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Abstract

Motivation: NGS techniques have been widely applied in genetic and epigenetic studies. Multiple

ChIP-seq and RNA-seq profiles can now be jointly used to infer functional regulatory networks

(FRNs). However, existing methods suffer from either oversimplified assumption on transcription

factor (TF) regulation or slow convergence of sampling for FRN inference from large-scale ChIP-

seq and time-course RNA-seq data.

Results: We developed an efficient Bayesian integration method (CRNET) for FRN inference using

a two-stage Gibbs sampler to estimate iteratively hidden TF activities and the posterior probabil-

ities of binding events. A novel statistic measure that jointly considers regulation strength and

regression error enables the sampling process of CRNET to converge quickly, thus making CRNET

very efficient for large-scale FRN inference. Experiments on synthetic and benchmark data showed

a significantly improved performance of CRNET when compared with existing methods. CRNET

was applied to breast cancer data to identify FRNs functional at promoter or enhancer regions in

breast cancer MCF-7 cells. Transcription factor MYC is predicted as a key functional factor in both

promoter and enhancer FRNs. We experimentally validated the regulation effects of MYC on

CRNET-predicted target genes using appropriate RNAi approaches in MCF-7 cells.

Availability and implementation: R scripts of CRNET are available at http://www.cbil.ece.vt.edu/

software.htm.

Contact: xuan@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next generation sequencing (NGS) technology continues to become

ever more cost-effective. The era of ‘big data’, with large data sets of

high quality and higher resolution, has clearly arrived (Schuster,

2008). In genetic and epigenetic studies, gene transcription is regu-

lated through the integrated action of many cis-regulatory elements,

including promoter-proximal bindings as well as various distal cis-

regulatory modules functioning at enhancers (Spitz and Furlong,
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2012). Promoter focused studies have shown that on average only

15% of target genes predicted from ChIP-seq data of a single TF are

significantly differentially expressed when this TF is knocked down

(Chen et al., 2016; Cusanovich et al., 2014). A large proportion of

physical bindings are either not functional or do not act alone.

Given a large number of TFs, it is not practical to knock down TFs

individually. Therefore, computational efforts for inference of func-

tional regulatory networks (FRNs) play an important role in large-

scale TF-gene regulation analysis (Angelini and Costa, 2014). Prior

binding information can be obtained from static ChIP-seq data, the

condition of which is similar to the ‘0’ time point when we start to

generate time-course gene expression data with a certain stimulus.

Integrating prior binding information with time-course gene expres-

sion data, we can infer which binding sites are functional during the

cell response to the specific stimulus. FRN inference is a cost-

effective and comprehensive approach to study the joint regulatory

effects of multiple TFs. A variety of omics data types must be inte-

grated, analyzed and interpreted (Angelini and Costa, 2014; Chen

et al., 2013; Karlebach and Shamir, 2008).

Early attempts for FRN inference solely used gene expression

data (Huynh-Thu et al., 2010; Zhang et al., 2013). With the accu-

mulation of binding information like binding motifs or ChIP-chip/

seq data, integrative approaches are now being developed. For

example, Sabatti et al. proposed a Bayesian network component

analysis framework (BNCA) approach to simultaneously infer pro-

tein activities of TFs (TFAs) and functional bindings by integrating

ChIP-chip and microarray gene expression (Sabatti and James,

2006). Chen et al. developed a similar Bayesian hierarchical model

namely COGRIM, to infer regulatory gene clusters (Chen et al.,

2007). Large-scale ChIP-seq data in ENCODE database makes it

possible to predict FRNs on many different cell types. Wang et al.

developed a BETA package for functional gene prediction by inte-

grating single TF ChIP-seq data with target gene RNA-seq data

(Wang et al., 2013). Qin et al. developed an LASSO based integra-

tive approach (Qin et al., 2014).

The importance of statistical integration of binding signals and

gene expression data in understanding gene regulatory mechanisms

was discussed by Angelina & Costa (Angelini and Costa, 2014).

They proposed Bayesian integration models for causal inference of

genome-wide FRNs. BNCA and COGRIM are two existing

Bayesian approaches using Gibbs sampling to infer functional bind-

ings. Both tools require sampling distributions for binding occur-

rence and non-occurrence (each is a Gaussian distribution). This

step increases their computational cost greatly, since in each round

the tools must sample two different distributions under two hypoth-

eses. From our perspective, the key parameter of interest is the prob-

ability for binding occurrence. When the number of TFs is small, a

linear regression model can be used to infer a FRN very efficiently

(Liao et al., 2003). Correlation coefficients of individual bindings

and the regression error for each gene are reported and then jointly

modeled as a variable following a Student’s t distribution (Lange

et al., 1989). The false discovery rate (FDR) of each binding can be

calculated from the Student’s t distribution. Only if the FDR is lower

than a threshold will the binding be accepted. This evaluation is

very efficient because only one hypothesis (binding occurrence) is

tested. With the accumulation of ChIP-seq data, the number of bind-

ings on a gene is usually larger than the number of gene expression

observations. Such a linear regression model cannot be directly used

to infer large-scale FRNs. Efficient integrative methods are in need

to overcome above limitations.

We have developed a novel Bayesian method, namely CRNET,

to integrate ChIP-seq and time-course RNA-seq data for functional

regulatory NETwork inference. We model functional bindings as

Bernoulli random variables with prior knowledge of physical bind-

ings predicted from ChIP-seq data. CRNET uses a hybrid model of

Gibbs sampling and linear regression to predict functional bindings

with a significantly improved sampling efficiency. Several desirable

properties of the proposed CRNET method are as follows: (i) using

a Gibbs sampling framework, in each round CRNET only samples a

subset of physical bindings as potentially functional; (ii) using linear

regression model, regulation strength of each sampled binding and

the regression error are jointly modeled as a variable following a

Student’s t-distribution and a logistic function is then used to trans-

fer the Student’s t-distributed variable to a probability; (iii) unlike

conventional methods using known TF expression as the activated

form of TFs (TFAs), CRNET models each TFA as a variable and use

a two-stage Gibbs sampling procedure to sample functional bindings

and TFAs iteratively. As an extension, if cell type-specific 3D chro-

matin interaction data are available [i.e. ChIA-PET (Li et al., 2014)

or Hi-C (van Berkum et al., 2010)], CRNET can also integrate prior

bindings observed from enhancer regions with target gene expres-

sion data to infer distal and functional bindings.

We show the advantages of CRNET on synthetic datasets with

respect to different experimental settings of noise level and false con-

nection rate. The performance of CRNET is further benchmarked

on DREAM4 in silico regulatory networks with time-course gene

expression data by varying the proportions of false positive/false

negative perturbations in the prior networks. CRNET achieves a

significant improvement on functional bindings prediction over

existing methods. To demonstrate the capability of CRNET on

large-scale FRN inference, we apply CRNET to K562 cell line

data and GM12878 data, respectively. In terms of sampling

speed, CRNET is five times faster than the conventional Bayesian

approaches. Specific for the K562 study, we validate functional

bindings of three selected TFs as ATF3, EGR1 and SRF. Compared

to competing methods, a higher proportion of functional genes pre-

dicted by CRNET are validated. Finally, we apply CRNET to breast

cancer MCF-7 data for FRN inference at promoter or enhancer

regions. MYC is predicted as the most dominant TF and also a posi-

tive regulator in both FRNs. We transfect MCF-7 cells with siMYC

for 24 h and successfully validate the positive regulatory effects of

MYC on a significant set of target genes.

2 Materials and methods

CRNET is designed to use time-course RNA-seq data for the refine-

ment of FRNs from initial candidate networks that can be constructed

from ChIP-seq data. Specific for FRN inference at enhancer regions,

additional prior information of enhancer-promoter interactions is

needed, which can be obtained from cell type-specific ChIA-PET or

Hi-C data. In Figure 1, using Gibbs sampling, CRNET iteratively

samples hidden TFAs by assuming Gaussian random process, calcu-

lates the significance of regulatory strength for each binding based on

Student’s t statistics, and samples each functional binding as a

Bernoulli random variable according to the conditional probability.

After sufficient rounds of sampling, CRNET reports a posterior prob-

ability (sample frequency) for each binding that indicates the possibil-

ity that this connection is functional. A more detailed workflow of

CRNET is shown in Supplementary Figure S1.

2.1 Prior binding network construction
Given promoter or enhancer annotation files and multiple TFs

ChIP-seq data, a prior binding matrix can be constructed using a
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probabilistic method, ChIP-BIT2 (an extended version of ChIP-BIT

(Chen et al., 2016) to detect binding sites at enhancer and promoter

regions, respectively). An advantage of using ChIP-BIT2 is that we

can detect both strong and weak bindings. A weak binding refers to a

binding with a relatively low read intensity in the sample ChIP-seq

data but that is still significantly higher than that of the matched input

data. As demonstrated in (Chen et al., 2016) and (Ramos and Barolo,

2013), weak bindings at promoter and enhancer regions could both

result in functional regulation of target genes. More details about

ChIP-BIT2 can be found in Supplementary Material S2.

For promoter study, a prior binding matrix between TFs and tar-

get genes can be directly constructed since each promoter region can

be uniquely mapped to each gene. In this matrix, each row repre-

sents a unique gene and each column represents a TF. For enhancer

study, an enhancer-promoter (gene) loop map (provided by 3D chro-

matin interactions) is needed to associate distal TF bindings at

enhancer regions with target genes (Sanyal et al., 2012). 3D chroma-

tin interactions can be extracted from Hi-C data (Servant et al.,

2015) or ChIA-PET data (Phanstiel et al., 2015). More details

about how to construct the enhancer-gene loop map can be found

in Supplementary Material S3.1. Using the map and distal bindings

at enhancer regions, we can build a prior binding matrix,

too, whereas each row represents a unique enhancer-gene loop

(enhancer: gene). Note that the number of rows may be larger

than the number of actual target genes or enhancers because one

enhancer may regulate multiple genes through different loops and

one gene may also be regulated by more than one enhancer. We

define a prior binding matrix B ¼ b1; . . . ; bj; . . . ;bJ

� �T
, where each

row bj ¼ bj;1; . . . ;bj;t; . . . ;bj;T

� �
represents prior binding probabil-

ities of in total T TFs. If ChIP-seq data are not available, B can be

constructed as a binary matrix from other regulatory network data-

bases [e.g. TRED (Zhao et al., 2005) and RegNetwork (http://www.

regnetworkweb.org/)].

2.2 Time-course RNA-seq data processing
Considering gene expression data quality, we infer FRNs by inte-

grating prior binding matrix B with time-course RNA-seq data. For

each RNA-seq sample, we use RSEM (v1.3.0) (Li and Dewey, 2011)

to estimate the transcripts per million (TPM) value of each gene. We

then take a log2 transform of the TPM value. Candidate target genes

should have a significant dynamic expression change (i.e. at least

at one time point it is differentially expressed as compared to the

basal expression (‘0’ time point)). Considering computational cost,

pre-selection of biologically meaningful genes is preferred. We

define a gene expression matrix Y ¼ y1; . . . ; yj; . . . ; yJ

h iT
. Y has the

same number of rows as B and each row yj ¼ yj;1; . . . ; yj;m; . . . ; yj;M

� �
represents target gene expression under M conditions for the j-th

gene or enhancer-gene loop in B. For simplicity, we treat each row

of Y or B as a ‘gene’ and infer functional bindings for it.

2.3 Integrative modeling in the CRNET approach
In general, gene transcription is regulated by a set of TFs, whose

activation via post-translational modification controls gene expres-

sion. The activated form of a TF [modeled as TF activity (TFA)],

rather than its expression level, controls promoters or enhancers and

dictates the physiological state of the cell (Liao et al., 2003).

Correspondingly, how each promoter or enhancer receives the signal

reflects the relative contribution of each TF to the expression of the

target gene, which can be quantified as regulation strength. For the

j-th candidate target gene, we model gene expression yj using a log-

linear model (Liao et al., 2003) as follows:

yj ¼
XT

t¼1

zj;taj;txt þ gj þ nj; (1)

where xt ¼ xt;1; . . . ;xt;m; . . . ;xt;M

� �T
is a TFA vector and each xt;m

represents the activity of t-th TF under m-th sample. We define a

TFA matrix X ¼ x1; . . . ; xt; . . . ; xT½ �T . zj;t and aj;t represent the bind-

ing state and associated regulation strength for the connection

between t-th TF and j-th gene. Regulation strength aj;t is unknown

and needs to be estimated for zj;t ¼ 1 (aj;t is 0 when zj;t ¼ 0).

Accordingly, we define a binding matrix Z ¼ z1; . . . ; zj; . . . ; zJ

� �T
and

a regulation strength matrix A ¼ a1; . . . ; aj; . . . ; aJ

� �T
. gj represents

the basal expression at ‘0’ time point as yj;0 and nj ¼
nj;1; . . . ;nj;m; . . . ; nj;M

� �
is a Gaussian additive noise vector (with

mean zero and variance r2).

2.3.1 Sampling hidden TFAs

We model each TFA vector xt as a Gaussian random process where

the prior distribution of each variable xt;m is a Gaussian distribution

with mean zero and variance r2
x (Sabatti and James, 2006). The joint

probability of TFA matrix X, given gene expression matrix Y, regula-

tory strength matrix A, and binding matrix Z, is defined as follows:

P XjY;A;Zð Þ/P YjX;A;Zð Þ�P Xð Þ

/
Q

t

Q
j

Q
m

1

r
1

rx
exp � 1

2r2
yj;m�

X
t

aj;tzj;txt;m�gj

 !2

� 1

2r2
x

x2
t;m

0
@

1
A:
(2)

We use Gibbs sampling to sample xt;m according to its conditional

probability as defined in Equation (3), which is also a Gaussian

distribution:

P xt;mjyj;m; aj; xt0 6¼t;m

� �
/ 1ffiffiffiffiffiffi

2p
p 1

rx0
exp � 1

2r2
x0

xt;m � lx0
� �2

� �
; (3)

where the mean and variance are defined in following equations:

l0x ¼
r02x
r2

1

J

X
j

yj;m �
X
t0 6¼t

aj;t0zj;t0xt0 ;m � gj

 !
aj;tzj;t

" #
; (4)

r02x ¼
r2Jr2

x

r2
x

X
j

a2
j;tz

2
j;t þ r2J

: (5)

More details about the derivation of l0x and r02x can be found from

Supplementary Material S3.2. If there are two or more gene

Fig. 1. Flowchart of CRNET for FRN inference. CRNET is built on a twostage

Gibbs sampling procedure: (1) sampling hidden transcription factor activities

(TFAs) and (2) sampling binding connections
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expression replicates under the same time point, we provide an

option to assume TFA the same under the same time point and use

the mean value of gene expression replicates to estimate l0x.

2.3.2 Sampling binding connections

It is difficult to model directly the distribution of regulation strength.

In both BNCA and COGRIM, regulation strength is assumed to fol-

low Gaussian distribution but the veracity of this assumption is not

fully justified. For target gene identification, our final goal is to

determine functional bindings rather than sample individual regula-

tion strength. Therefore, we calculate the value of regulation

strength using linear regression directly and determine whether a

binding is likely to be functional (a true event). The basic idea is to

use hypothesis testing: H0 (null hypothesis)—no binding (regulation

strength¼0); H1 (alternative hypothesis)—functional binding (regu-

lation strength 6¼0).

For some genes, the number of prior bindings may be larger than

the number of gene expression samples (M), especially when given

tens or hundreds of TFs’ ChIP-seq data. Binding signal differences as

reflected by their prior probabilities are considered during the sam-

pling process. To meet the requirement of linear regression, in each

round of sampling, for each of such genes, we randomly select at

most M bindings according to their prior probabilities in B and

then, evaluate their functional effects (regression performance).

Those bindings with higher prior probabilities will be selected more

frequently. If binary prior is given, for each gene uniform prior will

be assigned to all candidate bindings. Whether to accept each

selected binding is determined by its regression performance on the

target gene. To evaluate the functional effects of selected bindings

on j-th gene, we estimate aj directly using a least-squares method as:

aj ¼ XXT
� ��1

X yj � gj

	 
T
: (6)

We define a t-score f aj;t

� �
to help evaluate if zj;t is functional. f aj;t

� �
(as defined in the following equation) takes into account both regu-

lation strength and regression error, which follows a Student’s t dis-

tribution under H0 with a degree-of-freedom of M� 1�
P

t zj;t (Gu

et al., 2012):

f aj;t

� �
¼

aj;t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� 1�

P
t zj;t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

m yj;m �
P

t aj;tzj;txt;m � gj

	 
2
=
P

m x2
t;m

r : (7)

With a significance level of a (e.g. 0.05), we can make a decision on

any f aj;t

� �
� ta with a a (¼5%) risk to be a true binding (where ta is

the t-statistic value determined by the significance level a). We fur-

ther transform f aj;t

� �
to a probability with which to generate Gibbs

samples. We propose to use a logistic function as defined in the fol-

lowing equation as a mapping function to calculate the probability

of a t-score (Weaver et al., 1999).

P zj;t ¼ 1jyj;X
	 


¼ 1

1þ exp � b1jf aj;t

� �
j þ b0

� �� � ; (8)

where b1 and b0 are trained following a procedure as described in

Supplementary Material S3.3. A logistic function curve with trained

b1 and b0 is shown in Supplementary Figure S2.

According to the conditional probability in Equation (8), we can

sample zj;t by either accepting or rejecting zj;t ¼ 1. From Equation

(7) it can be seen that f aj;t

� �
calculation for zj;t ¼ 1 depends on other

aj;t0 (t0 6¼ t). In practice, we iteratively sample a new zj;t iþ 1ð Þ in the

(iþ 1)-th round of sampling as follows:

P zj;t iþ 1ð ÞjY;X; zj;1 iþ 1ð Þ; . . . ; zj;t�1 iþ 1ð Þ;1; zj;tþ1 ið Þ; zj;T ið Þ
� �

: (9)

To ensure that the results from Equation (9) are not dependent of

the TF order, we shuffle the TF order (columns of matrix B) in each

round of sampling. After accumulating enough samples, we select

functional bindings according to the sampling frequency of each

binding, which represents the posterior probability of the binding.

We also run multiple times of CRNET with different initial states

and check algorithm convergence on variable estimation (Gelman

and Rubin, 1992). More details about convergence check can be

found in Supplementary Material S3.4.

3 Results

3.1 Benchmarking robustness using simulated and

DREAM regulatory networks
We first simulated a weighted regulatory network with 200 genes

and 20 TFs and multiple time-course gene expression data sets for

performance evaluation (Supplementary Figs S3 and S4). We aimed

to evaluate the effects of false connections in the prior binding

matrix, the noise power of gene expression data, and the number of

gene expression samples on final FRN inference. We mainly simu-

lated two different cases as: in Case 1, we simulated TFAs for indi-

vidual TFs using Gaussian random process with zero mean and unit

variance under 20 time points; gene expression was then simulated

based on the log-linear model introduced in Equation (1) with simu-

lated TFA and regulation strength; in Case 2, we only generated 10

time-course samples. Case 2 is more challenging because the number

of TFs is larger than the number of gene expression samples. In each

case, we varied the false-positive rate (defined by false-positive inter-

actions/true interactions) from 5% to 25% in the prior binding net-

work with a random prior probability between 0.5 and 1. We also

varied the signal-to-noise ratio (SNR) of the gene expression data

from 6 to �3 dB. More details about data simulation can be found

from Supplementary Material S4.1 and S4.2.

For performance comparison, besides existing Bayesian models

such as BNCA and COGRIM, we also included a LASSO-based

integrative approach (Qin et al., 2014) and two expression-based

methods [i.e. NARROMI (Zhang et al., 2013) and GENIE3

(Huynh-Thu et al., 2010)]. F-measure (2/(1/precisionþ1/recall)) of

the competing methods was presented in Figure 2. In Case 1, the

total number of expression samples is larger than the number of can-

didate TFs. Most integrative approaches work robustly against

false-positive connections in the initial network, as shown in

Figure 2A. CRNET has an improved performance over traditional

Bayesian approaches. When the SNR of gene expression data

decreases, performance of the competing methods degrades dramati-

cally, as shown in Figure 2B. Robustness of BNCA and COGRIM

against expression data noise is lower than CRNET. CRNET uses a

joint measurement of regulation strength and regression errors so

that overfitting can be effectively avoided as compared with existing

Bayesian methods. CRNET also estimates hidden TFAs instead of

using the noisy TF expression (as in COGRIM and LASSO). In Case

2, CRNET achieves the best performance among competing meth-

ods, as shown in Figure 2C and D. In this case, CRNET’s robustness

to network false connections over the other competing methods is

more obvious when the number of gene expression samples is small.
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Furthermore, as shown in Supplementary Figure S5, CRNET con-

verges much faster than competing Bayesian methods.

For further evaluation of CRNET’s performance with non-ChIP-

seq prior binary information, five benchmark regulatory networks

and the matched time-course gene expression data were downloaded

from (https://www.synapse.org/#! Synapse: syn3049712/files/),

which are used in DREAM4 challenge (Marbach et al., 2009). We

first tested the robustness of CRNET on FRN inference by adding

false-positive or -negative edges to the benchmark networks.

A false-negative edge is a ‘true’ binding in the benchmark network

but ‘missed’ by the prior binding matrix. We varied the false-

positive rate from 5% to 100% or the false-negative rate (defined by

false-negative interactions/true interactions) from 5% to 50% in the

prior binding matrices. Box plots of F-measures of CRNET under

different rates of false positive/false negative perturbations were pre-

sented in Figure 3A or B. It can be found from Figure 3A that when

the false positive rate of the prior matrix is under 40%, CRNET can

achieve an average Fmeasure higher than 0.8. To achieve a similar

performance using a prior network with false negative interactions,

as shown in Figure 3B, the rate should be below 30%.

We further tested competing methods using the same benchmark

networks and time-course gene expression data, too. Here, we only

add false positive interactions (30%) to the prior networks. GENIE3

is the winner of DREAM4 challenge; similar to NARROMI, it uses

gene expression data as the only input. For a fair comparison, we

only examined the performance of NARROMI and GENIE3 by

focusing on observed interactions in the prior binding network. As

shown in Figure 3C, F-measures are presented in box plots for all

competing methods. CRNET provides the best performance and

compared with BNCA or COGRIM, it converges much faster (as

shown in Fig. 3D, E and F). It can be found from Figure 3C that

integrative methods using prior binding information with a reason-

able false connection rate and gene expression data can provide

improved performance over traditional methods using gene expres-

sion data only.

3.2 Benchmarking performance using hundreds of TFs

in K562 and GM12878 cells from ENCODE
We continued examination of CRNET efficiency on large-scale FRN

prediction with hundreds of TFs. ChIP-seq data of K562 and

GM12878 cells were downloaded from the ENCODE database.

Matched time-course gene expression datasets were downloaded

from the GEO database (with access numbers: GSE1036 and

GSE51709) for K562 and GM12878 cells, respectively. We esti-

mated the SNR (signal-to-noise ratio) of each gene expression data-

set using SNAGEE (Venet et al., 2012). As shown in Supplementary

Tables S1 or S3, using baseline expression at ‘0’ time point as con-

trol (0 dB), the average SNR is 2.82 dB (or 2.04 dB) for K562 (or

GM12878) data. Prior binding matrix construction and candidate

gene selection can be found from Supplementary Material S5.1.

Prior binding matrixes and gene expression data can be found in

Supplementary Tables S2 and S4. Heatmaps of gene expression are

shown in Supplementary Figure S7. In total, we selected 1351 candi-

date genes and 228 TFs to infer FRNs in K562 cells; 925 genes and

122 TFs for FRN inference in GM12878 cells.

We also applied competing methods to each prior binding net-

work and the matched gene expression data. Due to the high density

of the prior networks (Supplementary Fig. S6), BNCA, a method

exhaustively searching and testing TF combinations, does not work.

COGRIM and LASSO require sparse binary binding events as input.

For a fair comparison, we set the prior probability threshold as 0.85

and selected binary binding events from 1348 genes and 173 TFs in

K562 cells and 877 genes and 80 TFs in GM12878 cells for further

analysis. GENIE3 uses gene expression data only and theoretically

has no limitations on the number of candidate TFs. After running

1000 rounds of Gibbs sampling, the average speed of CRNET is 498

or 58 sec/round for K562 or GM12878 FRN inference (R 3.3.1,
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Fig. 2. F-measure performance comparison of competing methods using syn-

thetic data with varying false positive connections and noise levels. (A) Case

1 with different FPRs; (B) Case 1 with different SNRs; (C) Case 2 with different

FPRs; (D) Case 2 with different SNRs

Fig. 3. Performance comparison using DREAM 4 in silico benchmark net-

works. (A) F-measure of CRNET by adding 10–100% false positive edges; (B)

F-measure of CRNET by deleting 10–50% true edges (false negative); (C) A

box plot of F-measure for competing methods (after 1000 rounds of Gibbs

sampling for Bayesian methods); (D), (E) and (F) box plots of CRNET, BNCA

and COGRIM F-measure performance during the sampling process
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MAC OS X, CPU 2.8 GHz, RAM 16GB). While the sampling speed

of COGRIM is 2611 or 322 sec/round under the same condition.

CRNET is five times faster than COGRIM. Learned distributions of

sampling frequency of CRNET and CORGIM are depicted in

Supplementary Figure S8. It can be found that the sample frequency

of CRNET follows a bimodal distribution. It is easy to define the

cut-off threshold (0.6 in this case) and further extract confident

edges. COGRIM tested two hypotheses (functional binding vs. non-

functional binding) and only recorded samples meeting the require-

ment of ‘functional binding’ hypothesis. Its sampling frequency dis-

tribution is a one-component Gaussian like distribution. Similarity

of CRNET-estimated TFAs and original mRNA expression for each

TF was checked using Pearson correlation coefficient. As shown in

Supplementary Figure S9, there is no clear correlation between them

and for a number of TFs, the correlation is negative.

Specific for the FRN inferred using K562 data we validated

functional target genes for three selected TFs: ATF3, EGR1 and

SRF. For each TF, a ‘true’ target gene is defined as: (i) there should

be at least one functional binding site at promoter region; (ii) this

gene should be significantly differentially expressed when the TF is

knocked down. We downloaded RNA-seq data with shRNA TF

knockdown for each specific TF (GEO access number: GSE33816).

For each TF, two RNA-seq replicates were generated under control

or treatment conditions (Vehicle vs. shRNA). We applied RSEM to

individual RNA-seq samples and estimated read counts and TPM

values of each gene across all samples. The knockdown efficiency

(differential expression of each TF) is shown in Figure 4A. We then

used DeSeq2 (Love et al., 2014) to identify differentially expressed

target genes with a q value cutoff as 0.05. In total, we identified

1133 differential genes for ATF3, 893 genes for EGR1 and 1011

genes for SRF, whose expression patterns are shown in

Supplementary Figure S10. Using ChIP-BIT2 weighted prior bind-

ing information, CRNET predicted 141, 249, and 62 functional

target genes for each of the three TFs; the validation success rates

are 14.9%, 11.15% and 12.5%, respectively. While using confi-

dent binding events only, the validation success rates are 14.8%,

10.44% and 11.3%. Venn diagrams of gene validation are shown

in Supplementary Figure S11 and validation success rates of com-

peting methods are shown in Figure 4B. In Supplementary Table

S5, we further listed the detailed number of genes being predicted

by each method containing the same number of validated genes as

CRNET with binary input (achieving the same recall performance).

It can be found that the FRN predicted by CRNET has the highest

validation rate for each of the three TFs.

3.3 Real application using breast cancer MCF-7 cells
We finally applied CRNET to breast cancer MCF-7 cell ChIP-seq

and time-course RNA-seq data and inferred two FRNs at promoter

and enhancer regions, respectively. A 17 b-estradiol (E2) treated

MCF-7 time-course RNA-seq dataset was downloaded from the

GEO database (accession number: GSE62789) and further proc-

essed using RSEM. (Supplementary Table S6). We estimated the

SNR of each RNA-seq sample using SNAGEE. As shown in

Supplementary Table S7, the average SNR is 2.83 dB. Candidate tar-

get gene selection can be found from Supplementary Material S6.1.

A heatmap of gene expression is shown in Supplementary Figure

S12. 39 TFs ChIP-seq data were downloaded from ENCODE or

GEO database (Supplementary Table S8) and processed using ChIP-

BIT2. More details about data processing can be found from

Supplementary Material S6.2 To associate prior bindings at the

enhancer regions with target genes, 3 D chromatin interactions were

extracted from a set of ECNODE MCF-7 ChIA-PET data using

Mango. In total, we selected 464 genes for promoter FRN inference;

1050 enhancers and 318 genes (1122 loops) for enhancer FRN infer-

ence (Supplementary Material S6.2). A majority of enhancers have

only one target gene but on average, each gene is regulated by four

enhancers. Prior binding matrixes, enhancer-gene loops and candi-

date gene expression data were provided in Supplementary Tables

S9 and S10.

For comparison, we also used MACS2 (v2.1.0) (Zhang et al.,

2008) to call genome-wide peaks using the same ChIP-seq dataset

and then, mapped peaks to candidate gene promoter or enhancer

regions. As shown in Supplementary Figure S13, most (�94%)

MACS2 bindings at gene promoter regions were captured by ChIP-

BIT2 and 78% of them had a ChIP-BIT2-estimated probability

larger than 0.85 (the default threshold of ChIP-BIT2 for peak pre-

diction). For those bindings predicted by ChIP-BIT2 only, 58%

of them still had a ChIP-BIT2-estimated probability over 0.85.

Obviously, there were a number of weak bindings missed by

MACS2. Prior bindings detected from enhancer regions were shown

in Supplementary Figure S14. About 60% of MACS2 bindings were

still captured by ChIP-BIT2 and the latter provided additional bind-

ing events for functional exploration.

We predicted FRNs at promoter regions using CRNET and

COGRIM, respectively. The average speed of CRNET is 8.8 s/round

as compared with 47.6 s/round for COGRIM. Convergence check

(Gelman and Rubin, 1992) was carried out using results of five repli-

cated Markov chains generated independently using each method.

As shown in Supplementary Figure S15, after 100 rounds of sam-

pling, CRNET starts to converge, while for COGRIM the number is

500. Similarity between TFA estimated by CRNET and mRNA

expression for each TF was shown in Supplementary Figure S17. It

can be found that there is no clear dependency between TFA and TF

expression. The pattern of TFA is, however, more consistent with

that of candidate gene expression. Analyzing the top 500 edges in

the CRNET-predicted FRN, we identified a key module including

TFs MYC, TDRD3, E2F1, MBD3, SIN3A and MAX. Using

COGRIM, a slightly different module was identified including

MAX, FOXM1, RAD21, SRF and E2F1. We also checked the top

500 edges in the FRN predicted by CRNET, but with the MACS2

prior binding matrix, a module including MAX, SIN3A, MYC and

E2F1 was identified. TDRD3 and MBD3 were missed because they

had much fewer prior bindings predicted by MACS2, as discussed in

Supplementary Material S6.2.

We then predicted another FRN at enhancer regions using

CRNET. The convergence curve in Supplementary Figure S16 shows

that CRNET starts to converge after 100 rounds. The average sam-

pling speed is 16 s/round. A key TF module including MYC,

TDRD3, ER-a, GABPA, GATA3 and E2F1 was identified using

top ranked edges. Here, three well-known breast cancer specific

enhancer activators: ER-a, GABPA and GATA3 were specifically

Fig. 4. True positive rate of differentially expressed genes in inferred FRN

by competing methods. (A) TF knockdown efficiency for ATF3, EGR1 or SRF;

(B) validation success rate for each TF
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enriched in this enhancer FRN. Again, we further examined the

enhancer FRN predicted by CRNET but using prior bindings from

MACS2. Still using the top 500 edges in the inferred FRN, we identi-

fied a TF module, whereas TFs TDRD3 and GABPA in the previous

module were missed. In this MCF-7 cell study, for the 39 selected

TFs, prior bindings predicted by MACS2 may not provide a ‘com-

plete’ candidate space for functional binding exploration.

Since in both promoter and enhancer FRN analyses MYC was

identified as the ‘top’ TF, we used siMYC to knock down MYC in

MCF-7 cells for 24 h, followed by Western blotting to confirm the

knockdown efficiency (Fig. 5A). The estimated TFA of MYC goes

up after E2 treatment (Supplementary Figs S17 and S18), suggesting

a positive regulation relationship of MYC with those over-expressed

target genes under E2 condition. If this active regulation relationship

is true, it can be expected that MYC target genes will be down-

regulated when MYC is knocked down. We therefore performed

microarray mRNA profiling using Illumina HumanHT-12 v4

Expression BeadChip. Two replicates were generated under wild

type (siSCR) or siMYC condition and processed and normalized

using beadarray (v2.26.0) (Dunning et al., 2007). As shown in

Figure 5B, MYC has been efficiently knocked down (differential

mRNA expression P value 2.5e-2). Setting fold change threshold as

0.5, in total we selected 2720 differentially expressed genes. A heat-

map of selected gene expression is shown in Figure 5C. 2271

(83.5%) MYC target genes are significantly down-regulated after

MYC knockdown. Among 101 predicted genes in the promoter

FRN, there are 40 genes significantly down-regulated (‘true’ MYC

targets). Among 92 enhancer target genes, the number of ‘true’

MYC targets is 44. There are 49 common predicted targets and 16

common validated targets between two studies. We calculated the

hypergeometric P value (in –log10 format) of the enrichment of

MYC valid target genes in the FRN predicted by each competing

method. As shown in Supplementary Table S11, using the same

prior from ChIP-BIT2, CRNET performs better than COGRIM.

Since ChIP-BIT2 can capture more weak but still functional bind-

ings, even for a strong TF like MYC, CRNET performs better if

combined with ChIP-BIT2 than MACS2. Numbers of validated or

non-validated MYC target and their gene expression heatmap were

shown in Supplementary Figure S19.

4 Discussion

CRNET is designed as an efficient sampling approach to integrate

ChIP-seq and time-course RNA-seq data for large-scale FRN infer-

ence. It aims to identify functional bindings among observed physi-

cal TF-gene interactions. Compared with other peer methods,

CRNET has a faster convergence speed and an improved perform-

ance in identifying FRNs from noisy binding and gene expression

data. A summary of data and tools used in this paper can be found

in Supplementary Material S7. Note that CRNET is developed

based on an assumption that TFs work parallel on gene regulation,

thus inferring FRNs, respectively, for promoter regions and

enhancer regions. However, evidence starts to emerge that TFs bind-

ing at enhancers and at promoters could work collaboratively or

hierarchically. Enhancer TFs may activate TFs at promoter regions

and then the latter will regulate gene expression, or enhancer TFs

may directly regulate genes through enhancer-promoter interactions.

If such prior information is given, the proposed CRNET can be fur-

ther extended and used to infer a joint FRN by properly merging

prior binding observations from promoter and enhancer regions.

Another potential extension of current CRNET framework is to pre-

dict cis-regulatory modules (TF-associations), especially for

enhancer studies. Prior knowledge of TF-associations may be needed

to define the candidate search space for module prediction. CRNET

can predict functional TF modules by sampling candidate TF-

associations instead of individual TF bindings.
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