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Summary. The issue of robustness to family relationships in computing genotype ancestry scores such as eigenvector pro-
jections has received increased attention in genetic association, and is particularly challenging when sets of both unrelated
individuals and closely related family members are included. The current standard is to compute loadings (left singular vec-
tors) using unrelated individuals and to compute projected scores for remaining family members. However, projected ancestry
scores from this approach suffer from shrinkage toward zero. We consider two main novel strategies: (i) matrix substitution
based on decomposition of a target family-orthogonalized covariance matrix, and (ii) using family-averaged data to obtain
loadings. We illustrate the performance via simulations, including resampling from 1000 Genomes Project data, and analysis
of a cystic fibrosis dataset. The matrix substitution approach has similar performance to the current standard, but is simple
and uses only a genotype covariance matrix, while the family-average method shows superior performance. Our approaches
are accompanied by novel ancillary approaches that provide considerable insight, including individual-specific eigenvalue scree
plots.
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1. Introduction
Differing ancestries of human subpopulations create system-
atic differences in genetic allele frequencies across the genome,
a phenomenon known as population stratification or substruc-
ture. If a phenotypic trait such as disease is associated with
subpopulation membership, a genetic association study can
identify spurious relationships with genetic markers. Singular
value decomposition (SVD) of genotype data or eigen decom-
position of covariance matrices can be used to identify pop-
ulation stratification. The eigenvectors (essentially principal
component scores) that correspond to large eigenvalues can be
used as covariates in association analysis (Levine et al., 2013).
The combined analysis of unrelated and related individuals is
a common feature of genetic association studies (Zhu et al.,
2008). However, the presence of close-degree relatives in a
genetic dataset presents difficulties, as the family structure
can greatly influence the eigenvalues and eigenvectors.

Cystic fibrosis (CF) is a recessive genetic lung disorder,
caused by a mutation in the single gene CFTR. However, con-
siderable genetic variation remains in the severity of disease,
and evidence indicates this variation is complex and influ-
enced by numerous genes (Wright et al., 2011). Genotypes
gathered by the North American CF Consortium are typical
of a large-scale genomewide association study (GWAS), with
thousands of individuals and over 1 million genetic markers
(Corvol et al., 2015). For covariate control, the eigenvec-
tors are computed for a submatrix of the genotypes, after

a “thinning” process in which only an ancestry-informative
subset of markers which have low marker–marker correla-
tion is retained (Patterson et al., 2006). We illustrate the
proposed methods using the dataset from the CF patients
described as “GWAS1” in Corvol et al. (2015), with 21,205
thinned ancestry markers and 3444 individuals. The dataset
includes 2546 singletons (unrelated to others) and 438 small
families of siblings (417 sets of 2 individuals, 20 sets of 3,
and 1 set of 4). Figure 1 is a scatter plot of the fifth ver-
sus the first “ancestry scores” (right singular vectors for
this example) from a naive analysis of all 3444 individuals
(see Section 2).

Here, the PC5 scores are driven largely by membership
in the family of size 4, rather than the ancestry substruc-
ture of interest. Several additional top-ranked eigenvectors
are also driven by family membership. Accordingly, matrix
projection methods have been proposed (Zhu et al., 2008),
in which singular value decomposition is performed on sin-
gletons, followed by projections for the remaining families.
However, this approach has been shown to produce shrunken
projected scores for the family members (Lee et al., 2010). In
Conomos et al. (2015), the PCAiR method was proposed to
expand the set of individuals included in the SVD to include a
single individual from each family, resulting in improved per-
formance. However, the question remains as to whether scores
for the remaining projected individuals will exhibit shrinkage,
or if the methods can be further improved.
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Figure 1. Ancestry score (right singular vector) 5 versus
ancestry score 1 in a naive decomposition of the covariance
matrix using all CF individuals. Membership in a family of
size 4 (highlighted with a circle) is responsible for most of the
variation in ancestry score 5.

In contrast to previous efforts, in this article we directly
address the family covariance structures that complicate
ancestry score calculation. We introduce several novel
approaches to account for the family-specific correlation
structures in a single analysis, avoiding difficulties posed
by standard projection methods. Comparison via simula-
tion and analysis of real data indicate that our approaches
offer substantial improvements over existing methods in
either simplicity or performance, and are straightforward
to implement. The methods follow from an understanding
of high-dimensional geometry and use the new device of
smoothed individual scree plots for further exploration. The
article is organized as follows. In Section 2, we introduce the
existing and proposed approaches. Section 3 describes perfor-
mance criteria. Section 4 described the simulation methods.
Section 5 contains performance results. An accompanying
Web Supplement contains details of the algorithms and
numerous additional illustrations.

2. Methods

This article discusses a number of competing methods, and
considerable notation is unavoidable. To reduce confusion, we
adopt uniform notation where possible. We use i = 1, . . . , p

to denote genetic markers (single nucleotide polymorphisms,
SNPs), j = 1, . . . , n to denote individuals (including families),
and typically p � n. The individuals can be partitioned into
singletons (S, unrelated to anyone else in the dataset), and
family members (F , related to at least one other individual),
with respective sample sizes nS and nF , so n = nS + nF . The
set F is partitioned into distinct families {Ff } of size nf ,
f = 1, . . . , F . Let G be the original p × n genotype matrix,
with elements taking on the values 0, 1, or 2, typically coded

as the number of minor alleles, and ḡi. = ∑n

j=1
gij/n, the

mean for SNP i. The scaled p × n genotype matrix X con-

sists of elements xij = (gij − ḡi.)/
√∑

j′(gij′ − ḡi.)2/(n − 1), so

that
∑

j
xij = 0,

∑
j
x2

ij = n − 1, for all i = 1, . . . , p.
Family membership could be inferred by KING

(Manichaikul et al., 2010), which is used for analyses
for the PCAiR method described below. We find that a
simple screening method for first and second-degree relation-
ships is also effective, identifying pairs of individuals j1, j2

such that corr(x.j1 , x.j2) > η, after X has been provisionally
residualized for gross ancestry structure. Using η = 0.1
identifies paired family members up to second-degree with
high sensitivity and specificity (see Supplement Section S1).

2.1. SVD and Eigen Decomposition

The “naive” approach to handling the full dataset is to simply
compute the singular value decomposition X = UDVT , using
the columns of V as informative scores for ancestry, in decreas-
ing order of the singular values contained in the diagonal of
D. However, as Figure 1 showed, this approach can be highly
influenced by family structure. Other methods work with the
matrix of sample covariances of the individuals, which for the

full matrix X is the n × n matrix M = X
T
X/(p − 1), where X is

the column-centered version of X. Eigen decomposition of M

provides eigenvectors that are nearly identical to the columns
of V . Alternatively, a principal component (PC) decomposi-
tion provides PC scores that are identical or nearly identical
(depending on column-centering) to V . For ease of discussion,
we refer to the column output from the various methods sim-
ply as “ancestry scores,” except when further specificity is
required.

2.2. The Singleton Projection (SP) Method

Singleton projection (Zhu et al., 2008) first computes the
SVD XS = USDSVT

S . Ancestry scores for the complete data

are given as the columns of the n × nS matrix ṼSP = XT USD−1
S ,

as in practice no more than nS ancestry scores (PCs) will be
used as covariates. Here and subsequently a tilde (“∼”) will
signify a matrix or vector that has been made robust to the
effects of family relationships, and Ṽ with a corresponding
subscript will be used to denote the matrix of ancestry scores
for each method. The singleton projection approach is eas-
ily implemented in popular software such as EIGENSTRAT
(Price et al., 2006). By ignoring families in the initial step,
singleton projection loses accuracy, with the family ancestry
scores suffering from the shrinkage phenomenon described in
Lee et al. (2010), who also prescribed a bias-correction pro-
cedure to correct the shrinkage. However, the bias-correction
is a multi-step procedure whose performance has not been
established for a range of eigenvalues, and is not convenient
for collections of families of various sizes.

2.3. PCAiR

To incorporate more information from the family data,
PCAiR (Conomos et al., 2015) works with a set of unre-
lated individuals U , where U includes the singletons plus a
single member from each family. Thus U does not contain any
related pairs, and we will use R to denote the complementary
set of related individuals not in U . The set U is not unique, and
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PCAiR attempts to identify and use a maximally informa-
tive set. The full approach of Conomos et al. (2015) involves
genotype normalization differing slightly from our scaling,
identification of family members using KING (Manichaikul et
al., 2010), and numerous matrix operations. However, a care-
ful reading and simulations below show that the essence of
the approach is similar to singleton projection, using columns
of ṼPCAiR = XT UUD−1

U as scores, where UU , DU are obtained
from the SVD XU = UUDUVT

U . Although numerous ancestry
estimation procedures have been proposed (Sankararaman
et al., 2008), for the calculation of ancestry scores using eigen-
vectors or principal components, the results in Conomos et al.
(2015) indicate that PCAiR represents the current state of the
art. Here, we use the KING software and PCAiR code from
Conomos et al. (2015) as recommended, except for Gaussian
simulations. For comparison, we also use the straightforward
algorithm above coded in R, with the family member included
in U randomly chosen.

2.4. Matrix Substitution (MS)

As noted, ancestry scores can be obtained directly from a
covariance matrix (Frudakis et al., 2003). We propose simply

modifying the sample covariance matrix M = X
T
X/(p − 1)

so that family members do not have outsized influence. We
construct a matrix M̃ with entries m̃j1j2 =median entry in
M if j1 �= j2 and j1 and j2 belong to the same family, and
m̃j1j2 = mj1j2 otherwise. Co-family members are typically a

small fraction of the pairs of individuals, and so M and M̃

differ in only a small fraction of elements. Following matrix
substitution, we compute ṼMS as the eigenvectors of M̃. One
appealing quality of the approach is that it treats all family
members symmetrically, and no individual need be chosen to
“represent” the family.

Although the matrix substitution approach is simple and
appealing, it does not provide “whitened” actual genotype
data, which might be useful for other purposes, such as anal-
yses of subsets of individuals or for careful investigation of
marker–marker correlation (Lake et al., 2000). Interestingly,
whitened genotype data consistent with matrix substitution
can be computed using a series of matrix operations, in
such a manner that singleton data remains unchanged. The
approach is derived in the Supplement Section S2, and termed
“covariance-preserving whitening” (CPW).

2.5. Family Average (FA) Projection

A potential concern with the PCAiR projection method of
Section 2.3 is that only a single member is used from each
family. We consider the approach of using the mean vector
for each family, instead of a single representative member,
to obtain loadings. Specifically, for family f indexed by Ff ,
we compute a new data vector x̂.f = z̄Ff

(
∑

j∈Ff
||x.j||/nf ),

where z̄Ff
is the unit-length family mean vector from Web

Supplement Section S3. Multiplication by the family average
length ensures that x̂.f has a “typical” length—otherwise the
variance contribution from the family mean vector would be
much smaller than for an individual, distorting the approach.
We construct a new matrix of singletons combined column-
wise with the F rescaled family averages, XA

p×(nS+F)

= [ XS
p×nS

, X̂
p×F

],

and compute the SVD XA = UADAVT
A . Finally, the projected

ancestry scores are computed for all individuals, as the
columns of ṼFA = XT UAD−1

A .

2.6. Geometric Rotation/Family Whitening (FW)

Yet another approach to computing ancestry scores would
be to include all of the stratification data, but to first
modify genotypes within families only to reduce the family-
specific impact on SVD analysis. The derivation is provided
in Web Supplement Section S3, presented using both geomet-
ric motivation and a more standard matrix whitening. Such
family whitening is entirely for the purpose of stratification
analysis—the modified genotypes are not intended to be used
for trait association. This approach is quite different from
PCAiR or FA, as it modifies all family members and does
not use a single representative or averaged individual from
within a family. We describe the steps of family whitening
in the Web Supplement, for completeness and because the
approach has intellectual appeal. However, later simulation
results show that family whitening has poorer performance
than the other proposed methods, and so is not emphasized
after initial evaluations.

3. Criteria for Evaluation

Here, we describe criteria to evaluate the performance of
ancestry score calculations. The first two criteria reflect the
ability to discriminate among known (by simulation) sub-
populations, while providing family ancestry scores that are
comparable to those from singletons. The third criterion,
which can be assessed with real data even though true ances-
try is unknown, measures the tendency for ancestry scores
to remain stable for an individual who belongs to a family,
depending on whether the individual’s family members are
also included in the analysis. Finally, we end this section by
introducing the “individual scree plot,” a novel visualization
tool to provide insight into the behavior of ancestry scores.

3.1. R2 Criteria for Prediction of Ancestry

We assume the population consists of K ancestry subgroups,
and a true ancestry value ajk ∈ [0, 1] for individual j is the
proportion of the autosomal genome derived from the kth
subpopulation,

∑
k
ajk = 1. If ajk = 1, then the individual is

entirely derived from the kth ancestry subgroup, and val-
ues in (0, 1) correspond to admixture. We performed linear
regression of true ancestry on ancestry scores as follows. The
ancestry scores are columns of a matrix Ṽ , where each entry
vjl is the lth ancestry score for individual j. Using multiple
linear regression to predict a from the set of ancestry scores,

we have (1 − R2
k ) =

∑
j
(ajk−âjk)

2∑
j
(ajk−a.k)2

, where âjk is the prediction

and a.k is the grand mean for the kth ancestry, and an overall
score (1 − R2) = (1 − ∑

k
R2

k /K). We note that in the special
case of binary a (distinct subpopulations), the same overall R2

can be obtained by averaging over analyses of variance using
each column of Ṽ as the response, with membership in each
of the K strata as predictors (Cabanski et al., 2010).

Using PCAiR as a baseline, for each method we also
compute a proportional reduction in prediction error ek =
(R2

method,k − R2
PCAiR,k)/(1 − R2

PCAiR,k), expressed as a percentage.
A final single error reduction index can be computed as
the average ē = ∑

k
ek/K. The rationale for using prediction
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accuracy for true ancestry is intuitive, but we are not aware of
a clear description in the literature. Thus for completeness, we
describe the rationale in the Web Supplement Section S4, in
the context of using predicted ancestry for covariate control.

3.2. The Relateds Square Error (RSE) Criterion

Most of the methods described in this article use a partition
into family members F versus singletons S. An important per-
formance aspect that is not fully captured by (1 − R2) is the
tendency for the family members to exhibit reduced variation
in the ancestry scores. For the initial simulations, we intro-
duce a measure of the tendency for ancestry scores of family
members to overlap their singleton counterparts, calculated
within each stratum before summarizing.

For each stratum k, we further partition �k into �k,F and
�k,S , corresponding to family members and singletons within
the stratum, of sizes nk,F and nk,S . Let v�k,Sl

denote the aver-
age of the lth ancestry scores for individuals in �k,S . For the
lth ancestry score, we compute the Relateds Squared Error
(RSE),

RSEl =

√√√√∑K

k=1

∑
j∈�k,F

(vjl − v�k,S l)2/(nk,F − 1)∑K

k=1

∑
j∈�k,S

(vjl − v�k,S l)2/(nk,S − 1)
.

In other words, for both family members and singletons, we
compute the average squared deviation from the mean of sin-
gletons. For a method that performs well, projected family
members will behave similarly to singletons, and RSEl will
be near 1.0. We average the first 5 RSEl values to obtain an
overall RSE. For PCAiR, we compute the RSE using U and
R instead of S and F , respectively.

3.3. An Instability Index

The criteria above require knowledge of the true popula-
tion strata. Here, we describe a performance criterion based
on stability of the eigenvector values for family members, as
compared to an internally computed standard. It can be per-
formed for real data, without knowing true ancestry. We will
let W

n×n
denote a “gold standard” ancestry score matrix to be

used subsequently, and Q
n×n

a comparison matrix, and for both

matrices the columns are arranged in the same order as X.
Suppose we wish to compute ancestry scores for an indi-

vidual j who belongs to a family. One approach, robust to
family structure, is to combine j with the singletons, com-
puting XS∪j

p×(nS+1)

= UD VT

(nS+1)×(nS+1)
. As j is unrelated to S, we

will use the last column of V as the jth column of W , that is,
w.j = v.(nS+1). We perform this procedure in succession for all
j ∈ F to populate the family (F) columns of W . Alternately,
we populate the F columns of Q by performing, for each
f ∈ F , the family-robust methods described in this article,
applied for each f using the genotype data for S ∪ Ff . In other
words, W is computed by combining each family member with
S one at a time, while Q is computed by combining each fam-
ily with S. We consider W as the gold standard, because it
is computed using only unrelated individuals in each step.
For an ancestry method that is robust to family structure,
we expect Q to be similar to W . The instability index for the

lth ancestry score is instabilityl = ∑
j∈F (qjl − wjl)

2/
∑

j∈F q2
jl,

with an ideal value of zero.

3.4. Individual Scree Plots

Scree plots (Cattell, 1966) are a useful method to visualize the
relative importance of eigenvectors and PCs. Here, we take
the scree plot in a new direction, by studying the correspond-
ing plot for each individual, that is, studying the squares of
the projections of each individual. For the SVD X = UDVT ,
these projections are (XT U)2 = (VD)2, and the column sums
of (VD)2 are the squared singular values of X. These values
essentially correspond to principal component variance values,
which are also used in overall scree plots. Accordingly, for the
robust ancestry methods described in this article, we use rows
of (Ṽ D̃)2 as individual scree values, reflecting the contribution
of each individual to the overall influence of each ancestry
score. The individual scree values are noisy (see Web Supple-
ment Section S5) and cover several orders of magnitude, so
we plot them on the log10 scale and perform loess smoothing
to discern important patterns.

4. Genotype Simulation Methods and Settings

Much of the behavior of the various methods can be under-
stood largely in terms of covariance patterns, and are not
unique to discrete genotype data. This is seen and moti-
vated by idealized Gaussian simulations provided in Web
Supplement Section S6, which illustrate that the MS and FA
methods have promising performance. Another informative
set of simulations more directly reflects the special properties
of genotype data, studied next.

4.1. Idealized Simulation of Genotypes and Family
Sibships

Web Supplement Section S7.1 describes our procedure for
realistic simulation of founder genotype data for K population
strata, following the Balding–Nichols model with FST = 0.01.
The model uses modest serial correlation of successive markers
of approximately 0.2 in blocks of 20 markers, 20,000 mark-
ers in total, and matches the allele frequencies in the CF
data. To simulate a family sibship of size nf , we followed a
realistic autosomal recombination model. First, we generated
enough singletons within each subpopulation so that parents
could be simulated and then discarded. For each family, from
the singletons we randomly selected two parents at random
from a stratum (subpopulation) without replacement. Arti-
ficial grandparental haplotype genomes were generated for
each parent by randomly dividing the alleles. Children were
then simulated using an artificial recombination process, with
recombinations in each parent simulated as a geometric ran-
dom variable for successive SNPs, at a rate such that on
average 30 recombinations occurred per meiosis. For each fam-
ily, the nf children were simulated independently from the
same parental pair.

For the balanced simulations, we generated K = 5 subpop-
ulations using the approach above. Sibships of nf = 3 were
simulated such that the proportion of individuals belonging
to families prop was the same in each subpopulation. The
total sample sizes used were n = {500, 1000, 2000}, with family
proportions prop = {0.2, 0.5, 0.8}, respectively, and the total
number of families was n(prop)/3.
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For the unbalanced simulations, again 5 subpopulations
were simulated with total n = {500, 1000, 2000}. However, all
of the families, again with nf = 3, were simulated from a sin-
gle subpopulation, such that 20% of the total sample size
belonged to these sibships. This scenario was intentionally
extreme, to determine the robustness of various methods for
handling families.

4.2. Resampled Data from the 1000 Genomes Project

In order to represent realistic linkage disequilibrium, popu-
lation structure, and additional family types, we developed
novel simulation code, drawing from haploid genomes
sequenced for the 1000 Genomes Project Phase 3 v5 (1000
Genomes Project Consortium, 2015). The approach is sim-
ilar to that used in HAP-SAMPLE (Wright et al., 2007),
but with refined data and special attention to ancestral
subpopulations. A subset of 19,681 markers were chosen as
representative of those that might arise from a whole genome
association study (details in Web Supplement Section S7.2).
After removing several subpopulations with extensive admix-
ture, the collection of the remaining 20 subpopulations show
clear evidence of continental-level stratification, as well as
a range of more modest stratification among more closely
related subpopulations. The simulation scheme is shown in
Figure 2, and detailed in the Web Supplement. Briefly, unre-
lated individuals and family founders have pre-specified target
proportions of their genome from each of K subpopulations,
and segments are chosen from each subpopulation using an
artificial meiotic recombination process. Simulation of a fam-
ily of size 7 proceeds by choosing three founders, with the
remaining individuals determined by the recombination pro-
cess. From each family, first-degree relatives (parent-child
pairs or siblings) or second-degree relatives (grandparent-
grandchild pairs) can be selected.

For a pure subpopulation scenario, 1000 unrelated individ-
uals were chosen, and 500 families. For each relative-type
scenario, the parent-child pairs, sibships, or grandparent-
grandchild pairs were combined with the unrelated
individuals, for a total of 2000 individuals for unrelat-
eds + parent-child, 2500 individuals for unrelateds + sibships,
and 2000 individuals for unrelateds + grandparent-grandchild.
The entire process was performed 10 times, and reported
results averaged over the simulations.

An admixed subpopulation scenario, the process was the
same as above, but with each individual showing a random
admixture between two randomly selected subpopulations
as described in the Web Supplement Section S7.2 (average
admixture proportion about 0.09).

5. Results

The Web Supplement Figure S3 shows results for Gaussian
simulations for p = 10,00 and varying proportions with unre-
lated individuals and “family pairs” that have correlation 0.5.
The number of strata was K = 3, so two ancestry scores are
sufficient to capture the relationships, and visual impressions
can be formed. The figure illustrates that singleton projection
results in extreme shrinkage of projected family members F ,
while the PCAiR algorithm results in modest shrinkage of the
individuals in R. Matrix whitening shows modest shrinkage
for F , while the remaining novel methods all show good and

Figure 2. Simulation scheme for 1000 Genomes data. For
each family of size 7, the founder genomes are simulated
according to specified ancestry proportions, with artificial
meioses and random haplotypes drawn from the appropriate
subpopulations. The remaining family members are simulated
from the founder haploid genomes, and the desired relative
pairs or triplets are selected from the family. Unrelated indi-
viduals are simulated in the same manner as founders.

similar performance. For highly unbalanced data with all fam-
ilies coming from a single subpopulation (Web Supplement
Figure S4), the conclusions are similar, although shrinkage
is less extreme due to a higher overall proportion of single-
tons. The findings are sensible, reflecting the simple fact that
inclusion of an individual when computing loadings results
in better performance. For family whitening, the change in
cross correlations with individuals outside the family results
in family shrinkage.

5.1. Results for Idealized Simulated Genotypes

Web Supplement Figure S5 depicts results in heatmap form
for our idealized genotype simulations in which the pro-
portion of families is balanced across the 5 strata. For the
(1 − R2) criterion, matrix substitution, CPW, and family
averaging appear to perform similarly and somewhat better
than PCAiR. Although CPW is theoretically identical to MS,
we investigated empirically, due to some reduced-rank issues
that affect computation (Web Supplement Section S2).
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Figure 3. Results for the 1000 Genomes simulations. (A) Illustrative ancestry scores for unrelated individuals belonging
to K = 20 subpopulations. (A) Ancestry scores where each individual has varying degrees of admixture between a randomly
chosen pair of subpopulations. (C) (1-R2) for linear predictions of each a.k vector (ancestry subgroup) from the first 20 columns
of Ṽ from each method, for sibships simulated under the pure subpopulation scenario. (D) (1-R2) for linear predictions of
each a.k vector from the first 20 columns of Ṽ from each method, for sibships simulated under the admixed subpopulation
scenario.

For the RSE criterion, differences are more noticeable,
and again matrix substitution/CPW, and family averaging
perform best. For large samples (n = 2000) and a modest pro-
portion of family members (20%), family averaging performs
best. Family whitening performs poorly.

Web Supplement Figure S6 shows the performance of the
methods under the unbalanced genotype simulation with
20% of individuals belonging to families, from a single stra-
tum. The left panel shows the (1 − R2) performance, for
which family averaging offers a slight improvement over
MS/CPW, followed by PCAiR. For the RSE criterion,
ranking of methods is similar, with family averaging per-
forming especially well for larger sample sizes. As expected,
performance generally improves with increasing sample
size.

Due to the poor performance of singleton projection
and family whitening, and the fact that CPW is essen-
tially the same as MS, for the remaining simulations we
analyzed only PCAiR, Matrix Substitution, and Family
Averaging.

5.2. Results for 1000 Genomes Simulations

For the 1000 Genomes simulations, both KING and our
family-identification method performed well, correctly iden-
tifying family members or with at most two errors in all the
simulations (in each instance, a family member was considered
as a singleton). Thus family identification was a trivial source
of variation among the methods, and we used KING with
PCAiR as recommended, and our family-identification code
otherwise, including the PCAiR approximation. The top pan-
els of Figure 3 show the results for the first two eigenvectors
among unrelated individuals, for pure subpopulations (panel
A) and admixed subpopulations (panel B). The lower panels
show the prediction R2 results across K = 20 ancestry sub-
groups for unrelateds + sibships, using the top 20 columns of
Ṽ as predictors, although in principle only 19 should be nec-
essary. For both the pure and admixed scenarios, the Family
Average approach dominates the others. Matrix Substitution
is similar to PCAiR, and our PCAiR approximation, in which
a random member of each family is used and following our
matrix operations, is nearly identical to PCAiR.
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Table 1
Percentage reduction in ancestry-prediction (1 − R2) versus PCAiR

Distinct subpops With admixture

Family type Data portion PCAiR approx MS FA PCAiR approx MS FA

Parent-child Overall −1.3 1 13.5 −1.2 1.3 14.9
Among singletons −1.3 3.5 4.4 −1.5 3.9 4.1
Among families −1.2 −1.5 22.3 −1.3 −1.5 25.5

Sibship Overall −1.4 −3.7 19.7 0 1.1 20.1
Among singletons −1.4 5.5 9.3 0.2 8.1 10.5
Among families −1.4 −10.1 26.9 −0.1 −3.9 27

Grandparent-grandchild Overall −1.3 9.8 26.4 0.1 12.2 26
Among singletons −1.4 8.5 8.7 0.2 10.9 11.5
Among families −1.2 10.9 41.1 0.1 13.3 40.3

Analysis of these profiles across the ancestry subgroups k

showed a roughly constant ratio of (1 − R2
k ) for each method

in comparison to PCAiR, justifying the average ratio ē as an
overall performance index. We summarize the results in Table
1, expressed as percentage reductions compared to PCAiR.

To best understand the behavior of the methods, we
report reductions in the overall error ē relative to PCAiR,
as well as the portions attributable to each data portion
of singletons and family members. The ‘family member’ set
includes, for PCAiR, the individual used as part of set
U , and thus may understate any improvements relative to
the PCAiR-projected family member(s). As expected, the
major differences arise in the families. Matrix substitution
performs slightly better than PCAiR overall, but perfor-
mance varies, and in some instances seems worse (e.g., in
sibships). Family Averaging dominates the other methods,
with performance improvements among family members rang-
ing from 22 to 41%. The greatest improvements were among
the grandparent-grandchild pairs, which might be expected,
because letting one family member “stand” for the other
may introduce additional error as the degree of relationship
becomes more distant. Perhaps surprisingly, family averaging
produced an improvement of a few percent even among sin-
gletons. We believe this improvement reflects the inclusion of
additional family members, which improve the loadings for all
individuals.

The introduction of admixture had little effect on the over-
all results. As expected, our approximate PCAiR approach
was nearly identical to PCAiR, with an average of about 1%
higher error.

5.3. Results for the CF Dataset

Finally, we applied the methods to the CF dataset, using
the instability index approach described earlier. To do so,
we first performed 898 separate analyses of S ∪ j for each
j ∈ F . We then performed 438 analyses of S ∪ Ff for each f =
1, . . . , 438, and compared the two sets of analyses using the
instability index, for each of the first 6 ancestry scores, chosen
based on Tracy–Widom testing (Patterson et al., 2006).

The three scatterplots in Figure 4 show the results for the
first and second ancestry scores using covariance matrix eigen-
decomposition and a single family with two siblings. The A

and B panels show the position of ancestry scores when the
two siblings are analyzed separately. Panel C shows the results
for the entire family after matrix substitution, overplotted
with the values from earlier panels, showing that they have
changed little. The D panel shows the stability index val-
ues for ancestry scores 1–6 (which clearly meet significance
thresholds, Corvol et al., 2015) for the various methods. Sin-
gleton projection and family whitening performed much more
poorly, and are not shown. For the first four ancestry scores,
matrix substitution and PCAiR performed similarly. How-
ever, for ancestry scores 5–6, PCAiR showed much higher
values of the instability index. Family averaging showed con-
siderably lower instability than PCAiR throughout, consistent
with the simulation results.

5.4. Individual Scree Plot Results

Overall, the simulations and real data showed that the novel
methods (except family whitening) dominate PCAiR and sin-
gleton projection. To gain further insight into the properties
of the various methods, we examined the individual scree plots
for the full CF dataset (Figure 5), with curves colored accord-
ing to the size of the family (all sibships) that each individual
belongs to. Panel A of Figure 5 shows the individual scree
curves for the naive analysis, which simply applies SVD to
the full dataset without regard to the presence of families.
The colored curves (red, green, blue) show these curves for
family members from families of various sizes (2, 3, 4, respec-
tively). Although the individual scores are highly variable (see
Web Supplement Figure S2), after smoothing the patterns are
broadly consistent. Family members have higher values for
the first components, because they tend to drive the highest-
ranked ancestry scores in a naive analysis. Family members
tend to have lower curves for the middle scores, because these
ancestry directions are driven by the non-family members (as
expected). Family members again have larger values for the
last ancestry components, because these directions are driven
by family component direction vectors that are orthogonal to
the dominant family direction.

To carefully check these interpretations, we performed a
simulation study using Gaussian data, with the approach
described in the Web Supplement, and the numbers of each
family type (nf = 2, 3, 4) matching the real CF data (panel B
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Figure 4. Illustration of the instability index for the CF dataset. A) Ancestry scores (eigenvectors of the covariance matrix)
for all singletons plus the first sib in a family, marked as a red “X.” B) Ancestry scores for all singletons plus the second sib
in the family. C) Ancestry scores for matrix substitution, with the two individuals shown as circles, overplotted with values
computed in A and B. D) The instability index for each method, providing a summary for each ancestry score across the 898
family members.

of Figure 5). The family patterns are very similar, although
with somewhat less scatter, indicating that the geometric
interpretations of these patterns are correct. Panel C shows
the individual scree curves for matrix substitution, for which
the curves of family members more closely overlap those
of singletons. However, the curves for families of size 3
and 4 remain distinctive, as matrix substitution does not
fully eliminate the effect of high correlation between family
members. Panel D shows that the family average method
achieves more general overlap of scree curves among the
individuals.

6. Summary and Conclusions

With the CF dataset as a motivating example, we have
introduced several new methods to obtain family-robust
informative ancestry scores in genetic stratification analysis.
Several of the methods offer improvements over the current
standard, and yet are quite simple to perform using stan-
dard matrix operations in our package PCFAM. Our careful
genotype simulations and analysis of the CF data support
the general motivating discussion in the Web Supplement. In
particular, both singleton projection and (to a lesser extent)

PCAiR suffer due to the exclusion of individuals when com-
puting loadings.

Among the new methods, family average projection has
the best performance. The matrix substitution method has a
potential advantage in that it relies only on the n × n covari-
ance matrix, which is typically much smaller than the original
genotype dataset. In addition, matrix substitution can be
easily re-computed for different assumptions or thresholds in
identifying family members or perhaps for cryptic relatedness.
However, we have here examined only first- and second-degree
relatives. Covariance-preserving whitening may be appealing
if the resulting whitened matrix is to be used in further inves-
tigations of linkage disequilibrium structure, or perhaps in
substructure analysis of individual chromosomes.

Alternative stratification control methods have included
case-control modeling based on stratification scores (Epstein
et al., 2007) or in the method of Song et al. (2015),
which rely importantly on high-dimensional data sum-
maries as part of the modeling procedure. Thus we
foresee the methods described herein as providing use-
ful ancestry scores for subsequent careful modeling of
disease risk in combined sets of related and unrelated
individuals.
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Figure 5. Individual scree plots for several methods. Black curves are for the singletons; red curves show members of families
of size 2; green curves are for families of size 3 and blue curves are for the family of size 4. A) Individual scree curves for the
full CF data using naive ancestry analysis, with all individuals included; B) The plot for simulated Gaussian data with the
same family structure as the CF data; C) The plot for the full CF data using matrix substitution, showing that the “removal”
of family effects persists through most of the ancestry values; D) The plot using the family average approach suggests further
improved removal of family effects.

7. Supplementary Materials

Web Appendices and Figures referenced in Sections 2–
5 are available with this article at the Biometrics
website on Wiley Online Library. Our methods are
implemented in the R package PCFAM (https://cran.r-
project.org/web/packages/PCFAM/index.html).
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