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ACAT: A Fast and Powerful p Value Combination Method
for Rare-Variant Analysis in Sequencing Studies

Yaowu Liu,1 Sixing Chen,1 Zilin Li,1 Alanna C. Morrison,2 Eric Boerwinkle,2,3 and Xihong Lin1,*

Set-based analysis that jointly tests the association of variants in a group has emerged as a popular tool for analyzing rare and low-fre-

quency variants in sequencing studies. The existing set-based tests can suffer significant power loss when only a small proportion of

variants are causal, and their powers can be sensitive to the number, effect sizes, and effect directions of the causal variants and the

choices of weights. Here we propose an aggregated Cauchy association test (ACAT), a general, powerful, and computationally efficient

p value combination method for boosting power in sequencing studies. First, by combining variant-level p values, we use ACAT to

construct a set-based test (ACAT-V) that is particularly powerful in the presence of only a small number of causal variants in a variant

set. Second, by combining different variant-set-level p values, we use ACAT to construct an omnibus test (ACAT-O) that combines

the strength of multiple complimentary set-based tests, including the burden test, sequence kernel association test (SKAT), and

ACAT-V. Through analysis of extensively simulated data and the whole-genome sequencing data from the Atherosclerosis Risk in Com-

munities (ARIC) study, we demonstrate that ACAT-V complements the SKAT and the burden test, and that ACAT-O has a substantially

more robust and higher power than those of the alternative tests.
Introduction

With the advent of next-generation sequencing technol-

ogy, whole-genome and whole-exome sequencing in large

cohorts enables the discovery of low-frequency and rare

genetic variations that are likely to make substantial

contributions to the ‘‘missing heritability’’ and new ge-

netic discovery of complex traits and diseases.1,2 For

example, an exome sequencing study of human height

in >710,000 individuals identified 83 rare and low-fre-

quency coding variants that explained an additional

1.7% of the height heritability.3 Because rare and low-fre-

quency variants appear infrequently in the population,

the standard single-variant analysis that has been applied

for common variants in genome-wide association studies

(GWASs) is underpowered without very large effect sizes

and/or sample sizes.4 Set-based methods, which jointly

analyze variants in a group (e.g., exon variants in a

gene), have been proposed and are becoming increasingly

popular.4 These methods perform analysis by grouping

rare variants in a set to aggregate their small and moderate

effects in order to increase statistical power.

Over the past few years, the sequence kernel association

test (SKAT)5 and burden tests6–8 have emerged as the most

widely used methods for set-based rare-variant analysis,

partly because of their undemanding computational

requirement, flexibility to adjust covariates for analyzing

both binary and quantitative data, and ability to incorpo-

rate functional annotations and to allow for related sub-

jects. SKAT-O9 was proposed as an omnibus test whose

power is robust with respect to the directionality of variant

effects; it combines SKAT and burden test statistics adap-

tively on the basis of the observed data. However, SKAT,
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SKAT-O, and burden tests can lose substantial power under

sparse alternatives,10,11 i.e., only a small proportion of var-

iants in a set are associated with a disease or trait. Sparse

alternatives are natural and reasonable hypotheses in

sequencing studies because most variants in a set are antic-

ipated to have no influence on the risk or related traits of a

disease. The exponential combination test12 was proposed

to improve power in the sparse situation, but in order to

evaluate the set significance, it requires permutation,

which is computationally burdensome or even infeasible

for large-scale whole-genome sequencing studies.

The power of different set-based tests depends on the

underlying genetic architecture, which can differ in the

numbers, effect sizes, and effect directions of the causal

variants in different variant sets. For instance, a proper

choice of weights in SKAT and burden tests can boost

the power substantively for rare-variant analysis. Wu

et al.5 proposed using the family of beta densities of

minor-allele frequencies of the variants in a region as the

weights. If rarer variants are more likely to have larger

effects, upweighting the rarer variants would enhance

the analysis power. However, if all the variants have the

same or similar effect sizes, the use of equal weights might

be better. In practice, the genetic architecture of complex

traits is rarely known in advance and is likely to vary

from one region to another across the genome and from

one trait to another. Another important limitation of the

existing set-based tests is that they could suffer a substan-

tial loss of power if their assumptions are violated. Hence,

it is desirable to have an omnibus test that combines the

strength of multiple tests and is robust to the sparsity of

causal variants, the directionality of effects, and the choice

of weights.
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A widely adopted approach for combining multiple tests

is to take theminimum p value of tests as a summary of the

significance. Evaluating the significance of the omnibus

test with this approach, however, often requires numerical

simulations, and the approach is computationally expen-

sive because the multiple tests are often correlated. We

note that SKAT-O also uses the minimum p value approach

to combine SKAT and the burden test, and its p value can

be calculated efficiently without simulations. However,

the particular technique of p value calculation for SKAT-O

is not applicable to the combination of different tests in

general (e.g., the combination of SKAT tests under different

choices of weights). Fisher’s method13 can also be used for

the combination of complementary tests.14 However, it

suffers from the same computational issue as the mini-

mum p value method and could result in a considerable

loss of power because the combined test statistics are

calculated from an analysis of the same data and are often

highly correlated.

In this paper, we propose an aggregated Cauchy associa-

tion test (ACAT), a flexible and computationally efficient

p value combination method that boosts power in

sequencing studies. ACAT first transforms p values to be

Cauchy variables, then takes the weighted summation of

them as the test statistic and evaluates the significance

analytically. ACAT is a general method for combining

p values and can be used in different ways depending on

the types of p values being combined. When applied to

combining variant-level p values, ACAT is a set-based test

that is particularly powerful in the presence of a small

number of causal variants in a variant set, and it therefore

complements the existing SKAT and burden test. When

applied to combining set-level p values from multiple

variant set tests, ACAT is an extremely fast omnibus testing

procedure that performs the multiple testing adjustments

analytically and is applicable to the combination of any

tests.

The most distinctive feature of ACAT is that it only takes

the p values (and weights) as input, and the p value of

ACAT can be well approximated by a Cauchy distribution.

Specifically, neither the linkage disequilibrium (LD) infor-

mation in a region of the genome nor the correlation

structure of set-level test statistics is needed for calculating

the p value of ACAT. This feature offers several advantages.

First, the computation of ACAT is extremely fast and only

involves simple analytic formulae. Given the variant-level

or set-level p values, applying ACAT for analysis at the

whole-genome scale requires just a few seconds on a single

laptop. Second, as a set-based test, ACAT only requires

variant-level summary statistics (from a single study or

meta-analysis), and no population reference panel is

needed. Third, when the p values aggregated by ACAT

are calculated from appropriate models that correct for

spurious association due to cryptic relatedness and/or pop-

ulation stratification, then ACAT also automatically con-

trols for the spurious association. Another important

feature of ACAT is that it allows flexible weights that can
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be used for the incorporation of prior information, such

as functional annotations, to further boost power.

For analyzing rare and low-frequency variants, we adapt

ACAT to construct set-based tests and thereby increase the

analysis power in sequencing studies. We first propose a

set-based test, ACAT-V, that combines the variant-level

p values and has strong power against sparse alternatives.

As mentioned earlier, SKAT and burden tests have limited

power if most variants in a set are not associated with

the trait. In contrast, the proposed ACAT-V could also

lose power in the presence of many weakly associated var-

iants. In addition, the choice of weights could also have a

substantial impact on the analysis power. Therefore, we

further propose combining the evidence of association

from SKAT, the burden test, and ACAT-V, each with two

types of weights (i.e., equal weights and weights that up-

weight rare variants), to improve the overall power. We

use ACAT to combine the p values of themultiple set-based

tests, and we refer to this omnibus test as ACAT-O.

We conducted extensive simulations to investigate the

type I error of ACAT-V and ACAT-O and compare their

power with that of alternative set-based tests across a broad

range of genetic models for both continuous and dichoto-

mous traits. Through the analysis of Atherosclerosis Risk in

Communities (ARIC) whole-genome sequencing data,15

we demonstrate that ACAT-V, SKAT, and the burden test

have complementary performance; that ACAT-O identifies

more significant regions than does each individual test;

and that ACAT-O is very robust across different studies. A

summary of the proposed methods and their relationships

is provided in Figure 1.
Material and Methods

Aggregated Cauchy Association Test
ACAT is a general and flexible method of combining p values,

which can represent the statistical significance of different kinds

of genetic variations in sequencing studies. Let p1, p2,., pk denote

the p values combined by ACAT. For set-based testing, the p values

might correspond to k variants in a region and can be calculated

from a variety ofmodels for single-variant analysis. For continuous

traits, such models include linear regression or a mixed model and

for binary traits, and they include logistic regression or a mixed

model. For the combination of different tests, pis can be the

p values of k different set-based tests (such as SKAT, the burden

test, or tests with different choices of weights) for the same region.

Because ACATonly aggregates p values, one can automatically con-

trol cryptic relatedness and/or population stratification by fitting

appropriatemodels fromwhich pis are calculated throughmethods

such as principal-component analysis16 or mixed models.17,18

Similarly to the classical Fisher’s test,13 ACAT uses a linear com-

bination of transformed p values as the test statistic, except that

the p values are transformed so that they follow a standard Cauchy

distribution under the null hypothesis, and flexible weights are al-

lowed in the combination. Specifically, the ACAT test statistic is

TACAT ¼
Xk

i¼1

witan
��

0:5� pi
�
p
�
;
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Figure 1. Summary of the Proposed
Methods ACAT, ACAT-V, and ACAT-O
and the Relationship Among Them
where pis are the p values, wis are nonnegative weights, and the

transformation tanfð0:5� piÞpg is Cauchy distributed if pi is from

the null distribution.

For both set-based analysis and the combination of tests, the

p values are expected to have moderate or strong correlations as

a result of the LD of different variants or the fact that the p values

represent the significance of different tests that examine the same

region and are based on the same data. The most distinctive

feature of ACAT is that the null distribution of the test statistic

TACAT can be well approximated by a Cauchy distribution with a

location parameter 0 and a scale parameter w ¼ Pk
i¼1wi without

the need for estimating and accounting for the correlation among

p values.19 Therefore, based on the cumulative density function of

the Cauchy distribution, the p value of ACAT is approximated by

p valuez1=2� farctanðT=wÞg=p:

Because making this approximation does not require informa-

tion about the correlation of p values, calculating the p value of

ACAT requires almost negligible computation and is extremely

fast. For instance, given the summary statistics of variants, using

ACAT for set-based analysis of the whole genome can be per-

formed on a single laptop and only takes a few seconds. Further-

more, the approximation is particularly accurate when ACAT has

a very small p value, which is a useful feature in sequencing studies

because only very small p values can pass the stringent genome-

wide significance threshold and are of particular interest. The

reason that ACAT maintains these notable features is due to the

heavy tail of the Cauchy distribution, which makes the distribu-

tion of the test statistic TACAT (especially the tail of the distribu-

tion) insensitive to the correlation of the p values. See Appendix

A for more details about the theoretical justification of the

Cauchy-distribution-based approximation and general practical

guidelines regarding its approximation accuracy.

ACAT-V for Rare-Variant Association Analysis
We use ACAT to combine variant-level p values and develop a set-

based test (ACAT-V) that is particularly powerful under sparse

alternatives, i.e., in the presence of a small number of causal var-

iants in a set. The variant-level p values are calculated on the basis

of the normal approximation, which becomes inaccurate as the

number of minor alleles decreases. In addition, the behavior of
412 The American Journal of Human Genetics 104, 410–421, March 7, 2019
the variant-level p value or test statistic

for a very rare variant under the alterna-

tive will be attenuated toward the null dis-

tribution in comparison to a common

variant for a given effect size because of

the extremely low number of minor al-

leles. Therefore, a direct application of

ACAT for aggregation of the variant-level

p values in a region would result in an

overly conservative type I error and low-

ered power. To address this issue, we first

use the burden test to aggregate variants

with a minor-allele count (MAC) less

than a certain number (e.g., 10) and

then use ACAT to combine the p value
of this burden test of very rare variants with the variant-level

p values of the other variants in a region. Specifically, let p0
denote the p value of the burden test and p1;.; ps denote the

variant-level p values of variants with a MACR10. The ACAT-V

test statistic is

TACAT�V ¼
Xs

i¼0

w2
i;ACAT�V tan

��
0:5� pi

�
p
�
;

where w2
0;ACAT�V is the weight for the burden-test p value of var-

iants with MAC < 10 and w2
1;ACAT�V ;.;w2

s;ACAT�V are weights for

the other individual variants. For dichotomous traits, the normal

approximation could be inaccurate even for variants with

MACR10, and we use a saddlepoint approximation20 to improve

the accuracy of the variant-level p values.

As with SKAT and the burden test, including appropriate

weights in ACAT-V can yield improved power. One natural and

straightforward way of choosing weights for ACAT-V is to use

the same weights that are used in SKAT. However, the weights in

SKAT and in ACAT-V are not directly comparable and have

different interpretations because the SKATweights are on the indi-

vidual-variant-score statistic scale, whereas the ACAT-V weights

are on the individual-variant transformed-p-value scale.

Specifically, the SKAT test statistic4 can be written as

TSKAT ¼
Xk

i¼1

w2
i;SKAT S2i ¼

Xk

i¼1

w2
i;SKAT

n
G

0
iðY � bmÞo2

;

where Si ¼ G
0
iðY � bmÞ is the single-variant score test statistic,

w2
i;SKAT is the weight and Gi is a vector of allele counts for the ith

variant, Y is the phenotype vector, and bm is the predicted mean

of Y under the null hypothesis. SKAT puts weights on the single-

variant-score test statistics, whose scales (i.e., variances) are

different and depend on the minor-allele frequencies (MAFs) of

variants. In contrast, ACAT-V puts weights on the transformed

p values, which have the same scale and follow a standard Cauchy

distribution under the null hypothesis. To make a connection be-

tween the weights in SKAT and in ACAT-V, we can standardize the

single-variant-score test statistics to have the same scale by multi-

plying the inverse of the sample standard derivations of the vari-

ants Gis, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23MAFið1�MAFiÞ

p
. Hence, we can set the weights

in ACAT-V as



wi;ACAT�V ¼ wi;SKAT 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAFið1�MAFiÞ

p
(Equation 1)

to make them comparable with those in SKAT.

For rare-variant analysis, Wu et al.5 proposed setting wi;SKAT ¼
BetaðMAFi;a1;a2Þ, the beta density function, with two parameters,

a1 and a2, evaluated at the MAF of the i-th variant in a region.

Common choices of the parameters are a1 ¼ 1 and a2 ¼ 25, which

correspond to the assumption that rarer variants have larger per-

allele effect, and a1 ¼ a2 ¼ 1, which corresponds to the assump-

tion of the same per-allele effect for all variants. As an example,

we will also use the beta densities and Equation 1 to set weights

for ACAT-V in our simulations and real-data analyses.

Because the p value p0 (andMAF0) of the burden test for variants

with MAC < 10 in ACAT-V corresponds to multiple variants, we

set MAF0 to be the average MAF of the variants with MAC < 10

and calculate the weight ðw0;ACAT�V Þ for the burden test p value

on the basis of Equation 1 accordingly. In addition, the weights

in this burden test for variants with MAF < 10 also need to be

specified. In fact, there are two layers of weights in ACAT-V.

Here, to be consistent, we choose the two layers of weights to

have the same type. For instance, if the beta density Betað1;25Þ
is applied for weighting in ACAT-V, it is used for weighting the

p values in the outer layer on the basis of Equation 1 and also

for weighting the variants with MAC < 10 in the burden test in

the inner layer.

Although we choose weights based on the MAFs of the variants

here, other forms of weights, such as those based on the functional

annotations, can also be used. As long as the weights do not

depend on the phenotypes, the p value of ACAT-V can be approx-

imated efficiently via the Cauchy distribution.
An Omnibus Test: ACAT-O
In the ACAT-V test statistic, the Cauchy transformed p values in-

crease quickly as the p value approaches 0, and the weighted sum-

mation is essentially dominated by the components with very

small p values. Therefore, ACAT-V mainly uses a few of the small-

est p values to represent the significance of a region and is partic-

ularly powerful when only a small number of variants are causal.

In contrast, SKAT and the burden test are more powerful than

ACAT-V if a region contains a moderate or large number of causal

variants. Furthermore, in the case of a high proportion of causal

variants, the burden test could have stronger power than SKAT if

the causal variants have the same direction of association but

lose power as compared with SKAT if the effects of causal variants

are bi-directional. The choice of weights could also affect the po-

wer of a set-based test. If the effect size of a causal variant has a

negative relationship with the MAF of a variant, then the beta

weights with parameters a1 ¼ 1 and a2 ¼ 25 would lead to stron-

ger power than the weights with a1 ¼ a2 ¼ 1 (i.e., the equal

weights). But if the negative relationship is not true (for instance,

there is no relationship between the effect size and MAF), the

weights with a1 ¼ a2 ¼ 1 might be better. In practice, we rarely

have prior information about the number, effect sizes, and effect

directions of underlying causal variants, and this information

could also vary from one region to another across the genome

and from one trait to another. Therefore, it is desirable to deter-

mine the test adaptively on the basis of the observed data to

combine the strength of multiple tests. We can use ACAT to

combine the p values of multiple set-based tests to construct an

omnibus test (ACAT-O) that has robust power under various ge-

netic architectures. Although the p values of set-based tests

correspond to the significance of the same region and are (highly)
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correlated, ACAT does not require the correlation structure of the

p values of different set-based tests, and it therefore is well suited

for omnibus testing.

We construct the omnibus test (ACAT-O) for a variant set by

combining six set-based tests, i.e., ACAT-V, SKAT, the burden

test, and each test with two choices of weights (i.e., the weights

with a1 ¼ a2 ¼ 1 and weights with a1 ¼ 1 and a2 ¼ 25) so that it

is robust to the sparsity of causal variants, the directionality of

effects, and the choice of weights. Specifically, the ACAT-O test

statistic is

TACAT�O ¼ 1

6

X6
i¼1

tan
��

0:5� pi
�
p
�
;

where pisare the p values of the six tests and the tests are treated

equally in the combination. We will apply this test in all the sim-

ulations and real-data analyses. One can also use ACAT to combine

other set-based tests. The p value of ACAT-O can be calculated

quickly via the Cauchy-distribution-based approximation.

Because the underlying true genetic architecture is seldom

known in advance, it is possible that some tests incorporated by

ACAT-O do not have sufficient statistical power and therefore

would lead to loss of power in the omnibus testing. For example,

if the protective and harmful variants in a region have the same

numbers and effect sizes, the burden test would be powerless.

Thus, it is desirable that the omnibus testing procedure is not sen-

sitive to the inclusion of underpowered tests such that the power

loss can be minimized and does not exceed the power gain from

other powerful tests in the omnibus testing. As mentioned earlier,

ACAT mainly focuses on the few smallest p values. This feature is

also attractive for omnibus testing andmakes ACAT-O robust even

when some of the incorporated tests are underpowered. The min-

imum p value method also has a similar feature. However, an

advantage of ACAT over the minimum p value method is that

calculation of the p value of ACAT does not require estimating

or accounting for the correlation of the individual tests, whereas

the minimum-p-value method requires estimating and account-

ing for the correlation of the individual tests, which is often diffi-

cult and time-consuming.
Simulation Studies
We carried out extensive simulations to investigate the type I error

of ACAT-V and the omnibus test ACAT-O and compare their

power with SKAT and the burden test under different choices of

weights. For all the simulations, we generated 100 1 Mb regions

of sequencing genotype data by using a calibration coalescent

model that mimics the LD structure and local recombination

rate of the European population.21 Our simulation studies focus

on rare and low-frequency variants, so we excluded variants

with MAF > 0.05 in all of the 1 Mb regions.

Simulations of Type I Error

To obtain a total of 108 phenotype-genotype datasets, we first

randomly selected 1,000 4 kb sub-regions from each of the

100 1 Mb regions and then generated 1,000 phenotypes for each

4 kb sub-region of genotype data. The variant set length of 4 kb

is from a sliding-window approach15 and will also be used in the

real-data analysis described in the next section. Because it is com-

mon to adjust for covariates such as age, gender, and principal

components in practice, we included four associated covariates

(three continuous and one binary) in the null model for both

continuous and dichotomous traits. Specifically, we simulated

continuous phenotypes according to the linear model
can Journal of Human Genetics 104, 410–421, March 7, 2019 413



Y ¼ 0:3X1 þ 0:4X2 þ 0:5X3 þ 0:4X4 þ ε

and dichotomous phenotypes according to the logistic model

logit PðY ¼ 1Þ ¼ aþ 0:5X1 þ 0:5X2 þ 0:5X3 þ 0:5X4;

where X1;X2;X3 are generated independently from a standard

normal distribution, X4 takes values 0 and 1 with equal probabil-

ity, ε is an error term following a standard normal distribution, a

was determined to have a prevalence of 0.01, and balanced case-

control sampling is used for dichotomous traits. We set the sample

size n to be 2,500, 5,000, 7,500 and 10,000. For each test, the

empirical type I error rate is calculated as the proportion of

p values less than the significance level.

Simulations of Empirical Power

To assess the power performance of competing set-based tests, we

randomly selected causal variants within each of the 4 kb regions

to simulate phenotypes under the alternative. Specifically, we

generated continuous phenotypes by

Y ¼ 0:3X1 þ 0:4X2 þ 0:5X3 þ 0:4X4 þ b1G1 þ b2 G2 þ.þ bsGs þ ε

and dichotomous phenotypes by

logit PðY ¼ 1Þ ¼ aþ 0:5X1 þ 0:5X2 þ 0:5X3 þ 0:5X4 þ b1G1

þ b2 G2 þ.þ bsGs;

where G1;G2.Gs are the genotypes of randomly selected causal

variants, bis are the effect sizes for the causal variants, and the

other symbols are as defined for the simulations of type I error.

We varied the proportion, effect sizes, and effect directions of

causal variants to investigate the impact of these three factors on

the power of different tests. The proportion of causal variants

was set to be 5%, 20%, and 50% to cover the situations of sparse

and dense signals. The causal variants in a region could be all dele-

terious or all protective, or some of them could be protective and

others deleterious. Hence, we examined two settings of effect di-

rections: the signs of biswere either in the same direction or deter-

mined randomly and independently with an equal probability of

0.5. We also investigated two scenarios of effect sizes: bis either

had the same magnitude b or were set to be cjlog10MAFi j , such
that variants with a smaller MAF had larger effects, where con-

stants b and c depended on the proportions of causal variants.

Their values are presented in Table S1. We considered all possible

combinations of the three factors (i.e., the proportion, sizes, and

directions of nonzero bis) and had a total of 12 simulation config-

urations that covered a variety of genetic-architecture scenarios.

The significance level a was set to 10�6 so that the tests mimicked

genome-wide studies, and the empirical power of each test was

estimated as the proportion of p values less than a on the basis

of 103 replicates.

ARIC Whole-Genome Sequencing Data
The ARIC study has been described in detail previously.22

Regarding the whole-genome sequencing data, DNA samples

were sequenced at 7.8-fold average depth on Illumina HiSeq in-

struments, and genotyping was performed at the Baylor College

of Medicine Human Genome Sequencing Center. The ARIC study

was approved by institutional review boards at participating insti-

tutions, and informed consent was obtained from all participants.

After sample-level quality control as detailed in Morrison et al.,15

there were around 55 million variants in 1,860 African American

(AA) participants and 33million variants in 1,705 European Amer-

ican (EA) participants. Among all the variants, 17.3% and 19.4% of
414 The American Journal of Human Genetics 104, 410–421, March
them are common variants (MAF > 5%) in the AA and EA popula-

tions, respectively. Our study primarily focuses on analyzing low-

frequency (1%% MAF % 5%, 13.4% in AA populations and 9.1%

in EA populations) and rare (MAF < 1%, 69.3% in AA populations

and 71.5% in EA populations) variants across the genome by using

a sliding-window approach15 that chooses physical windows of

4 kb in length as the analytical units, starts at position 0 bp for

each chromosome, and uses a skip length of 2 kb. A minimum

number of three MACs is required in a window, resulting in a total

of 1,337,673 and 1,337,382 4 kb overlapping windows in AA par-

ticipants and EA participants, respectively. The distribution of the

number of variants in a window has a median of 60 in AA partic-

ipants and a median of 37 in EA participants, and is highly skewed

to the right.

The example application presented here focuses on the analysis

of two quantitative traits, lipoprotein(a) [Lp(a)] and neutrophil

count. The methods for the measurement of each trait were

described in detail in Morrison et al.15 We adjusted for age, sex,

and the first three principal components for both traits and addi-

tionally included current smoking status as a covariate in the anal-

ysis of neutrophil count. Because the distributions of both Lp(a)

and neutrophil count are markedly skewed, we applied rank-based

inverse normal transformation23 to both traits and used the

transformed traits as phenotypes in the analyses. For each 4 kb

window, we performed set-based association by using ACAT-O,

ACAT-V, SKAT, and the burden test and weighting the variants

by using beta weights and using MAFs with parameters of either

a1 ¼ a2 ¼ 1 or a1 ¼ 1 and a2 ¼ 25. Because around 1.3 million

windows are tested in each analysis, we used the Bonferroni

method and set the genome-wide significance threshold at

3:75310�8 (approximately equal to 0.05/1,337,000). We also

compared two alternative p-value-combination methods (i.e.,

the minimum-p-value method and the Simes method24) with

ACAT in the ARIC data analysis. See Appendix B for details.
Results

Simulation of the Type I Error

The empirical type I error rates for ACAT-V and ACAT-O are

presented in Table 1 for significance levels a ¼ 10�4;10�5;

and 10�6. The results demonstrate that the type I error

rate is protected for both continuous and dichotomous

traits, although it is slightly conservative for very small sig-

nificance levels (e.g., a ¼ 10�6). We note that the conserva-

tiveness is not due to the Cauchy-distribution-based

approximation but rather is due to the conservativeness

of the p values of the tests that are aggregated by ACAT. In

fact, the theory provided in Appendix A suggests that the

Cauchy-distribution-based approximation becomes more

accurate as the significance level decreases when the aggre-

gated p values follow a uniform distribution between 0 and

1 exactly. However, the p values of set-based tests (e.g.,

SKAT) or the variant-level p values are conservative for

rare variants and dichotomous traits,5 which results in the

slightly deflated type I error rate of ACAT-V and ACAT-O.
Power Simulation

We compared the power of ACAT-V and ACAT-O with

SKAT and the burden test under a variety of scenarios for
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Table 1. Type I Error Estimates of ACAT-V and ACAT-O Aimed at Testing the Association Between Randomly Selected 4 kb Regions with a
Continuous or Dichotomous Trait

Sample Size (n)

Continuous Traits Dichotomous Traits

a ¼ 10�4 a ¼ 10�5 a ¼ 10�6 a ¼ 10�4 a ¼ 10�5 a ¼ 10�6

ACAT-V(1,1)

2,500 9:33 10�5 8:63 10�6 6:13 10�7 1:03 10�4 9:13 10�6 6:33 10�7

5,000 9:13 10�5 7:43 10�6 9:93 10�7 9:73 10�5 8:83 10�6 4:03 10�7

7,500 1:13 10�4 9:03 10�6 6:73 10�7 9:03 10�5 7:53 10�6 5:53 10�7

10,000 9:33 10�5 9:03 10�6 1:13 10�6 9:33 10�5 9:03 10�6 6:73 10�7

ACAT-V(1,25)

2,500 9:43 10�5 8:63 10�6 7:83 10�7 9:73 10�5 9:43 10�6 5:93 10�7

5,000 9:23 10�5 7:33 10�6 1:03 10�6 9:83 10�5 8:23 10�6 3:93 10�7

7,500 1:13 10�5 9:13 10�6 8:23 10�7 8:73 10�5 7:43 10�6 4:63 10�7

10,000 9:23 10�5 8:23 10�6 9:23 10�7 9:23 10�5 9:13 10�6 7:73 10�7

ACAT-O

2,500 9:73 10�5 9:13 10�6 8:73 10�7 9:23 10�5 7:03 10�6 4:73 10�7

5,000 9:83 10�5 9:13 10�6 7:73 10�7 9:83 10�5 8:53 10�6 4:83 10�7

7,500 1:13 10�5 9:63 10�6 8:83 10�7 9:23 10�5 8:03 10�6 6:13 10�7

10,000 9:53 10�5 9:93 10�6 7:93 10�7 9:63 10�5 8:43 10�6 4:73 10�7

In each 4 kb region, common variants with MAF > 5% are excluded so that the focus is on rare and low-frequency variants. Each cell represents type-I-error-rate
estimates as the proportion of p values less than a under the null hypothesis on the basis of 108 replicates. For ACAT-V, the two numbers in parentheses correspond
to the beta(MAF) weight parameters a1 and a2, respectively.
both continuous and dichotomous traits. For the three

tests besides the omnibus test ACAT-O, we considered

two choices of weights that usedMAF, i.e., the beta weights

with a1 ¼ a2 ¼ 1 and the beta weights with a1 ¼ 1 and a2 ¼
25. Figures 2 and 3 display the results under the 12 simu-

lation configurations for continuous and dichotomous

traits, respectively. When only a small proportion (5%) of

variants were causal, ACAT-V had much higher power

than SKAT or the burden test regardless of the effect direc-

tions and choices of weights. This was expected because

ACAT-V mainly uses a few of the smallest p values to repre-

sent the significance of a region, whereas SKAT and the

burden test use a linear combination of the (squared) score

statistics, and the overall signal strength is diluted by the

dominating large number of non-causal variants. ACAT-V

still outperformed SKAT and the burden test in the pres-

ence of a moderate number of causal variants (20%) but

had substantial power loss when there was a large propor-

tion of causal variants (50%).

The burden test wasmuchmore sensitive to the effect di-

rection than SKAT or ACAT-V and suffered severe loss of

power in the presence of both protective and harmful var-

iants. When a large number of causal variants was present,

SKAT exhibited significantly higher power than ACAT-V

and the burden test in the case of bidirectional effects,

whereas the burden test was more powerful than SKAT

and ACAT-V in the case of unidirectional effects with a

large number of causal variants. However, none of the

three tests (i.e., ACAT-V, SKAT, or the burden test) were
The Ameri
robust, and they could be particularly powerful in some sit-

uations but lose substantial power in other situations. In

contrast, the omnibus test ACAT-O combined the strength

of all the other tests and was very robust to various genetic

architectures while losing little power in comparison to the

most powerful test. Indeed, across all the configurations,

the power of ACAT-O is either the highest among all the

competing methods or just slightly lower than the highest

one. We expect that, in the absence of prior knowledge

about the underlying genetic architecture, ACAT-O can

improve the overall power and yield more significant find-

ings than the other methods.

Application to the ARIC Whole-Genome

Sequencing Data

We applied the proposed methods to analysis of ARIC

WGS data. Table 2 shows the number of 4 kb sliding win-

dows identified as significant by each method for Lp(a)

and neutrophil count in AA and EA individuals. The signif-

icant 4 kb sliding windows are also reported in Tables S2,

S3, and S4. None of the set-based tests (SKAT, ACAT-V, or

the burden test) under a particular choice of weights

consistently exhibited higher statistical power than the

other methods across all the analyses. For instance,

SKAT(1,25) (the two numbers in the parentheses are the

values of beta(MAF) weight parameters a1 and a2, respec-

tively) detected more windows than SKAT(1,1) in the ana-

lyses of Lp(a) in both AA individuals and EA individuals

but only detected about half of the significant windows
can Journal of Human Genetics 104, 410–421, March 7, 2019 415



Figure 2. Power Comparisons of ACAT-O, ACAT-V, SKAT, and the Burden Test for Continuous Traits
Each bar represents the empirical power estimated as the proportion of p values less than a ¼ 10�6. The proportion of causal variants is
set to be 5%, 20%, and 50%, which correspond to the three rows of each panel. The left panel assumes the effects of the causal variants to
have the same direction, whereas the right panel assumes the effect directions are randomly determined with an equal probability. The
effect sizes ðjbi j sÞ of the causal variants either are all the same as jbi j ¼ b (left column in each panel) or have a decreasing relationship
withMAF (right column in each panel) as jbi j ¼ cjlog10MAFi j , where constants b and c depend on the proportions of causal variants and
their values are presented in Table S1. For each configuration, the total sample sizes considered are 2,500, 5,000, 7,500, and 10,000. Seven
methods are compared: ACAT-V(1,25), ACAT-V(1,1), SKAT(1,25), SKAT(1,1), burden(1,25), burden(1,1), and the omnibus test ACAT-O
that combines the other six tests, where the two numbers in the parentheses indicate the choice of the beta(MAF) weight parameters
a1 and a2 in the test.
identified by SKAT(1,1) in the analysis of neutrophil count.

The relative performance difference between the two traits

might suggest that the relationship between the effect sizes

and MAFs of variants is trait specific. Compared to SKAT,

the proposed test ACAT-V demonstrated a slightly higher

overall power in the analyses of Lp(a) among EA individ-

uals and was less sensitive to the choice of weights than

SKAT. Moreover, Figures S4–S6 display the scatterplots of

the p values of the significant windows and show that

ACAT-V can identify variant sets that are challenging for

the SKAT and burden tests to identify.

The burden tests detected markedly fewer significant

windows than did the other methods. This might be due

to the bidirectional variant effects on the two traits and/

or the sparsity of causal variants in most regions. In

contrast, the omnibus test ACAT-O was robust across all

the analyses. It identified considerably more Lp(a)-associ-

ated windows in both AA individuals and EA individuals

than did any of the other individual tests. ACAT-O also
416 The American Journal of Human Genetics 104, 410–421, March
had a comparable performance to SKAT(1,1) in the analysis

of neutrophil count. These results are consistent with

our simulation studies, in which ACAT-O either achieved

or came very close to the highest power among all

the methods and was very robust to diverse genetic

architectures.

To facilitate further insights into the performance of

different tests, we also presented the genomic landscapes

of the windows that were significantly associated with

Lp(a) among AA individuals, Lp(a) among EA individuals,

and neutrophil count among AA individuals in Figures

S1, S2, and S3, respectively. Overall, the results of SKAT

and ACAT-V complemented each other, indicating that

situations of both dense and sparse causal variants

could appear in different regions across the genome. By

combining the complementary results, ACAT-O covered

the majority of windows identified by each method and

achieved substantial power gain in comparison to the indi-

vidual tests. For the Lp(a) trait, the significant windows
7, 2019



Figure 3. Power Comparisons of ACAT-O, ACAT-V, SKAT, and the Burden Test for Dichotomous Traits
Each bar represents the empirical power estimated as the proportion of p values less than a ¼ 10�6. The proportion of causal variants is
set to be 5%, 20%, and 50%, which correspond to the three rows of each panel. The left panel assumes the effects of the causal variants to
have the same direction, whereas the right panel assumes the effect directions are randomly determined with an equal probability. The
effect sizes ðjbi j sÞ of the causal variants either are all the same as jbi j ¼ b (left column in each panel) or have a decreasing relationship
with MAF (right column in each panel) as jbi j ¼ cjlog10MAFi j , where constants b and c depend on the proportions of causal variants;
their values are presented in Table S1. For each configuration, the total sample sizes considered are 2,500, 5,000, 7,500, and 10,000. Seven
methods are compared: ACAT-V(1,25), ACAT-V(1,1), SKAT(1,25), SKAT(1,1), burden(1,25), burden(1,1), and the omnibus test ACAT-O
that combines the other six tests, where the two numbers in the parentheses indicate the choice of the beta(MAF) weight parameters
a1 and a2 in the test.
reside in an 850 kb region on chromosome 6; this region

includes five genes (PLG [MIM: 173350], SLC22A2 [MIM:

602608], SLC22A3 [MIM: 604842], LPA [MIM: 152200],

and LPAL2 [MIM: 611682]), in which previous studies

have also identified common variants that are significantly

associated with Lp(a). Two common variants in LPA, which

encodes the apolipoprotein(a) component of the Lp(a) li-

poprotein particle, showed very strong association and ex-

plained 36% of the variation of Lp(a) concentration.25

Several intronic variants of LPAL2 and PLGwere also found

to be strongly associated with Lp(a).26,27 The SLC22A3-

LPAL2-LPA gene cluster has been identified as a strong sus-

ceptibility locus for coronary artery disease,28 for which an

increased level of the Lp(a) lipoprotein is an independent

risk factor.

For neutrophil count, all of the significant sliding win-

dows reside in a 7.2 Mb region on chromosome 1.

SKAT(1,1) was the most powerful approach in the analysis

of neutrophil count, but SKAT(1,1) did not identify any
The Ameri
significant association with Lp(a) in LPAL2 among EA indi-

viduals or in PLG among EA and AA individuals. This illus-

trates that the genetic architecture varies across different

regions and traits, and a single test such as SKAT(1,1) is

not robust and can miss important regions in some ana-

lyses. ACAT-V detected some unique regions and comple-

mented SKAT and the burden test. For instance, ACAT-V

had a wider significant area defined by significant windows

surrounding LPAL2 than SKAT, and the results were consis-

tent in both AA and EA populations, suggesting that causal

variants might be sparsely spread over the region sur-

rounding this gene. Many variants in these unique regions

identified by ACAT-V also had large CADD29 Phred scores

(Figures S7–S9), which indicates that these regions are

likely to contain functional variants. The omnibus test

ACAT-O was able to detect the majority of windows that

were only found to be significant by ACAT-V or SKAT and

thus had the most robust performance across all the ana-

lyses. Although the burden tests were substantially less
can Journal of Human Genetics 104, 410–421, March 7, 2019 417



Table 2. The Number of Significant SlidingWindows Identified by
Each Test (ACAT-O, ACAT-V, SKAT, Burden) that are Associated
with Lipoprotein(a) or Neutrophil Count Among AAs or EAs in the
Analysis of the ARIC Whole-Genome Sequencing Data

Tests

Lipoprotein(a) Neutrophil Count

AA EA AA EA

ACAT-O 153 46 113 0

ACAT-V(1,1) 123 42 74 0

ACAT-V(1,25) 122 41 57 0

SKAT(1,1) 103 31 113 0

SKAT(1,25) 127 35 62 0

Burden(1,1) 8 5 20 0

Burden(1,25) 6 3 8 0

For ACAT-V, SKAT, and the burden test, the two numbers in parentheses corre-
spond to the beta(MAF) weight parameters a1 and a2, respectively. The signif-
icance threshold a is 3:753 10�8.
powerful than ACAT-V and SKAT in our analyses, ACAT-O

only suffered a little loss of power and was also robust to

the incorporation of underpowered tests. Hence, ACAT-O

not only enables the identification of more significant

findings but also is less likely to miss important regions.
Discussion

We have proposed ACAT as a general and flexible method

for combining p values and used ACAT to develop two

set-based tests (ACAT-V and ACAT-O) for association

analysis in sequencing studies. Through extensive simula-

tion studies and analysis of the ARIC whole-genome

sequencing data by using a sliding-window approach, we

demonstrated that ACAT-V is a powerful test that comple-

ments SKAT and the burden test in the presence of a small

number of causal variants in a set, and we showed that one

can increase power by using ACAT-O to combine the

p values of multiple complementary tests. Our simulations

also show that the type I error rates of ACAT-Vand ACAT-O

are protected for both continuous and dichotomous traits,

although they are slightly conservative for very small sig-

nificance levels.

The most important feature of ACAT is that its p value

can be accurately approximated without the need to ac-

count for the correlation of p values of individual tests,

whichmakes the computation extremely fast. This remark-

able feature also enables a wide range of applications of

ACAT to various genetic studies beyond the rare-variant

analysis considered in this paper.

When used for combining variant-level p values, ACAT

can also be applied to analyses of pathways, genes, gene

sets, gene-environment interactions, or common variants

in GWASs. In these analyses, ACAT requires only summary

statistics (or p values) instead of individual-level data to

test the association between a trait and a group of genetic

variants. Analyses of summary statistics protect privacy by
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circumventing the need for sharing individual-level data

and offer huge computational advantages. In addition,

compared to other methods for analyzing summary statis-

tics, ACAT does not need the LD information that is often

estimated from a population reference panel, which

greatly speeds up the computation and avoids the poten-

tial issues caused by the estimation accuracy of the LD

structure.30 For example, it is convenient and simple to

use ACAT to perform gene-based analysis to complement

the standard single-variant analysis in GWAS. The p values

from single-variant analysis can be directly used and are

the only input required by ACAT for gene-, pathway-, or

network-based analysis, and therefore the computation

can be done efficiently.

As an omnibus testing procedure, ACAT in principle can

be applied to combine complementary methods in nearly

all kinds of genetic studies, including single-variant anal-

ysis, multiple-traits analysis, and set-based analysis such

as that considered in this paper. In these studies, there

often exist multiple competitive methods that have been

developed on the basis of different reasonable assump-

tions. For instance, in set-based analysis, the assumptions

of SKAT, ACAT-V, and the burden test differ in the number

and directionality of the causal variants. In multiple-trait

analysis, the performance of different methods depends

on many factors, such as the number of traits associated

with a variant and the heterogeneity of effect sizes. In

the absence of prior knowledge about the underlying ge-

netic architecture, omnibus testing can lead to robust anal-

ysis results and enhance the overall power. The ability of

ACAT to obtain a p value efficiently without simulation-

based approaches allows for rapid combination of multiple

methods and makes omnibus testing feasible for large

studies even at the whole-genome scale.

Although ACAT-O employs equal weights to combine

different set-based tests, one can also consider upweight-

ing the tests that are more likely to be powerful in a partic-

ular analysis in order to further boost the power. For

example, if previous studies show the existence of both

protective and harmful variants for a trait, one can give

less weight to the burden test and more weight to SKAT

and ACAT-V. Hence, as the understanding of a trait pro-

gresses, the omnibus test constructed by ACAT has the

capacity to mature to increase power. In contrast, the min-

imum p value method and the Fisher’s method do not

allow for flexible weights for the combination of tests.

The whole-genome sequencing analysis of the ARIC data

clearly demonstrates that the choices of weights can have a

substantial impact on the power of a test. In the analysis

results, SKATwith the default beta(MAF; 1,25) weights per-

forms better for Lp(a) but identifies markedly fewer signif-

icant windows for neutrophil count than SKAT with the

equal weights [or the beta(MAF; 1,1) weights]. This also in-

dicates that a single type of weights does not uniformly

give the best performance across different studies, and it

is necessary to determine the weights in an adaptive

manner on the basis of the observed data. Besides MAF,
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one can also consider incorporating various functional an-

notations as weights for SKAT, ACAT-V, and the burden test

to further boost power if the functional annotations are

expected to be predictive for effect sizes and/or the proba-

bilities of variants being causal. Because it is rarely known

in advance which functional annotation would lead to the

optimal power, one can also use ACAT to combine the

p values of set-based tests weighted by multiple functional

annotations that are potentially informative.

Another interesting observation from our analysis of the

ARIC sequencing data is that even though some under-

powered tests are included for omnibus testing, ACAT-O

would only have a little power loss. For example, the signif-

icant windows detected by the burden tests were only a

small proportion of those detected by SKAT and ACAT-V

in all the analyses. Including the burden tests in ACAT-O,

however, resulted in little power loss. Hence, applying

ACAT to combine multiple functional annotations could

still be beneficial even if some non-informative functional

annotations are incorporated.
Appendix A: The Approximation Accuracy of the

ACAT p Value

The Theory

The theory of ACAT was studied in detail in Liu and Xie,19

and we provide a brief description related to rare-variant

analysis here. Recall that the ACAT test statistic is defined

as TACAT ¼ Pk
i¼1witanfð0:5� piÞpg, where pis are the p

values andwis are non-negative weights. We can transform

the p values to z scores (Zis), i.e., pi ¼ 2f1� FðjZi j Þg for

i ¼ 1;2;.; k: If each pair of z scores follows a bivariate

normal distribution with mean 0 under the null hypothe-

sis, then we have

lim
t/þN

PfðTACAT=wÞ > tg
PfCauchyð0;1Þ > tÞg ¼ 1;

where w ¼ Pk
i¼1wi and Cauchyð0; 1Þ denotes a random

variable following the standard Cauchy distribution. This

result holds under an arbitrary correlation structure of the

z scores or p values and indicates that the tail of the ACAT

test statistic is approximately Cauchy distributed. Because

thepvalue corresponds to the tail probabilityof thenull dis-

tribution, the theoretical result suggests that the Cauchy

distribution can be used for approximating the p value of

ACAT, and the approximation would be particularly accu-

rate when the ACAT p value is very small. Because of the

necessity of adopting stringent p-value thresholds in

sequencing studies to control for the rate of false-positive

findings, the Cauchy-distribution-based approximation

would be extremely close to accurate for the regions that

were significantly associated with the trait. In some cases,

the p values combined by ACAT might not exactly follow

a uniform distribution between 0 and 1 under the null hy-

pothesis. For instance, the calibrated SKAT or variant-level

p value based on the analytic approximations is often con-
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servative for very rare variants and dichotomous traits.

When the p values combined by ACAT are conservative,

we have lim
t/þN

PfðTACAT=wÞ
PfCauchyð0; 1Þ > tÞg%1;

which indicates that the ACAT p value based on the

Cauchy approximation would also be conservative.
Practical Guidelines

Because ACAT is a general method for combing p values

and can be used for many other applications beyond

variant-set analysis in WGS, we provide guidelines

regarding the accuracy of the ACAT p value calculated by

the Cauchy-distribution-based approximation. The guide-

lines are based on the assumption that the p values aggre-

gated by ACAT are accurate in the sense that they follow a

uniform distribution between 0 and 1 under the null hy-

pothesis. If this assumption is violated and the p values

are conservative, then the ACAT p value generally would

also be conservative, as mentioned earlier.

The approximation accuracy certainly would depend on

many factors, among which the ACAT p value (i.e., pACAT )

itself and the correlation among the p values are most

important. In general, as implied by the theory, the

smaller pACAT is, the less impact the correlation could

have on the accuracy of pACAT . When the ACAT p value

is very small (e.g., pACAT < 10�5), the type I error

would be well controlled under almost all kinds of

correlation structures, except in a very rare situation that

we will describe later. When the ACAT p value is moder-

ately small (e.g., 10�3 < pACAT < 10�5), the accuracy is

generally satisfactory for practical use, but a slight inflation

is possible. When the ACAT p value is large (e.g.,

pACAT > 10�3), one might need to pay attention to the

potential type I error inflation when the correlations are

moderately strong.

A rare situation that one should be always cautious of

is when many strong negative correlations exist among

the p values. Fortunately, this situation seldom happens

in practice. For example, if the p values are calculated

from two-sided z scores, it is impossible to have a

strong negative correlation between two p values. More-

over, the p values of competitive methods (e.g., the

burden test, SKAT, and ACAT-V) are also often positively

correlated.
Appendix B: Alternative p-Value-Combination

Methods

We compare ACAT with two simple alternative p-value

methods: the minimum-p-value method and the Simes

method.24 Although resampling approaches can improve

the accuracy of the type I error rate for these two p-value-

combination methods, both methods can also be used

without resampling adjustment, and the computation of

these two methods would be very fast. Specifically, let

pð1Þ; pð2Þ.; pðdÞ be d ascending p values. The p values of
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the minimum-p-value method and the Simes method can

be simply approximated as d3pð1Þ and min
i

pðiÞd=i, respec-
tively. In this case, the minimum-p-value method is

equivalent to the Bonferroni procedure, and the Simes

method is strictly less conservative than the minimum-

p-value method. As with ACAT, we can use these two

methods without resampling adjustment to aggregate

variant-level p values for a variant-set test (parallel

to ACAT-V) and set-level p values for omnibus testing

(parallel to ACAT-O), except that these two methods

do not allow flexible weights in the combination of

p values.

To compare the performance of the two simple alterna-

tive methods with ACAT, we also applied the two methods

to analysis of the ARIC whole-genome sequencing data.

The results are presented in Table S5 and show that the

minimum-p-value method and the Simesmethod detected

considerably fewer significant sliding windows than the

ACAT detected. This is because the two alternative

methods are generally more conservative than ACAT and

less powerful than ACAT when the causal variants in a

set are not extremely sparse.
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