650 

the cell type of interest, we first calculated reads per million (CPM) values in each 10Kb anchor 651 

of the cell-type-specific loops using ATAC-seq or H3K27ac ChIP-seq data from the cell type of 652 

interest. To minimize the background noise, we only considered the reads falling into the ATAC-653 

seq or H3K27ac ChIP-seq peak regions defined in the cell type of interest but not all the reads in 654 

the entire 10Kb bin. If there are multiple ATAC-seq or H3K27ac ChIP-seq peaks in the same 10Kb 655 

bin, we then added up the CPM values and took the sum as the value for that 10Kb bin. Since 656 

each loop has two anchors, we took their average CPM to represent the intensity of ATAC-seq or 657 

H3K27ac ChIP-seq signal for that loop in the cell type of interest. Lastly, we applied the paired 658 

Wilcoxon signed-rank test on log2(CPM+1) values from different combinations of cell types of 659 

interest and the cell-type-specific loop sets to test whether there is a significantly difference (Fig. 660 

2c). 661 

 662 

Gene expression analysis at cell-type-specific loops.  663 

We obtained the FPKM values of each protein-coding genes in human astrocytes, neurons, 664 

microglia and oligodendrocytes from Supplementary Table 4 provided in the previous study (Col 665 

P-U for astrocytes, Col AB for neurons, Col AC-AG for oligodendrocytes, and Col AH-AJ for 666 

microglia in the “Human data only” tab)30. For each gene, we took the average of FPKM across 667 

biological replicates of the same cell type. For the selected genes where promoters are 668 

overlapped with cell-type-specific loops, we applied the Wilcoxon signed-rank test to evaluate 669 

whether they are highly expressed in the matched cell type. 670 

 671 

Gene ontology enrichment analysis. 672 

We used Metascape31 to perform gene ontology enrichment analysis for selected genes where 673 

promoters overlapped with cell-type-specific loops, and reported the top seven enriched biological 674 

processes.  675 

 676 

  677 
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