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Summary. The integrative analysis of multiple data sets is becoming increasingly important in
many fields of research. When the same features are studied in several independent experi-
ments, it can often be useful to analyse jointly the multiple sequences of multiple tests that result.
It is frequently necessary to classify each feature into one of several categories, depending on
the null and non-null configuration of its corresponding test statistics. The paper studies this
signal classification problem, motivated by a range of applications in large-scale genomics.Two
new types of misclassification rate are introduced, and two oracle procedures are developed to
control each type while also achieving the largest expected number of correct classifications.
Corresponding data-driven procedures are also proposed, proved to be asymptotically valid and
optimal under certain conditions and shown in numerical experiments to be nearly as powerful
as the oracle procedures. In an application to psychiatric genetics, the procedures proposed
are used to discover genetic variants that may affect both bipolar disorder and schizophrenia,
as well as variants that may help to distinguish between these conditions.

Keywords: Integrative analysis; Multiple testing; Set-specific marginal false discovery rate;
Signal classification; Total marginal false discovery rate

1. Introduction

1.1. Overview
Most multiple-testing methods are designed for analysing a single sequence of multiple tests,
arising from a single study. In recent years, however, summary test statistics and p-values from
multiple studies have become readily publicly accessible. A large amount of information is
contained in the comparison of these studies, and much can be learned by discovering their
similarities and differences through an integrative analysis. Thus an emerging statistical problem
is to develop powerful and efficient methods for the joint analysis of multiple sequences of
multiple tests, where the same features are tested in each sequence.

These types of joint analyses are especially prevalent in modern large-scale genomics studies,
e.g. the effort to understand the genetic regulation of gene expression in humans. The ‘Genotype
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tissue expression project’ (Lonsdale et al., 2013) collected genotype as well as gene expression
data from 53 tissue types from hundreds of donors. A major task is to determine which genetic
variants regulate the levels of expression of which genes. This is accomplished by significance
testing, for each gene in each tissue, of the association between the level of expression and each
variant. But, because some regulatory variants may be active in only certain tissue types, an
important problem is to classify each variant in terms of the tissues in which their associated test
statistics are or are not significant (Flutre et al., 2013; Torres et al., 2014; GTEx Consortium,
2015). This requires the simultaneous consideration of a large number of sequences of multiple
tests.

Similar joint analyses arise in psychiatric genetics. Some disorders, such as schizophrenia
and bipolar disorder, share many symptoms and can be difficult to differentiate in clinical
diagnoses (Andreassen et al., 2013). Several large genomewide association studies have now
made it possible to compare the genetics of these two diseases (Ruderfer et al., 2014; Gratten
et al., 2014; Cross-Disorder Group of Psychiatric Genomics Consortium, 2013a). Identifying
genetic variants that are significantly associated with one disease but not another can pave
the way for a molecular diagnostic procedure that can more accurately distinguish the two
conditions, whereas identifying variants that are associated with both conditions can shed light
on their common biological basis. Classifying variants in this way requires the joint analysis of
two sets of summary statistics: one from each disorder.

These types of integrative analyses abound across genetics and genomics research, and can
frequently be formulated in terms of grouping genomic features into different classes on the
basis of their corresponding test statistics. To fix ideas, let Xji be the z-score for the ith genomic
feature in the jth study (i=1, : : : , m; j =1, : : : , J); for example, Xji can denote the test statistic,
in the jth tissue, for the association between the ith genetic variant and the level of expression
of a given gene. This paper will consider only J =2, but extensions to more than two studies are
straightforward. Let θji ∈{0, 1} indicate whether Xji represents a signal or not, so θji =1 if Xji

is truly non-null and θji = 0 otherwise. The four possible configurations of .θ1i, θ2i/ determine
four classes to which each genomic feature can belong. Table 1 lists and labels these classes.
If Xji corresponds to the ith expression quantitative trait locus in the jth tissue, for example,
identifying cross-tissue versus tissue-specific loci becomes equivalent to classifying the tests
either into class 3, or into classes 1 or 2.

The present paper studies this signal classification problem, where the goal is to assign cor-
rectly as many genomic features to these signal classes as possible while controlling some measure
of misclassification error. Signal classification can be viewed as a generalization of the standard
multiple-testing problem, which seeks to determine only whether each feature is null or non-
null and is therefore equivalent to binary classification. In contrast, signal classification is more
similar to multiclass classification, where the results of applying a classification procedure to

Table 1. Signal classes and
labels for two sequences of
multiple tests

Class label θ1i θ2i

0 0 0
1 0 1
2 1 0
3 1 1
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Table 2. Example confusion matrix after applying
a signal classification procedure

Predicted Matrix for the following Total
class true classes:

0 1 2 3

0 C00 C01 C02 C03 R0
1 C10 C11 C12 C13 R1
2 C20 C21 C22 C23 R2
3 C30 C31 C32 C33 R3

Total m0 m1 m2 m3 m

two sequences of multiple tests can be displayed in the form of a confusion matrix. An example
is shown in Table 2.

This paper proposes novel methods for signal classification. New concepts for measuring
misclassification error are first defined. In the usual multiple-testing framework, where signals
are either null or non-null, the misclassification error is frequently measured by using the false
discovery rate (Benjamini and Hochberg, 1995). However, when signals can fall into more than
two classes, there are multiple possible types of false discovery rates, each of which measures
different combinations of the off-diagonal entries of the confusion matrix in Table 2. Two
types in particular are considered in this paper. New asymptotically optimal methods are then
developed under the framework of Lagrangian multiplier optimization (Sun and Cai, 2007) to
control each of these types of misclassification error while achieving the largest possible number
of correct classifications. Related theoretical results that determine the optimal thresholds for the
procedures proposed, and reveal relationships between the multiclass and binary classification
approaches, are also provided.

Though signal classification is discussed here in the context of the joint analysis of multi-
ple sequences of test statistics, the framework and methods that are proposed in this paper
can be readily extended to other settings where classification into multiple signal classes is
necessary, such as in image processing. For example, McHugh et al. (2008) proposed con-
trolling the false discovery rate in a motion detection problem where each pixel in an image
was to be classified as either background or foreground. In more general image segmenta-
tion problems, however, pixels may belong to more than two classes (Forsyth and Ponce,
2003), and controlling the misclassification error would require the methods that are proposed
here.

1.2. Related work
Studying multiple sequences of tests has become relevant as interest in areas such as integrative
genomics (Hawkins et al., 2010; Kristensen et al., 2014; Li, 2013; Ritchie et al., 2015) has grown.
However, research in the multiple-sequence setting has still focused on binary classification,
typically on the problem of determining whether or not signals belong to class 3 of Table 1.
This is of great interest because class 3 signals are more likely to constitute replicable scientific
findings (Benjamini et al., 2009; Bogomolov and Heller, 2013; Heller et al., 2014).

A common formulation is to posit a four-group mixture model for the .X1i, X2i/, where each
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mixture component corresponds to one of the signal classes in Table 1. Several researchers
have shown that the optimal multiple-testing procedure is based on the local false discov-
ery rate for being in class 3, which requires the unknown null and alternative distributions
of the test statistics in each sequence. One approach is to approximate the local false dis-
covery rate in some way (Chi, 2008; Du and Zhang, 2014). An alternative is to estimate the
unknown distributions and to obtain a data-driven version of the optimal testing procedure
(Chung et al., 2014; Heller and Yekutieli, 2014). Recent work by Urbut et al. (2019) and
Li et al. (2018a,b) has extended this type of approach to three or more sequences of test
statistics.

All of these methods are still limited to only two possible decisions for each tested fea-
ture: whether that feature belongs to a given set of classes of interest, or not. For example,
Heller and Yekutieli (2014) defined the set of interest to contain only class 3, to discover
features that are significant in both sequences. Alternatively, the set of interest could be de-
fined to contain both classes 1 and 2, to identify signals that are unique to only one of the
two sequences, and a modified version of the method of Heller and Yekutieli (2014) could be
applied.

However, there appear to be no existing methods for signal classification with multiple se-
quences of tests that allow for two or more sets of signal classes of interest. A common ap-
proach is to identify null and non-null genomic features in each sequence separately, controlling
sequence-specific false discovery rates. These separate discoveries are then used to determine the
signal class of each feature. For example, a feature which is called a non-discovery in sequence 1,
at a false discovery rate of level α1, and a discovery in sequence 2 at level α2, would be assigned
to class 1 of Table 1. However, it is unclear how the separate error levels α1 and α2 contribute
to the overall misclassification error.

1.3. Organization of the paper
Section 2 proposes two definitions of misclassification error in this multiclass setting and then
formalizes the related signal classification problems. Section 3 develops new oracle and data-
driven methods to achieve optimal classification under error control and establishes related
theoretical results. Simulation results demonstrating the performance of the methods proposed
are given in Section 4. In Section 5, the procedures are applied to study the genetic architectures
of bipolar disorder and schizophrenia. Section 6 further considers the dependent situation
under the multivariate normal distribution. A discussion of more possible extensions is given in
Section 7. Proofs and additional results are contained in Appendix A and sections of the on-line
supplementary file.

The programs that are were used to analyse the data can be obtained from

https://rss.onlinelibraray.wiley.com/hub/journal/14679868/series-
b-datasets

2. Problem formulation

2.1. Definitions
As illustrated in Table 1, two sequences of test statistics X1i and X2i give rise to four possible
signal classes 0, : : : , 3. However, in most applications not all signal classes are equally interesting.
Frequently, the four possible classes are partitioned into K + 1 disjoint subsets, where K may
equal 1, 2 or 3. Let S0 ⊂{0, : : : , 3} denote the set of classes that are not of interest, and let Sk ⊂
{0, : : : , 3}\S0 for k = 1, : : : , K denote disjoint subsets of the remaining important classes, such

https://rss.onlinelibraray.wiley.com/hub/journal/14679868/series-b-datasets
https://rss.onlinelibraray.wiley.com/hub/journal/14679868/series-b-datasets
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that ∪K
k=0Sk ={0, : : : , 3}. For a concrete example, suppose that Xji is the differential expression

z-score of the ith gene in brain region j. In some analyses the goal may be to classify each gene
as being active only in region 1, active only in region 2 or active in both regions. In this case,
K = 3 and S0 = {0}, S1 = {1}, S2 = {2} and S3 = {3}. In other applications the goal may only
be to distinguish genes that are region specific, regardless of region, from those that are not. In
this case K =2, S0 ={0}, S1 ={1, 2} and S2 ={3}.

A signal classification procedure is represented by a decision rule δ = .δ1, : : : , δm/, where
δi ∈{0, : : : , K} indicates the set Sk to which the ith genomic feature is assigned. Usual notions
of power (Sarkar, 2002; Genovese and Wasserman, 2002; Taylor et al., 2005; Basu et al., 2018;
Cai and Sun, 2017) and the false discovery rate (Storey, 2002; Benjamini and Hochberg, 1995;
Genovese and Wasserman, 2002) need to be generalized to accommodate multiple sets of signal
classes of interest. To measure the power of δ, define the total expected true positives number
to be

TETP.δ/=E

(
K∑

k=1

∑
l∈Sk

Cll

)
, .1/

where the Cll are diagonal entries of the confusion matrix in Table 2. This measure equals the
total number of tests that are correctly classified by δ into any of the sets Sk of interest.

There are multiple ways to measure the misclassification error that is incurred by δ. One
possibility is the total marginal false discovery rate, which is defined to be

TMFDR.δ/= E.
∑K

k=1
∑

l∈Sk

∑
l′ �=l Cll′/

E.
∑K

k=1
∑

l∈Sk
Rl/

, .2/

where the Cll′ are the off-diagonal entries of Table 2. The numerator of equation (2) is the average
number of features that are incorrectly classified into any of the Sk, and the denominator equals
the expected value of the total number of features that are classified into any of the Sk. The
quantity (2) reduces to the standard marginal false discovery rate in the binary classification
problem of distinguishing between S0 and ∪K

k=1Sk. Alternatively, define the set-specific marginal
false discovery rate for set k to be

SMFDRk.δ/= E.
∑

l∈Sk

∑
l′ �=l Cll′/

E.
∑

l∈Sk
Rl/

, k =1, : : : , K, .3/

which measures the proportion of misclassifications only for the kth set of interest.

Remark 1. Instead of the marginal false discovery rate, versions of the false discovery rate
of Benjamini and Hochberg (1995) can be employed to measure misclassification error. For
example, set-specific misclassification errors could also be measured with

SFDRk.δ/=E

{ ∑
l∈Sk

∑
l′ �=l Cll′

max.
∑

l∈Sk
Rl, 1/

}

for k =1, : : : , K, which is the Benjamini and Hochberg (1995) false discovery rate for identifying
signals to be in Sk or not. Results from Genovese and Wasserman (2002) for the binary signal
classification problem then imply that SMFDRk.δ/ = SFDRk.δ/ + O.m−1=2/ for all k, so that
these two measures are asymptotically equivalent. Following previous literature (Sun and Cai,
2007; Cai and Sun, 2017), marginal false discovery rates will be used in this paper for technical
convenience when obtaining optimality results.
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2.2. Signal classification problems
The two measures of false discovery lead to two different signal classification problems.

Definition 1 (total). Under total error, find the δ that

maximizes TETP.δ/ subject to TMFDR.δ/�α .4/

for a given error level 0 <α< 1.

Definition 2 (set specific). Under set-specific error, find the δ that

maximizes TETP.δ/ subject to SMFDRk.δ/�αk, for k =1, : : : , K, .5/

for given error levels 0 <α1, : : : , αK < 1.

When K =1, i.e. S1 is the only set of signal classes of interest, problems (4) and (5) coincide.
In this case, signal classification reduces to the usual multiple-testing framework, albeit with
non-standard null and alternative distributions, and some special cases have been previously
studied (Andreassen et al., 2013; Chung et al., 2014; Heller and Yekutieli, 2014). In general,
however, these two problems can give different classification rules.

The advantage of problem (5) is that the different αk enable fine control over the different
types of misclassification errors. For example, if the X1i come from a study with a very large
sample size whereas the X2i come from a much smaller study, it may be desirable to choose a
more stringent αk when classifying features into class 1 of Table 2, as compared with class 2.
However, it may not always be clear how the αk should be chosen, so problem (4) offers total
error control at a single error level. It is straightforward to show that the optimal rule of problem
(5) is also a feasible solution to problem (4) at level α= maxk αk, though it may not maximize
the total expected true positives number in problem (4).

3. Proposed methods

3.1. Oracle procedures
Similarly to the two-groups model for a single sequence of multiple tests (Sun and Cai, 2007), let
the signal indicators .θ1i, θ2i/ be independent and identically distributed (IID) across features
i. Since in many applications the test statistics X1i and X2i arise from independent data sets,
assume that they are independent conditionally on θ1i and θ2i. Let Fj0.x/ and Fj1.x/ denote
the distribution functions of Xji conditionally on θji = 0 and θji = 1 respectively, where Fj0 is
known. Throughout, it will be assumed that Fj0 and Fji admit continuous density functions.
Then the test statistics .X1i, X2i/ are IID according to the four-group model

.X1i, X2i/
IID∼

3∑
l=0

πlF1l1F2l2 , .6/

where, for l∈{0, : : : , 3}, l1 equals the value of θ1i for signals in class l and l2 equals the value of θ2i.
For example, from Table 1, l=2 implies that l1 =1 and l2 =0. Finally, πl =P.θ1i = l1, θ2i = l2/.

It is easy to check that the total error control problem (4) is equivalent to maximizing

E

[
K∑

k=1

m∑
i=1

I.δi =k/{1−T OR
k .X1i, X2i/}

]

subject to

E

[
K∑

k=1

m∑
i=1

I.δi =k/{T OR
k .X1i, X2i/−α}

]
�0,
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where

T OR
k .x1, x2/=

∑
l �∈Sk

πlf1l1.x1/f2l2.x2/∑3
l=0 πlf1l1.x1/f2l2.x2/

.7/

and fj0 and fj1 are the densities corresponding to Fj0 and Fj1.
This optimization problem can be solved by minimizing the Lagrangian

LT .λ, δ/=
K∑

k=1

m∑
i=1

I.δi �=k/{1−T OR
k .X1i, X2i/}+

K∑
k=1

m∑
i=1

λI.δi =k/T OR
k .X1i, X2i/

−
K∑

k=1

m∑
i=1

λI.δi =k/α,

since any δ that minimizes LT .λ, δ/ conditionally on the observed test statistics will also min-
imize E{LT .λ, δ/}. This LT .λ, δ/ can be regarded as a generalized loss function consisting of
three terms:

(a) the cost of misclassifying a signal into the null class S0,
(b) the cost, weighted by λ, of misclassifying a signal into a class of interest, and
(c) the benefit of identifying features as signals, i.e. −λΣI.δi �=0/.

In this sense, the solution based on LT .λ, δ/ can be regarded as a generalization of the compound
decision theoretic treatment of false discovery rate control, proposed by Sun and Cai (2007), to
signal classification.

For any λ>0, define the classification rule δλ
T = .δλ

T 1, : : : δλ
Tm/ to be the minimizer of LT .λ, δ/,

where the ith component of δλ
T is defined as

δλ
Ti = arg min

k∈{0,:::,K}
∑

k′∈{1,:::,K},k′ �=k

[{1−T OR
k′ .X1i, X2i/}+λ{T OR

k′ .X1i, X2i/−α}]: .8/

The following result characterizes the behaviour of δλ
T .

Proposition 1. Suppose that the continuous test statistics .X1i, X2i/ are IID according to the
four-group model (6), and max

l∈⋃K
k=1 Sk

πl > 0. Then, for δλ
T defined as in equation (8),

(a) δλ
T minimizes E{LT .λ, δ/};

(b) let NOR
T .λ/=E[ΣK

k=1I.δλ
Ti =k/{T OR

k .X1i, X2i/−α}] and define

λÅ = inf{λ : NOR
T .λ/�0}:

If NOR
T .0/�0 holds, then NOR

T .λÅ/=0.

Remark 2. The condition max
l∈⋃K

k=1 Sk
πl > 0 in proposition 1 ensures that at least one of

the signal classes of interest contains a non-zero proportion of features. Intuitively, an optimal
decision rule should make the most of the misclassification error that it is allowed, to maximize
the number of discoveries that it makes. In other words, δλ

T should achieve TMFDR =α. The
quantity NOR

T .λ/ in proposition 1 derives from the constraint on TMFDR and can be inter-
preted as a measure of how much of the allotted misclassification error has not been used up by
δλ

T . It can be shown that NOR
T .λ/ is non-increasing in λ, so NOR

T .0/ < 0 would imply that, for
some values of α, there may not be any λ such that TMFDR.δλ

T / exactly attains α. Thus the as-
sumption NOR

T .0/�0 is necessary to ensure that the nominal level α can be achieved exactly by
some λ.
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The oracle procedure δÅ
T = .δÅ

T 1, : : : , δÅ
Tm/ for the total error control problem (4) can now be

defined. Theorem 1 shows that δÅ
T achieves the largest total expected true positives number

among all rules that control the total marginal false discovery rate.

Theorem 1. Suppose that the continuous test statistics .X1i, X2i/ are IID according to the
four-group model (6) and that max

l∈⋃K
k=1 Sk

πl > 0. With δλ
Ti and λÅ defined in proposition 1,

define

δÅ
T = .δλÅ

T 1, : : : , δλÅ

Tm/:

If α satisfies NOR
T .0/�0 from proposition 1, part (b), then:

(a) TMFDR.δÅ
T /=α;

(b) for any other classification rule δ that satisfies TMFDR.δ/�α,

TETP.δÅ
T /�TETP.δ/:

Similarly, the constraints in the set-specific error control problem (5) can be equivalently
expressed as

E

[
m∑

i=1
I.δi =k/{T OR

k .X1i, X2i/−αk}
]

�0 for k =1, : : : , K,

so problem (5) can be solved by minimizing the Lagrangian

LS.λ, δ/=
K∑

k=1

m∑
i=1

I.δi �=k/{1−T OR
k .X1i, X2i/}+

K∑
k=1

m∑
i=1

λkI.δi =k/{T OR
k .X1i, X2i/−αk}:

For any λ= .λ1, : : : , λK/ with λk > 0, define the classification rule δλ
S = .δλ

S1, : : : , δλ
Sm/ where

δλ
Si = arg min

k∈{0,:::,K}
∑

k′∈{1,:::,K},k′ �=k

[{1−T OR
k′ .X1i, X2i/}+λk{T OR

k .X1i, X2i/−αk}]: .9/

An analogue to proposition 1 can be obtained to characterize δλ
S .

Proposition 2. Suppose that the continuous test statistics .X1i, X2i/ are IID according to the
four-group model (6), and maxl∈Sk

πl > 0 holds for all k ∈{1, : : : , K}. Then for δλ
S defined as in

equation (9):

(a) δλ
S minimizes E{LS.λ, δ/};

(b) let NOR
k .λ/=E[I.δλ

Si =k/{T OR
k .X1i, X2i/−αk}] and define

λ̌k,n = inf{λk � λ̌k,n−1 : NOR
k .λ̌k,n−1/�0}, k =1, : : : K,

where n�1, λ̌k,0 =∞ and λ̌k,n−1 is the λ with λk′ = λ̌k′,n−1, k′ �=k. Suppose that αk +αk′ �
1 holds for any k �= k′ ∈{1, : : : , K}, and 0 ∈{.NOR

1 .λ/, : : : , NOR
K .λ// :λ∈{�+ ∪ {0}}K}.

Then, the sequence {λ̌k,n, n�1} is convergent and NOR
k .λÅ/=0 for all k =1, : : : , K where

λÅ = .λÅ
1 , : : : , λÅ

K/ and λÅ
k = limn→∞ λ̌k,n.

Remark 3. The condition maxl∈Sk
πl > 0 in proposition 2 ensures that each signal class of

interest contains a non-zero proportion of features. Proposition 2, part (b), plays the same role
as the condition on NOR

T .0/ in proposition 1, part (b). In the set-specific error control problem
(5), not all error levels α1, : : : , αK correspond to a λ such that SMFDRk.δλ

S / attains αk for all
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k =1, : : : , K. The restriction that αk +αk′ < 1 for any k �=k′ ∈{1, : : : , K} is mild since it includes
a wide range of choices for α. For example, it allows 0�αk � 1

2 , k =1, : : : , K, which is adequate
for many applications.

The oracle δÅ
S = .δÅ

S1, : : : , δÅ
Sm/ for the set-specific error control problem (5) can now be defined.

Theorem 2 shows that δÅ
S achieves the largest total expected number of true positive findings

among all rules that control the set-specific marginal false discovery rates.

Theorem 2. Suppose that the continuous test statistics .X1i, X2i/ are IID according to the
four-group model (6), and maxl∈Sk

πl >0 holds for all k∈{1, : : : , K}. With δλÅ

Si and λÅ defined
in proposition 2, define

δÅ
S = .δλÅ

S1 , : : : , δλÅ

Sm/:

If α1, : : : , αK satisfy the conditions in proposition 2, part (b), then:

(a) SMFDRk.δÅ
S /=αk for k =1, : : : , K;

(b) for any other classification rule δ that satisfies SMFDRk.δ/�αk, k =1, : : : , K,

TETP.δÅ
S /�TETP.δ/:

When class 3 is the only class of interest, the two oracle methods that are described in theorems
1 and 2 are identical to the oracle method that was proposed by Heller and Yekutieli (2014).
Otherwise, they are different for more general signal classification problems, which will be
further explored in simulations in Section 4.

3.2. Data-driven procedures
The oracle procedures that were described in the previous section cannot be implemented in
practice because they are functions of T OR

k .X1i, X2i/ defined in equation (7), which depends
on the unknown mixture proportions πl and non-null densities fj1. However, the T OR

k can be
estimated by first defining the marginal proportions πjlj =P.θji = lj/ and the marginal densities
fj.x/=πj0fj0.x/+πj1fj1.x/ and rewriting

T OR
k .x1, x2/=

∑
l �∈Sk

{πl=.π1l1π2l2/}{π1l1f1l1.x1/=f1.x1/}π2l2f2l2.x2/=f2.x2/∑3
l=0{πl=.π1l1π2l2/}{π1l1f1l1.x1/=f1.x1/}π2l2f2l2.x2/=f2.x2/

:

Next, estimates π̂j1 and π̂j0 = 1 − π̂j1 for the marginal proportions can be obtained by ap-
plying the method of Jin and Cai (2007) to the statistics Φ−1{Fj0.Xji/}, and estimates f̂ j.x/

of the marginal densities can be obtained by using standard kernel-based methods (Silverman,
1986) with the rule-of-thumb bandwidth. The likelihood ratios πjlj fjlj .xj/=fj.xj/, j = 1, 2, in
T OR

k .x1, x2/ can then be estimated. In practice, each estimated likelihood ratio is set equal to 1
if its calculated value exceeds 1. In some cases, the collected sample could be contaminated and
hence the standard kernel density estimator may not work very well. In these situations, robust
kernel density estimation (Kim and Scott, 2012) would be a good choice because it enjoys simi-
lar theoretical properties to those of the standard kernel density estimator. Finally, an estimate
1 − π̂0 of 1 − P.θ1i = 0, θ2i = 0/ can be obtained by applying the method of Jin and Cai (2007)
to the statistics

Φ−1.Gχ2,2[Φ−1{F10.X1i/}2 +Φ−1{F20.X2i/}2]/,



716 D. Xiang, S. D. Zhao and T. T. Cai

where Gχ2,2 is the distribution function of a χ2 random variable with 2 degrees of freedom, and
estimates of the other πl can be calculating by using π̂0 and the π̂jlj . The above estimates can
then be inserted into T OR

k to give the plug-in statistic T̂ k, which is set equal to 1 if its calculated
value exceeds 1.

The data-driven procedure that solves the total error control problem (4) can be constructed as
follows. First define δ̂

λ
Ti to be the solution to the total error minimization problem (8) with T̂ k in

place of T OR
k . Next, define N̂T .λ/=m−1Σm

i=1Σ
K
k=1I.δ̂

λ
Ti =k/{T̂ k.X1i, X2i/−α}. This expression

can be simplified because it can be seen from the definition of the oracle total error control rule
(8) that for k =1, : : : , K

I.δ̂
λ
Ti =k/= I

(
T̂ k �α+ 1−α

λ+1
, T̂ k′ < min

k′ �=k
T̂ k′

)
:

Thus the I.δ̂
λ
Ti = k/ in N̂T .λ/ can be replaced with the right-hand side of the above equation.

Finally define

λ̂
Å = inf{λ : N̂T .λ/�0}: .10/

Then the data-driven classification rule that solves problem (4) is defined to be

δ̂
Å
T = .δ̂

λ̂
Å

T 1, : : : , δ̂
λ̂

Å

Tm/,

and a simple algorithm for its calculation is presented in Table 3, which is similar to multiple-
testing procedures that use local false discovery rates (Sun and Cai, 2007).

Theorem 3 shows that the data-driven δ̂
Å
T is asymptotically valid and optimal.

Theorem 3. Suppose that all the assumptions in theorem 1 hold. Assume that fj, j =1, 2, are
continuous and positive on the real line, and that the second derivative satisfies

∫
.f ′′

j /2dxj <

∞. Let π̂jl, π̂k and f̂ j be the estimates of πjl, πk and fj, for j =1, 2, l=0, 1 and k =0, 1, 2, 3
such that the following conditions hold.

Condition 1. π̂jl →p πjl, j =1, 2, l=0, 1, and π̂k →p πk, k =0, 1, 2, 3, as m→∞.

Condition 2. E‖f̂ j −fj‖→0, j =1, 2, as m→∞.

Then

(a) TMFDR.δ̂
Å
T /=α+o.1/, and

(b) TETP.δ̂
Å
T /=TETP.δÅ

T /=1+o.1/.

Remark 4. Conditions 1 and 2 are mild. Jin and Cai (2007) showed that the estimates
π̂j1 and 1 − π̂0 provided above converge in probability to πj1 and 1 − π0 respectively, and it
is straightforward to check that the proposed π̂k satisfy condition 1 as well. Silverman (1986)
showed that the standard kernel density estimate f̂ j.x/ enjoys the property that E‖f̂ j −fj‖2 →0
when the observations are IID, satisfying condition 2.

Table 3. Data-driven algorithm for total error control

Let T̂ min.x1, x2/=mink T̂ k.x1, x2/, and let T̂
.i/
min be the ordered statistics T̂ min.x1i, x2i/ and δ̂

Å
T.i/, T

.i/
k be the

corresponding decision functions and testing statistics: define r =max{j : .1=j/Σj
i=1T̂

.i/
min �α}; then,

δ̂
Å
T.i/ =

{
k, i� r and T̂

.i/
min = T̂

.i/
k ,

0, i>r
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The data-driven rule that solves the set-specific error control problem (5) can be similarly
developed. Let δ̂

λ
Si be the solution to the set-specific error minimization problem (9) with T̂ k

in place of T OR
k and N̂k.λ/= .1=m/Σm

i=1I.δ̂
λ
Si = k/{T̂ k.x1i, x2i/−αk} and construct a sequence

{λ̂k,n, n�1} that satisfies

λ̂k,n = inf{λ� λ̂k,n−1 : N̂k.λ̂k,n−1/�0}, .11/

where λ̂k,0 = ∞, λ̂k,n−1 is the λ with λk = λ and λk′ = λ̂k′,n−1 for k′ �= k. The proof that the
sequence {λ̂k,n, n�1} converges is similar to the convergence proof for the sequence {λ̌k,n, n�1}
from proposition 2. Let λ̂

Å
k be the value to which {λ̂k,n, n�1} converges. Then the data-driven

procedure that solves problem (5) can be defined as

δ̂
Å
S = .δ̂

λ̂
Å

S1, : : : , δ̂
λ̂

Å

Sm/,

where λ̂
Å = .λ̂

Å
1 , : : : , λ̂

Å
K/.

A fast algorithm for calculating δ̂
Å
S is provided in Table 4, which shows that the algorithm

can be regarded as a stagewise multiple-testing procedure for identifying set-specific signals,
i.e. in each stage, or each iteration of steps 2 and 3, a two-class multiple-testing procedure is
performed for each of the K sets of interest in turn. This process terminates when the estimated
threshold sequences converge.

Theorem 4 shows that the data-driven δ̂
Å
S is asymptotically valid and optimal.

Theorem 4. Suppose that all the assumptions in theorems 2 and 3 hold. Then, for all k ∈
{1, : : : , K},

(a) SMFDRk.δ̂
Å
S /=αk +o.1/, and

(b) TETP.δ̂
Å
S /=TETP.δÅ

S /=1+o.1/.

3.3. Adjusted separate discovery procedure
As described in Section 1.2, a common existing approach to signal classification is the separate
discovery procedure. If Pji is the p-value of the ith feature in sequence j, this procedure would
set δi =1 if P1i >c1 and P2i �c2, δi =2 if P1i �c1 and P2i >c2, and δi =3 if P1i �c1 and P2i �c2,
for some cut-offs cj such that the marginal false discovery rate for sequence j attains αj. The
separate discovery procedure cannot control TMFDR and SMFDR at desired nominal levels.
This cannot be remedied by merely choosing different values for αj; the key difficulty is that the
non-discovery classifications in each sequence are unreliable.

This section proposes an adjusted separate discovery procedure that can provide valid control
of the two types of misclassification error that are introduced in this paper. For illustration, the

Table 4. Data-driven algorithm for set-specific error control

Step 1: let T̂
.i/
k be the ordered statistics T̂ k.x1i, x2i/ and determine the initial threshold vector λ= .λ1,: : : ,λK/

where, for each k ∈{1,: : : , K}, λk = .1−αk/=.T̂
.rk/
k −αk/−1, and rk =max{j : .1=j/Σj

i=1T̂
.i/
k �αk}

Step 2: for each k, calculate N̂k.λ/ and N̂k.λ̃k,rk+1/ where λ̃k,j = .λ̃1,j ,: : : , λ̃K,j/ with λ̃k,j = .1−αk/=.T̂
.j/
k −αk/−1

and λ̃k′,j =λk′ , k′ �=k: if N̂k.λ/�0 and N̂k.λ̃rk+1/> 0 hold for all k, λ is the desired threshold vector;
otherwise go to step 3

Step 3: let r̃k =max{j � rk : N̂k.λ̃k,j/�0} and reset rk = r̃k : then, update the λ in step 1 and repeat steps 2 and 3
until this loop is terminated; the λ in the last iteration is the desired λ̂

Å

Step 4: apply λ̂Å to equation (9) with T̂ k in place of T OR
k to obtain the classification rule δ̂Å

S = .δ̂Å
S1,: : : , δ̂Å

Sm/
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K = 3 setting is considered below. The main idea is to employ different cut-offs for each set of
classes of interest. Specifically, set δi =1 if P1i >c11 and P2i �c12, δi =2 if P1i �c21 and P2i >c22,
and δi =3 if P1i �c31 and P2i �c32, where the ckj can all be unequal. Then the separate discovery
procedure can be adjusted by finding the ckj such that Σm

i=1I.δi = k/{T̂ k.x1i, x2i/ −αk}≈ 0 for
the set-specific error control problem, and Σm

i=1Σ
K
k=1I.δi = k/{T̂ k.x1i, x2i/−α}≈0 for the total

error control problem. This new procedure may lead to some features being classified into more
than one set of interest. Section C in the on-line supplementary file provides an algorithm to
find the cut-offs, as well as details for resolving overlapping classifications.

This adjusted separate discovery procedure can approximately control the different misclas-
sification errors. However, unlike the other procedures that are proposed in this paper, it is
computationally intensive and its cut-offs are not optimal in the sense of having the largest
TETP-values.

4. Simulations

This section investigates the numerical performances of the proposed oracle and data-driven
procedures. Pairs of test statistics .X1i, X2i/ for i=1, : : : , m were generated for m=20000 features
according to the four-group model (6), with class labels defined as in Table 1. Specifically, the
null and alternative density functions were

fj0.x/=φ.x/,

fj1.x/=φ

(
x−μj

σj

)

for sequences j =1, 2, where φ.x/ is the standard normal density. The signal standard deviation
σj was set to 4=101=2 throughout whereas the mean signal strength μj, signal proportions and
nominal total or set-specific marginal false discovery rates were varied across simulation settings.
All settings were simulated 200 times.

The following procedures were compared:

(a) the oracle and data-driven procedures for the total and set-specific error control problems
proposed in this paper;

(b) the method of Heller and Yekutieli (2014) (though originally developed to classify features
into either S0 ={0, 1, 2} or S1 ={3}, it can easily be modified to accommodate any set S1;
however, it cannot be extended to the general classification problem when there is more
than one set of classes of interest);

(c) the unadjusted separate discovery approach based on p-values, described in Section 1.2
(for the total error control problem, the error levels in each individual sequence were all
set to equal the desired nominal total marginal false discovery rate (2); for the set-specific
error control problem, the error levels in each individual sequence were all set to equal the
average of the desired nominal set-specific marginal false discovery rates; in each sequence,
the procedure of Genovese and Wasserman (2004) was used to control the marginal false
discovery rate, which is asymptotically equivalent to the false discovery rate of Benjamini
and Hochberg (1995));

(d) the adjusted separate discovery approach based on p-values, given in Section 3.3.

Four sets of simulations were conducted. The first setting considered total marginal error
control for the binary classification problem of identifying features that are only significant in
one of the two studies, in other words classifying features into either S0 ={0, 3} or S1 ={1, 2}.
The signal strengths μ1 and μ2 were varied between 2.8 to 3.7, signal proportions were set as
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.π00, π01, π10, π11/= .0:8−h, h, h, 0:2−h/ for h varying between 0.05 and 0.1, and nominal total
marginal false discovery rates (2) were varied between 0.05 and 0.2.

Results in Fig. 1 show that the oracle, data-driven and adjusted separate discovery methods
could all control the total marginal false discovery rate at the desired nominal level; the unad-
justed separate discovery procedure was not. Among the former, the oracle procedure had the
most power, as expected, but the data-driven procedure performed almost as well. The method
of Heller and Yekutieli (2014) was slightly too liberal in controlling the false discovery rate when
the signals were weak and there were few signals in S1, but otherwise it performed as well as
the proposed data-driven procedure in most situations. With stronger signals, more signals in
S1 and higher nominal total marginal false discovery rates, all methods increased in power, and
the difference between the oracle and data-driven procedures decreased.

The second simulation setting also considered total marginal error control, but for classi-
fying signals into either S0 = {0}, S1 = {1}, S2 = {2} or S3 = {3}. All parameters were set as
in the previous simulation setting except with .π00, π01, π10, π11/ = .1 − h, h=3, h=3, h=3/ for h

varying between 0.06 and 0.36. The method of Heller and Yekutieli (2014) cannot be applied to
this multiclass problem, but the other methods followed the same trends as before, as shown in
Fig. 2.

The next set of simulations studied the set-specific error control for this multiclass classifica-
tion problem. Signal strengths were varied between 2.8 and 3.7, signal proportions were set to
.π00, π01, π10, π11/ = .1 − h, h=3, h=3, h=3/ with h varying between 0.06 and 0.36, and nominal
set-specific marginal false discovery rates αk (3) were varied between 0.05 and 0.2. For simplic-
ity, all αk were set to be equal for k = 1, : : : , 3. Results are plotted in Fig. 3. The oracle and
data-driven procedures again had nearly the same performance and uniformly dominated the
adjusted separate discovery procedure. The unadjusted separate discovery procedure could not
control the set-specific misclassification errors for all the sets of interest.

The fourth set of simulations explored the relationship between the total (4) and set-specific
(5) error control problems for the multiclass problem with sets Sk ={k} for k =0, : : : , 3. Signal
strengths were either set equal to μ in both sequences, or to μ − 1 in sequence 1 and μ + 1
in sequence 2, with μ varying between 4 and 5. This second setting models cases where the
test statistics arise from studies with very different sample sizes. Test statistics from the smaller
study will tend to have weaker effect sizes, corresponding to sequence 1. Signal proportions
among the sets Sk of interest were either uniform, with .π00, π01, π10, π11/= .0:7, 0:1, 0:1, 0:1/,
or non-uniform, equal to .0:7, 0:05, 0:05, 0:2/.

Figs 4(a)–4(c) report the empirical set-specific false discovery rates of the oracle total error
control procedure when the nominal total error was set to 0.1. In general, signals that were
unique to sequence 1, belonging to set S2, were more difficult to discover compared with signals
that were unique to sequence 2, belonging to S1. The realized set-specific marginal false discovery
rate was always higher for S2 than for S1, and this difference increased as the signal strengths
and the non-uniformity of the signal proportions increased. Furthermore, Figs 4(d)–4(f) show
that the average number of features correctly assigned to S2 was also typically smaller than the
number that was correctly assigned to S1 when the signal strength is weak and finally became
larger than the number that was correctly assigned to S2 when the signal strength increased.
These results motivate the proposed set-specific error control procedure.

Figs 4(g)–4(i) report the empirical total false discovery rates of the oracle set-specific error
control procedure, where the nominal set-specific errors were set to α1 = α2 = α3 = 0:1, α1 =
2α2 =α3=2=0:1, or the set-specific errors that were induced by the oracle total control procedure
with α=0:1. These plots show that the oracle set-specific procedure could also control the total
error when all αk equalled the desired total nominal level, or when they equalled the induced
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Fig. 3. Set-specific marginal false discovery rate control for classifying signals into S0 D {0}, S1 D {1},
S2 D {2} or S3 D {3} for independent test statistics (because of symmetry (α1 D α2 D α3), plots of the
set-specific marginal false discovery rate for classification into S2 are identical to those for classification
into S1 and therefore have been omitted; smFDR, empirical set-specific marginal false discovery rate (3);
tETP, empirical total expected true positives number (1)) ( , oracle set-specific error control procedure from
theorem 2; , data-driven set-specific error control procedure from theorem 4; , separate discovery proce-
dure; adjusted separate discovery procedure from Section 3.3): (a) h D 0.3, α1 D 0.1; (b) h D 0.3, α1 D 0.1;
(c) h D 0.3, α1 D 0.1; (d) μ D 3.6, α1 D 0.1; (e) μ D 3.6, α1 D 0.1; (f) μ D 3.6, α1 D 0.1; (g) μ D 3.6, h D 0.3; (h)
μD3.6, hD0.3; (i) μD3.6, hD0.3

error levels. With uniform signal proportions, the oracle set-specific procedure controlled the
total error at roughly the average of the nominal set-specific errors.

Figs 4(i)–4(j) report the realized average true positives number for both the total and the set-
specific oracle procedures. For the former, the nominal total error was set to 0.1. For the latter, to
conduct a fair comparison the nominal set-specific errors were set to be either α1 =α2 =α3 =0:1,
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Fig. 4. Comparison of total and set-specific error control problems for classifying signals into S0 D {0},
S1 D {1}, S2 D {2} or S3 D {3} (smFD, empirical set-specific marginal false discovery rate (3); smFDRk ,
smFDR for class k D1, 2, 3; tmFDR, empirical total marginal false discovery rate (2); OR T, oracle procedure
from theorem 1 with αD0:1; OR S, oracle set-specific error control procedure from theorem 2; OR S1, OR S
procedure with α1 Dα2 Dα3 D 0:1; OR S2, OR S procedure with α1 D 2α2 Dα3=2 D 0:1; OR S3, OR S pro-
cedure with the nominal set-specific errors induced by the OR T procedure): (a) OR T, μ1 Dμ2 Dμ, uniform;
(b) OR T, μ1 C1Dμ2 �2Dμ, uniform; (c) OR T, μ1 C1Dμ2 �2Dμ, non-uniform; (d) OR T, μ1 Dμ2 Dμ, uni-
form; (e) OR T, μ1 C1Dμ2 �2Dμ, uniform; (f) OR T, μ1 C1Dμ2 �2Dμ, non-uniform; (g) OR S, μ1 Dμ2 Dμ,
uniform; (h) OR S, μ1 C 1 D μ2 � 2 D μ, uniform; (i) OR S, μ1 C 1 D μ2 � 2 D μ, non-uniform; (j) μ1 D μ2 D μ,
uniform; (k) μ1 C1Dμ2 �2Dμ, uniform; (l) μ1 C1Dμ2 �2Dμ, non-uniform
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or to be the set-specific errors induced by running the oracle total control procedure at α=0:1.
The plots show that the oracle set-specific error control procedure with induced error levels
was as powerful as the oracle total error procedure, and more powerful than when α1 =α2 =
α3 =0:1. This trend was more pronounced with larger signal strengths and non-uniform signal
proportions.

Finally, the number of the features m also affected the performance and variability of the
procedures proposed. Larger m gave more accurate data-driven procedures that were closer to
their corresponding oracles. Details and additional simulation results are provided in section D
of the on-line supplementary material.

5. Application to psychiatric genetics

The methods proposed were applied to study the genetic architectures of bipolar disorder and
schizophrenia. A better understanding of the genetic differences and similarities between these
diseases could lead to more effective diagnosis and treatment. To explore this question, Ruderfer
et al. (2014) performed two large genomewide association studies: one of bipolar disorder, with
10410 cases and 10700 controls, and the other of schizophrenia, with 9369 cases and 8723
controls. These studies comprised completely independent samples with no shared controls.
Summary z-scores are available from the web site of the Psychiatric Genomics Consortium.
The data were first preprocessed by pruning the single-nucleotide polymorphisms (SNPs) at a
linkage disequilibrium r2 threshold of 0.5, using genotype data from the ‘1000 genomes project’
(1000 Genomes Project Consortium, 2015) as a reference panel. 439040 variants remained after
pruning.

The data-driven total error control procedure was first applied to classify these SNPs into
sets S0, containing SNPs that were not significant in either study, S1, containing SNPs that
were associated only with schizophrenia, S2, containing SNPs that were associated only with
bipolar disorder, and S3, containing SNPs that were significant in both studies. The nominal
total marginal false discovery rate was set to 0.05. The first row of Table 5 reports the number
of SNPs that were classified into each of the three classes. The majority of the discovered SNPs
were classified into S3, which is consistent with previous work showing that bipolar disorder
and schizophrenia have closely related genetic aetiologies (Huang et al., 2010; Cross-Disorder
Group of Psychiatric Genomics Consortium, 2013a, b).

In some cases, however, SNPs in S3 may not be of primary interest. For example, SNPs in
S1 or S2 are more useful than SNPs in S3 for developing more accurate diagnostic procedures
to differentiate patients with bipolar disorder from those with schizophrenia. Currently this
differential diagnosis is difficult to perform, especially in the early stages of these disorders

Table 5. Number of SNPs from Ruderfer et al. (2014)
classified into different sets of interest†

Method Marginal false discovery S1 S2 S3
rate

Total α=0:05 2 1 54
Set specific α1 =0:1,α2 =0:1,α3 =0:01 4 2 8

†S1, SNPs associated only with schizophrenia; S2, SNPs
associated only with bipolar disorder.
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Table 6. SNPs from Ruderfer et al. (2014) classified as being disease specific,
using the set-specific error control procedure with α1 Dα2 D0:1 and α3 D0:01†

Results for class S1 Result for class S2

SNP BIP SCZ SNP BIP SCZ

rs9273012 0.5391 5.2989 rs13166360 4.9054 −0:4711
rs1977 1.5329 5.0143 rs9788865 5.3086 1.0716
rs6932590 1.9759 5.2021
rs1150753 1.3222 4.9154

†S1, SNPs significantly associated only with schizophrenia; S2, SNPs significantly
associated only with bipolar disorder; BIP, Z-score for bipolar disorder; SCZ, Z-score
for schizophrenia.

(Ruderfer et al., 2014). To address this problem, capturing SNPs that belong to S1 and S2 is
more important than finding SNPs in S3, though all three classes remain of interest.

The proposed set-specific error control procedure can be applied to this type of setting. To
illustrate, the method was applied with nominal set-specific marginal false discovery rates set
to 0.10 for S1 and S2 and to 0.01 for S3. The more liberal thresholds for S1 and S2 enable the
discovery of more SNPs that are potentially diagnostically useful and are offset by the more
stringent threshold for S3. The second row of Table 5 shows that more disease-specific SNPs
were indeed detected.

These SNPs, along with their Z-scores for the two diseases, are reported in Table 6. The four
SNPs that are specific to schizophrenia are all on chromosome 6 inside the major histocom-
patibility region, which indicates that the immune system might be differentially involved in
schizophrenia; this is consistent with conclusions of Ruderfer et al. (2014). In contrast, SNPs
rs13166360 and rs9788865, which have been found to be specific to bipolar disorder, are on
chromosomes 5 and 16 respectively. The former is a coding SNP in the adenylyl cyclase type
2 gene (Mühleisen et al., 2014) and thus indicates that cyclic adenosine monophosphate sig-
nalling may differ between the two diseases. The latter SNP appears to regulate levels of a long
non-coding ribonucleic acid (Lonsdale et al., 2013), which may point to a new mechanism of
action in bipolar disorder.

6. Dependent test statistics

Procedures that were developed in Section 3 rely heavily on the independence assumption, but
test statistics in multiple-comparison problems can be dependent. This section further extends
the proposed procedures to allow the test statistics Xji within each sequence j to be correlated.
Thus, the four-group model that is considered here turns out to be

Xj|θj ∼Fj.·|θj/, j =1, 2,

.θ1i, θ2i/
IID∼

3∑
l=0

πlθ
l1
1i.1−θ1i/

1−l1θ
l2
2i.1−θ2i/

1−l2 , i=1, : : : , m, .12/

where Xj = .Xj1, : : : , Xjm/, θj = .θj1, : : : , θjm/, X1 is independent of X2 and θ2, X2 is independent
of X1 and θ1, and Fj.·|θj/ is the joint distribution function of Xj conditional on θj.

The oracle procedures for the total and set-specific misclassification error control problems
are now based on the oracle statistic
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T ORC
ki =

∑
l �∈Sk

πlf1.X1|θ1i = l1/f2.X2|θ2i = l2/∑3
l=0 πlf1.X1|θ1i = l1/f2.X2|θ2i = l2/

.13/

where fj.Xj|θji = lj/ is the density corresponding to the distribution of Xj conditionally on
θji = lj, j =1, 2. For any λ>0, define the total error classification rule δλ

T = .δλ
T 1, : : : , δλ

Tm/ where

δλ
Ti = arg min

k∈{0,:::,K}
∑

k′∈{1,:::,K},k′ �=k

{.1−T ORC
ki /+λ.T ORC

ki −α/}: .14/

Similarly, for any λ = .λ1, : : : , λK/ with λk > 0, define the set-specific error classification rule
δλ

S = .δλ
S1, : : : , δλ

Tm/ where

δλ
Si = arg min

k∈{0,:::,K}
∑

k′∈{1,:::,K},k′ �=k

{.1−T ORC
ki /+λk.T ORC

ki −αk/}: .15/

Properties of these oracle estimators are given by the following theorem, whose proof is similar
to those of theorems 1 and 2.

Theorem 5. Suppose that the continuous test statistics X1 and X2 are generated from the
four-group model (12), and let δλ

T and δλ
S be defined as in equations (14) and (15) respectively.

(a) For any λ> 0, let NORC
T .λ/=E{ΣK

k=1I.δλ
Ti =k/.T ORC

ki −α/} and define

λÅ = inf{λ : NORC
T .λ/�0}:

If max
l∈⋃K

k=1 Sk
πl > 0 and NORC

T .0/�0 hold, then:

(i) TMFDR.δÅ
T /=α;

(ii) for any other classification rule δ that satisfies TMFDR.δ/�α,

TETP.δÅ
T /�TETP.δ/:

(b) For any λ, let NORC
k .λ/=E{I.δλ

Si =k/.T ORC
ki −αk/} and

λ̌k,n = inf{λk � λ̌k,n−1 : NORC
k .λ̌k,n−1/�0}, k =1, : : : , K,

where n � 1, λ̌k,0 =∞, λ̌k,n−1 is the λ with λk′ = λ̌k′,n−1, k′ �= k, and λÅ = limn→∞ λk,n.
If αk + αk′ � 1 for any k �= k′, 0 ∈ {.NORC

1 .λ/, : : : , NORC
K .λ// : λ ∈ {�+ ∪ {0}}K}, and

maxl∈Sk
πl > 0 for all k ∈{1, : : : , K}, then:

(i) SMFDRk.δÅ
S /=αk for k =1, : : : , K;

(ii) for any other classification rule δ that satisfies SMFDRk.δ/�αk, k =1, : : : , K,

TETP.δÅ
S /�TETP.δ/:

Because of the computational challenge of calculating fj.Xj|θji = lj/ and fj.Xj/, it can be
difficult to obtain the joint oracle statistics T ORC

ki in equation (13) for Xj with arbitrary cor-
relation. In these settings, theorem 5 is only of theoretical significance and cannot be used to
develop data-driven procedures. However, prior information on correlation between features
is sometimes known in practice. In particular, short-range dependence is one such informative
structure for characterizing correlation between features within a sequence and has been widely
employed for solving various practical problems, e.g. Xie et al. (2011).

The following results develop data-driven versions of the oracle procedures when test statistics
follow a multivariate normal model with a short-range dependence covariance structure. First,
proposition 3 shows that when the Xj are multivariate normal conditionally on θj, j =1, 2, under
some mild conditions the computational complexity can be reduced by ignoring the correlation
entirely. Specifically, the fj.Xj|θji = lj/s in T ORC

ki will be substituted with their corresponding
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marginal version fjlj .Xj/s, i.e. the marginal oracle statistics T OR
k .X1i, X2i/ in equation (7) can

be used to approximate the T ORC
ki .

Proposition 3. Suppose that the continuous test statistics X1 and X2 are generated from the
four-group model (12). Define T OR

k .X1i, X2i/ as in equation (7) and T ORC
ki as in equation (13).

Assume that the following conditions hold.

Condition 3. The proportions πl satisfy cm−τ1 �πl=πl′ � cmτ1 for all l �= l′ for some constant
0 < τ1 < 1 and c> 0.

Condition 4. The random vector Xj|μj, θj ∼ N.μj ◦ θj, Σj/ where μj ◦ θj = .μj1θj1, : : : ,
μjmθjm/, j = 1, 2. Here μj is a random vector, with each μji independently follow-
ing a distribution Gj.·/, satisfying, for some constant τ2 > τ1, Gj[

√{2τ2 log.m/}] −
Gj[−√{2τ2 log.m/}]=0.

Condition 5. The covariance matrices Σj, j = 1, 2, are both positive definite with diagonal
elements equal to 1.

Then, for all ε> 0 and for all i=1, : : : , m and k =1, : : : , K,

lim
m→∞ P{|T ORC

ki −T OR
k .X1i, X2i/|> ε}=0: .16/

Remark 5. Conditions 3–5 are mild and very similar to assumptions (A)–(C) in Xie et al.
(2015).

With the result of proposition 3, it is reasonable to conjecture that the data-driven procedure
that was proposed in Section 3 may be still useful. Theorem 6 in what follows confirms this and
shows that the data-driven procedure is asymptotically valid and optimal under the condition
that the dependences are short range.

Theorem 6. Suppose that all the assumptions in theorem 5 and proposition 3 hold, and that
the marginal density function fj is continuous and positive on the real line, and that its second
derivative satisfies

∫
.f

′′
j /2dxj <∞, j =1, 2. Furthermore, assume that condition 1 holds and

that the following condition holds.

Condition 6. The covariance matrices Σj obey σj,ik = 0 wherever |i − k| � mτ for some
constant 0 < τ < 1, where σj,ik is the ikth entry of Σj.
Then:

(a)
(i) TMFDR.δ̂

Å
T /=α+o.1/;

(ii) TETP.δ̂
Å
T /=TETP.δÅ

T /=1+o.1/;
(b)

(i) SMFDRk.δ̂
Å
S /=αk +o.1/, for all k ∈{1, : : : , K};

(ii) TETP.δ̂
Å
S /=TETP.δÅ

S /=1+o.1/.

Under short-range dependence, such as under condition 6 of theorem 6, the approach that
was proposed by Jin and Cai (2007), with slight modifications, ensures that condition 1 holds.
Meanwhile, these estimators attain their optimal rates of convergence. See Cai and Jin (2010)
for more detail. In addition, condition 6, combined with the assumption that the second
derivatives of the marginal densities are square integrable, implies condition 2 in theorems
3 and 4, leading to limm→∞ P{|T ORC

ki − T̂ k.X1i, X2i/| > ε} = 0 uniformly for all i and k. In
fact, f̂j can be written as f̂j = .1=mτ /Σmτ

b=1f̂jb, where f̂jb is a kernel estimator of fj based on
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Xjb = .Xjb,1, Xjb,2, : : : , Xjb,m1−τ /, with Xjb,k =Xj.k−1/mτ +b and b=1, : : : , mτ . Because of the in-
dependence of Xjb between components, it can be checked that E‖f̂jb −fj‖→0 as m→∞. Thus,
E‖f̂j −fj‖= .1=m2τ /Σmτ

b=1E‖f̂jb −fj‖→0 as m→∞. Simulation results in the on-line supple-
mentary material show that the data-driven procedure approximates the joint oracle procedure
very well and performs well with dependent test statistics.

7. Discussion

This paper studies signal classification for two sequences of test statistics. It introduces two new
criteria for measuring misclassification errors and proposes powerful procedures for controlling
these errors by using a generalized compound decision theoretic framework. It is shown that
the methods proposed are asymptotically optimal.

The methods were developed under the assumption that the test statistics are independent
across features, and Section 6 shows that they are robust to short-range dependence when
the test statistics are normally distributed. Developing a procedure for general distributions
and/or dependence structures is still an open problem. Moreover, the procedures proposed are
established under the assumption that the .θ1i, θ2i/s are mutually independent across i. However,
in some situations, .θ1i, θ2i/s may be correlated. For example, in microarray experiments, genes
belonging to the same biological pathway may share similar significance patterns and, in public
health surveillance studies, data from different time periods and locations are often serially or
spatially correlated. For a single sequence of test statistics, Sun and Cai (2009) developed an
optimal testing procedure using a hidden Markov model to model the dependence. This same
strategy, extended to a four-state hidden Markov model, could be fruitful for signal classification
problems and will be left for future study.

It is straightforward to extend the proposed procedures to more than two sequences of test
statistics. For example, considering three studies would allow for eight possible signal classes,
which can be accommodated by extending model (6) to have eight components instead of four.
The proposed oracle and data-driven procedures can then be modified accordingly. However,
the current implementation of these methods can grow unwieldy as the number of possible
signal classes increases. In addition, when domain knowledge, such as biological theory or
prior experimental results, are available, they can be used as prior information to weight the
observed test statistics, which can further improve the power of the procedures proposed. For
the single-data sequence, notable progress on weighting methods has been made (Roeder and
Wasserman, 2009; Roquain and van de Wiel, 2009; Basu et al., 2018; Ramdas et al., 2019).
However, it is unclear how these methods can be applied to multiple sequences of tests. These
issues will be further studied in future work.
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Appendix A: Proofs of some theoretical results

This section proves the theoretical results (proposition 2, theorem 2 and theorem 4) for only the set-specific
error control problem (5). The proofs on the total error control problem (4) (proposition 1, theorem 1 and
theorem 3) and others are provided in section A of the on-line supplementary file.

A.1. Proof of proposition 2

(a) To derive the oracle procedure that minimizes LS.λ, δ/ it suffices to minimize each of the terms

K∑
k=1

[I.δi �=k/{1−T OR
k .X1i, X2i/}+λkI.δi =k/{T OR

k .X1i, X2i/−αk}]

for i=1, : : : , m, which is achieved by δλ
Si defined in equation (9). Thus, for any δ ∈{0, 1}m,

LS.λ, δλ
T /�LS.λ, δ/,

where δλ
T = .δλ

S1, : : : , δλ
Sm/. Take the expectation of both sides; then

E{LS.λ, δλ
T /}�E{LS.λ, δ/}

holds for any δ ∈{0, 1}m.
(b) Before proving the result of this part, the following result needs to be discussed first, i.e. NOR

k .λ/ is
non-increasing in λk but non-decreasing in λk′ , k′ �=k.

For ease of presentation, in this proof the T OR
k .X1i, X2i/ will sometimes be abbreviated as T OR

k, i . Let

Aλk
=

{
T OR

k, i �αk + 1−αk

λk +1

}

and

Bλk
={λk.T

OR
k, i −αk/+T OR

k, i < min
k′ �=k

λk′.T OR
k′ , i −αk/+T OR

k′ , i };

then

NOR
k .λ/=E

(
I

[
T OR

k, i �αk + 1−αk

λk +1
, λk.T

OR
k, i −αk/+T OR

k, i

< min
k′ �=k

{λk′.T OR
k′ , i −αk/+T OR

k′ , i }
]
{T OR

k, i .X1i, X2i/−αk}
)

=E[IAλk
IBλk

{T OR
k, i .X1i, X2i/−α}]:

Suppose that λ.1/
k >λ.2/

k > 0; it can be concluded that A
λ

.1/
k

⊆A
λ

.2/
k

and B
λ

.1/
k

⊆B
λ

.2/
k

. The former can be
easily derived because

αk + .1−αk/=.λ.1/
k +1/<αk + .1−αk/=.λ.2/

k +1/

when λ.1/
k >λ.2/

k > 0. The latter can be proved as follows.
If T OR

k, i <αk, then 1−T OR
k′ , i +1−T OR

k, i �1 and T OR
k′ , i > 1−αk �αk′ . Thus,

λk.T
OR
k, i −αk/+T OR

k, i < min
k′ �=k

λk′.T OR
k′ , i −αk/+T OR

k′ , i

will always hold for any λk, i.e. B
λ

.1/
k

∩{T OR
k, i <αk}=B

λ
.2/
k

∩{T OR
k, i <αk}.

If T OR
k, i � αk, then λ.1/

k .T OR
k, i − αk/ + T OR

k, i � λ.2/
k .T OR

k, i − αk/ + T OR
k, i and thus B

λ
.1/
k

∩ {T OR
k, i � αk} ⊆ B

λ
.2/
k

∩
{T OR

k, i �αk}. Till now, B
λ

.1/
k

⊆B
λ

.2/
k

has been proved completely.
Applying the results that A

λ
.1/
k

⊆A
λ

.2/
k

and B
λ

.1/
k

⊆B
λ

.2/
k

, then

NOR
k .λ1/−NOR

k .λ2/=E[.IA
λ

.1/
k

IB
λ

.1/
k

− IA
λ

.2/
k

IB
λ

.2/
k

/I.T OR
k �αk/{T OR

k, i .X1i, X2i/−αk}]�0,

where λj , j = 1, 2, is the λ with its kth component λk = λ
.j/
k . That is, NOR

k .λ/ is non-increasing in λk.
Similarly, it can be shown that NOR

k .λ/ is non-decreasing in λk′ .
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The result of part (b) in proposition 2 can now be proved. It follows from lemma 1 in the on-line
supplementary file that there is a λÅÅ ∈ΛÅÅ such that our constructed K sequences {λ̌k,n, n � 1} satisfy
the relationships λ̌k,1 � : : :� λ̌k, n � : : :�λÅÅ

k and that NOR
k .λ̌

′
k,n/=0 holds for k =1, : : : , K and n�1.

Following from the monotone convergence theorem, each sequence {λ̌k,n, n � 1} will converge to a
number, denoted as λÅ

k . Let λ̌n = .λ̌1,n, : : : , λ̌K, n/; then

NOR
k .λÅ/= lim

n→∞
NOR

k .λ̌n/= lim
n→∞

NOR
k .λ̌

′
k,n/=0:

A.2. Proof of theorem 2

(a) Similarly to the proof of part (a) of theorem 1, the results for SMFDRk.δ
Å
S /=αk for k =1, : : : , K are

very straightforward.
(b) For any δ, if SMFDRk.δ/�αk, for all k =1, : : : , K, then

E

(
m∑

i=1

K∑
k=1

[{1−T OR
k .X1i, X2i/}]− I.δÅ

Si =k/{1−T OR
k .X1i, X2i/}]

)

=E

(
m∑

i=1

K∑
k=1

[I.δÅ
Si �=k/{1−T OR

k .X1i, X2i/}+λÅ
k I.δÅ

Si =k/{T OR
k .X1i, X2i/−αk}]

)

=E{LS.λÅ, δÅ
S /}�E{LS.λÅ, δ/}

=E

(
m∑

i=1

K∑
k=1

[I.δi �=k/{1−T OR
k .X1i, X2i/}+λÅ

k I.δi =k/{T OR
k .X1i, X2i/−αk}]

)

�E

(
m∑

i=1

K∑
k=1

[{1−T OR
k .X1i, X2i/}− I.δi =k/{1−T OR

k .X1i, X2i/}]
)

:

Thus, TETP.δÅ
S /�TETP.δ/ holds.

A.3. Proof of theorem 4
For ease of presentation, in this proof the T OR

k .X1i, X2i/ and T̂ k.X1i, X2i/ will be denoted as T OR
k, i and T̂ k, i

respectively. Let N̂
OR
k .λ/ = .1=m/Σm

i=1I.δ
λ
Si = k/.T OR

k, i −αk/. According to the weak law of large numbers,
result (a) N̂

OR
k .λ̌k,n−1/→p NOR

k .λ̌k,n−1/ holds where λ̌k,n−1 is defined in the proof of proposition 2.
For k ∈{1, : : : , K}, fix all λk′ , k′ �=k. N̂k.λ/ is then a function of λk and its continuous version, denoted

as N̂
C
k .λ, can be defined, which is similar to the definition of N̂

C
T .λ/ in the proof of theorem 3. It is easy to

check that N̂
C
k .λ/ is continuous in λk and monotone. Thus, its inverse function, denoted N̂

C,−1
k .λ/, is well

defined, continuous and monotone. According to the construction of the N̂
C
k .λ/, results (b) N̂k.λ̂k,n−1/−

N̂
C
k .λ̂k, n−1/→p 0 and (c) λ̂k,n − N̂

C,−1
k .λ̂k0, n−1/→p 0 hold for all k.

Suppose that λ̂k′ ,n−1 →p λ̌k′ ,n−1 for all k′ �=k; results (d) and (e) can then be derived immediately, respec-
tively N̂

C
k .λ̌k,n−1/ − N̂

C
k .λ̂k,n−1/ →p 0 and N̂

C,−1
k .λ̂k0,n−1/ − N̂

C,−1
k .λ̌k0,n−1/ →p 0 where λ̂k0,n−1 and λ̌k0,n−1

are the λs with kth component 0 and the rest the same as the counterparts of λ̂k,n−1 and λ̌k,n−1 respectively.
To prove theorem 4, the following results will be discussed in turn. Suppose that λ̂k′ ,n−1 →p λ̌k′ ,n−1 for

all k′ �=k, then:

(a) N̂k.λ̂k,n−1/− N̂
OR
k .λ̌k,n−1/→p 0 holds for any λk > 0;

(b) N̂
C,−1
k .λ̌k0,n−1/→p λ̌k,n and λ̂k,n →p λ̌k,n, n�1.

A.3.1. Proof of result (a)
From the proof of result (1) in the proof of theorem 3 in the on-line supplementary material, it suffices to
show that

E{.T̂ k, i −αk/I.δ
λ̂k,n−1
Si =k/− .T OR

k, i −αk/I.δ
λ̌k,n−1
Si =k/}2 =o.1/

because N̂k.λ̂k,n−1/ − N̂
OR
k .λ̌k,n−1/ →p 0 can then be proved by repeating to use the above result. See the

proof of result (1) in the proof of theorem 3 for details.
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Following from lemma 2 in the on-line supplementary file,

P.δ
λ̂k,n−1
Si =k, δ

λ̌k,n−1
Si �=k/�P{T̂ k, i �αk + .1−αk/=.λk +1/, T OR

k, i >αk + .1−αk/=.λk +1/}
+P{T̂ k, i >αk + .1−αk/=.λk +1/, T OR

k, i �αk + .1−αk/=.λk +1/}
+P{λk.T̂ k, i −αk/+ T̂ k, i �min

k′ �=k
λ̂k′ ,n−1.T̂ k′ , i −αk′/+ T̂ k′ , i,

λk.T
OR
k, i −αk/+ T̂ k, i > min

k′ �=k
λ̌k′ ,n−1.T

OR
k′ , i −αk′/+T OR

k, i }
+P{λk.T̂ k, i −αk/+ T̂ k, i > min

k′ �=k
λ̂k′ ,n−1.T̂ k′ , i −αk′/+ T̂ k′ , i,

λk.T
OR
k, i −αk/+ T̂ k, i �min

k′ �=k
λ̌k′ ,n−1.T

OR
k′ , i −αk′/+T OR

k, i }
=o.1/+o.1/=o.1/,

and similarly

P.δ
λ̂k,n−1
Si �=k, δ

λ̌k,n−1
Si =k/=o.1/:

Then,

E{.T̂ k, i −αk/I.δ
λ̂k,n−1
Si =k/− .T OR

k, i −αk/I.δ
λ̌k,n−1
Si =k/}2

�E{.T̂ k, i −T OR
k, i /2}I.δ

λ̂k,n−1
Si =k, δ

λ̌k,n−1
Si =k/

+E{.T̂ k, i −α/2I.δ
λ̂k,n−1
Si =k, δ

λ̌k,n−1
Si �=k/+E{.T OR

k, i −α/2I.δ
λ̂k,n−1
Si �=k, δ

λ̌k,n−1
Si =k/

�E{.T̂ k, i −T OR
k, i /2}+P.δ

λ̂k,n−1
Si =k, δ

λ̌k,n−1
Si �=k/+P.δ

λ̂k,n−1
Si �=k, δ

λ̌k,n−1
Si =k/

=o.1/+o.1/+o.1/=o.1/,

where E{.T̂ k, i −T OR
k, i /2}=o.1/ follows from the results that T̂ k, i −T OR

k, i →p 0 and |T̂ k, i −T OR
k, i |�1 uniformly

for i.

A.3.2. Proof of result (b)
Similarly to the proof of result (2) in the proof of theorem 3 in the on-line supplementary material it suffices
to prove that

N̂
C
k .λ̌k,n−1/

p→ N̂
OR
k .λ̌k,n−1/,

which follows from the above results (1), (a), (b) and (d). Therefore,

N̂
C,−1
k .λ̌k0,n−1/

p→ λ̌k,n:

By this result, together with results (c) and (e), λ̂k,n →p λ̌k,n can be obtained.
The result of theorem 4 can now be proved. When n=1, λ̂k′ = λ̌k′ =∞holds for all k′ �=k; thus λ̂k,n →p λ̌k,n.

Repeating to apply result (b), we have

λ̂k,n
p→ λ̌k,n, n�1:

Taking the limitations on both sides leads to λ̂
Å
k →p λÅ

k .
Following from lemma 2 in the on-line supplementary file, we have

P.δλ̂
Å

Si =k, δλÅ

Si �=k/�P{T̂ k, i �αk + .1−αk/=.λ̂
Å
k +1/, T OR

k, i >αk + .1−αk/=.λÅ
k +1/}

+P{T̂ k, i >αk + .1−αk/=.λ̂
Å
k +1/, T OR

k, i �αk + .1−αk/=.λÅ
k +1/}

+P{λ̂
Å
k .T̂ k, i −αk/+ T̂ k, i �min

k′ �=k
λ̂

Å
k′.T̂ k′, i −αk′/+ T̂ k′ , i,

λÅ
k .T OR

k, i −αk/+ T̂ k, i > min
k′ �=k

λÅ
k′.T

OR
k′, i −αk′/+T OR

k, i }

+P{λ̂
Å
k .T̂ k, i −αk/+ T̂ k, i > min

k′ �=k
λ̂

Å
k′.T̂ k′, i −αk′/+ T̂ k′, i,

λÅ
k .T OR

k, i −αk/+ T̂ k, i �min
k′ �=k

λÅ
k′.T

OR
k′, i −αk′/+T OR

k, i }
= o.1/+o.1/=o.1/,



732 D. Xiang, S. D. Zhao and T. T. Cai

and similarly

P.δλ̂
Å

Si �=k, δλÅ

Si =k/=o.1/:

Then,

E{|I.δλ̂
Å

Si =k/− I.δλÅ

Si =k/|}�P.δλ̂
Å

Si =k, δλÅ

Si �=k/+P.δλ̂
Å

Si �=k, δλÅ

Si =k/

=o.1/+o.1/=o.1/:

By the above result, it is easy to show that

|E{.1=m/
m∑

i=1
.T OR

k, i −αk/I.δ
λ̂

Å

Si =k/}|=|E[.T OR
k, i −α/{I.δλ̂

Å

Si =k/− I.δλÅ

Si =k/}]|

�E{|I.δλ̂
Å

Si =k/− I.δλÅ

Si =k/|}=o.1/, .17/

|E[.1=m/
m∑

i=1
.1−T OR

k, i /{I.δλ̂
Å

Si =k/− I.δλÅ

Si =k/}]|�E{|I.δλ̂
Å

Si =k/− I.δλÅ

Si =k/|}=o.1/, .18/

and

E

{
.1=m/

m∑
i=1

I.δλ̂
Å

Si =k/

}
=E

{
.1=m/

m∑
i=1

I.δλÅ

Si =k/

}
+o.1/> 0: .19/

By expressions (17) and (19), the result that SMFDRk.δ̂
Å
S /=αk +o.1/ can be derived. By expression (18),

the result that TETP.δ̂
Å
S /=TETP.δÅ

S /=1+o.1/ can be derived. Then, the proof of theorem 4 is completed.
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