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When studying the genetics of inherited diseases, researchers often collect data on
affected families, unrelated cases, and healthy controls. However, the joint analysis of
such heterogeneous data is difficult, and the simpler analysis of homogeneous subsets
is often suboptimal. For example, while case-control tests of association are sensitive to
allele frequency differences, the preferential transmission of risk alleles from heterozygous
parents to their affected offspring is typically ignored. Similarly, the transmission disequi-
librium test (TDT) fails to incorporate the difference in allele frequencies when testing
for association. To boost the power of modern genetic studies, we propose POPFAM
– a fast and efficient test of association that can accommodate large affected families,
unrelated cases, and controls. We use simulations to assess the type I error and power of
POPFAM across different genetic models, and minor allele frequencies. For comparison,
we examine the power of competing methods: the trend test, a Wald test (equivalent
to the TDT), and SCOUT. Our results show that POPFAM maintains the correct type I
error, and that it is more powerful than the trend test or the TDT. It performs as well
as, or better than the likelihood ratio test SCOUT, which was developed specifically for
case-parent/case-control data. Furthermore, when applied to the human leukocyte antigen
genotypes of 401 type 1 diabetic families, POPFAM confirmed the previously reported
association between DRB1∗03:01 and microvascular complications (p = 0.04). In general,
we expect our proposed test to facilitate the identification of clinically important genomic
regions, and to better inform the design of follow-up sequencing efforts.
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INTRODUCTION
Many researchers have highly informative, but statistically com-
plicated data. For example, their data may contain a mixture of
affected families, independent cases, and controls that are often
(but not necessarily) collected at different times. Since these mixed
data sets contain both population-based and family based lines of
evidence, the power to detect an association is potentially increased
relative to conventional case-control or transmission disequilib-
rium tests (TDTs). However, it is difficult to increase power for
several reasons. First, the two lines of evidence are usually corre-
lated since they tend to share many (if not all) of the same cases.
Second, optimal ways of combining these two lines of evidence are
not yet known. In addition, there is always the possibility of spu-
rious associations due to cryptic population stratification (PS). In
light of these concerns, many researchers simply report the results
of the population-based test and the family based tests separately.
This separate tests approach has three main drawbacks. First, the
component tests are often less powerful than tests that combine
the two sources of information. Second, it is difficult to summa-
rize the overall evidence for association when one component test
is significant and the other is not. Third, if the case-control test is
significant, then a significant family based test will often be inter-
preted as assurance that the case-control finding was not spurious

(i.e., the result of cryptic PS). However, since modern case-control
studies can substantially reduce the negative effect of cryptic PS
(Price et al., 2006; Epstein et al., 2007; Li et al., 2010; Thornton
and McPeek, 2010), the confirmatory role of the family based test
(and hence the need for separate tests) has lost much of its original
appeal.

In contrast to the separate tests approach, others advocate a
combined test approach. Broadly speaking, a combined test can
be classified as either likelihood-based, or meta-analysis. The
meta-analysis methods combine summary statistics derived from
possibly overlapping, and often exhaustive subsets of the mixed
data. Some of the earliest mixed data methods (Clayton, 1999;
Whittemore and Tu, 2000; Epstein et al., 2005; Putter et al., 2005)
used the likelihoods of genotype relative risk (GRR) parameters
to test for association. Many of these methods were direct exten-
sions of the Schaid and Sommer (1993) CPG-likelihood, which
was designed for case-parent genotype data (i.e., trios). Shortly
thereafter, other authors began to use the meta-analysis frame-
work (Putter et al., 2005; Bagos and Nikolopoulos, 2007; Chen
and Lin, 2008; Mirea et al., 2012), which focuses on combinations
(esp. linear combinations) of summary statistics. In addition to
being almost as powerful as the likelihood-based methods that
pre-date them, the meta-analysis methods offer several other
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attractive features as well. First, the primary genotype data are no
longer needed. Second, handling more elaborate designs, such as
extended families and measured covariates is easier. Third, para-
metric and non-parametric procedures are easily incorporated.
Nevertheless, a disadvantage of almost all existing mixed data
methods is that they require specification a priori of a genetic
model (e.g., additive, dominant, multiplicative, or recessive).
One notable exception is the non-parametric method of Bagos
and Nikolopoulos (2007). However, for this method, the sum-
mary statistics are so restrictive that extensions to large families
and/or additional controls with measured covariates are difficult
at best. For a more detailed review of association methods that
analyze the genotypes of case-parent and unrelated individuals,
see Infante-Rivard et al. (2009).

Using the theory of linear models, Chen and Lin (2008) pro-
posed a combined test that is the linear combination of a family
based test and a population-based test of association. Further-
more, if the component tests (i.e., the family based test and the
population-based test) are symmetrically distributed about the
same mean under the alternative, then their test is indeed optimal
(i.e., most powerful). However, this condition is rarely met, and in
practice the optimal weights will depend on the marginal power
of each component test. Although the marginal power of any test
is typically not known a priori, the trend test (Armitage, 1955) and
the TDT (Spielman et al., 1993) have been shown to have simi-
lar power across a wide range of genetic models (McGinnis et al.,
2002). Therefore, when the component tests are equivalent to the
trend test and to the TDT, equal weights may be used. However,
when one component test has substantially higher power than the
other, a weight that varies inversely in proportion to an appro-
priate measure of sample size tends to work well in practice (see
Methods).

Recall that for most mixed data sets, the population-based and
family based tests will use the genotypes of a shared set of cases,
which means that the two tests will be correlated. Like Chen and
Lin (2008), our proposed test: POPFAM, is also a linear combi-
nation of two component tests, and we use a scaling factor that
depends on the correlation to ensure that our test is normally
distributed [i.e., N(0,1)] under the null hypothesis of no associ-
ation. However, unlike Chen and Lin (2008), and unlike SCOUT
(Epstein et al., 2005) – a competing likelihood ratio test, POP-
FAM does not make any assumptions about the underlying genetic
model. Furthermore, POPFAM is flexible, in that large families
(with or without missing data), publicly available controls, and
measured covariates are easily incorporated. Moreover, its full
potential is perhaps best realized when one incorporates multi-
point linkage statistics like EAGLET (Stewart et al., 2010, 2011),
KELVIN (Vieland et al., 2011), and/or MORGAN (Thompson,
2000). For example, a multipoint linkage method could provide
weights for POPFAM p-values in a weighted false discovery rate
(FDR) approach. Similarly, by restricting the association analysis
to regions beneath linkage peaks, these same multipoint linkage
methods could also reduce the multiple testing burden.

METHODS
For ease of exposition, let’s suppose that we have genotype data
at a single nucleotide polymorphism (SNP) on affected trios

and controls sampled from a genetically homogenous popula-
tion (i.e., there is no PS), and let’s assume that every case is
an affected offspring with unphenotyped parents. Later, we will
discuss how related cases can be incorporated into the analysis.
Define a population-based test of association P that depends on
the genotypes of cases and controls, and a family based test F that
depends on the genotypes of the same cases and their relatives.
Our proposed test, POPFAM, is

[wP + (1 − w)F]
/√

w2 · Var(P) + (1 − w)2 · Var(F) + 2w(1 − w) · τ,

where τ denotes Cov(P,F). The optimal weight w depends on
the relative power of P and F. However, since this information is
rarely known a priori, it is often useful to define w on the basis
of sample size (e.g., w ≡ A/(A + H) with A defined as one half
of the harmonic mean of cases and controls, and H denoting the
number of heterozygous parents). When the mixed data are (or
can be treated as) case-parent trios and controls (which is often
the case), we have a closed-form algebraic expression for τ (see
Appendix A) that permits the fast and accurate computation of
p-values across the genome.

POPFAM uses the trend (i.e., case-control) test for P, and the
Wald test of Mendelian segregation for F. Formally, for M controls,
N case-parent trios with X ≤ N trios having at least one heterozy-
gous parent, let T i count the number of “1” alleles transmitted
from a heterozygous parent to his/her affected offspring, and let
H ≤ 2N be the total number of heterozygous parents across all N
trios. Further, let Rj and Sk count the number of “1” alleles in the
jth case and the kth control, for j = 1, . . ., N, and k = 1, . . ., M.
Then, the trend test of proportions (denoted by P) and the Wald
test (denoted by F) are

P =
(∑

Rj/N − ∑
Sk/M

)
√

σ2
(
N−1 + M−1

) Eq. (1)

F = √
4H

(∑
Ti/H − 0.5

)
, Eq. (2)

where σ2 = 2p(1 − p) assuming Hardy-Weinberg equilibrium
(HWE). If HWE does not hold, then σ2 can be estimated with the
method of moments by

[
4g2 + g1 − (N + M)ḡ2

] /
(N + M).

Here, g1 and g2 count the number of cases and controls with
1 and 2 alleles of type “1,” and ḡ = (2g2 + g1)/(N + M).
The minor allele frequency (MAF) is denoted by p. Note that
the trend test is equivalent to the standard two-sample test of
proportions when HWE holds. With this general framework,
missing data, large families, and measured covariates can, in
principle, be handled by considering other choices of P and F
such as logistic regression, GDT (Chen et al., 2009) and/or PDT
(Martin et al., 2000). Furthermore, the limiting distribution of
POPFAM under the null hypothesis of no association is N(0,1)
since P and F are asymptotically normal with mean zero under
the null.

Furthermore, to safeguard against the negative effects of cryp-
tic PS, users could for example base the component test P on
the scaled slope coefficient from an EIGENSTRAT (Price et al.,
2006) analysis. In doing so, the top principal components (which
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are estimated from the observed genotypes) mitigate the negative
effects (if any) of cryptic PS. Alternatively one could opt to use the
test statistic implemented in ROADTRIPS (Thornton and McPeek,
2010) instead. In addition to correcting for cryptic PS, this statis-
tic also corrects for any unreported relatedness such as second or
third cousin relationships. However, the limiting distribution of
the test implementedin ROADTRIPS is chi squared, which means
that the resulting POPFAM p-values would have to be estimated
empirically.

DATA: SIMULATED AND REAL
To assess the power (and type I error) of POPFAM, and to examine
the sensitivity of a competing parametric method named SCOUT
(Epstein et al., 2005), we simulated SNP genotypes for 200 case-
parent trios and 200 controls under the null hypothesis of no
association, and under six different alternative hypotheses (i.e.,
scenarios) that were neither additive, dominant, multiplicative,
nor recessive (Table 1). We chose to compare POPFAM to SCOUT,
since the latter has comparable performance to several existing
mixed data methods (Epstein et al., 2005; Guo et al., 2009). For
the six scenarios, the correlation was fixed at D′ = 0.80, the dis-
ease prevalence was set to 5 percent with a 4.5 percent phenocopy
rate (i.e., wildtype homozygotes were affected with probability
0.045). We varied the disease allele frequency (DAF) from 0.03
to 0.30, although we were particularly interested in SNPs with
MAFs between 0.03 and 0.12, since many variants in this range
have escaped detection by existing (i.e., less powerful) association
methods, and since many of these variants are expected to have
clinically meaningful effects (Dickson et al., 2010). Type I error was
fixed at 5%, and power was estimated from 1000 replicates. The
MAF of the SNP was always equal to the DAF for each scenario.
Note that since our simulations use an equal number of cases and
controls (i.e., N = M), and since we chose the trend test and the
Wald test of Mendelian segregation for P and F respectively, the
two tests have comparable power (McGinnis et al., 2002). As such,
the POPFAM-related weight was set to ½. Note that, when sample
size was used to compute the weight (see Methods), it ranged from
0.75 to 0.5 as the MAF increased from 0.03 to 0.30. The results were
qualitatively the same whether the weight was fixed or allowed to
vary (data not shown).

Table 1 | Genetic models for simulated data.

Scenario DAF Pr(Aff|D/d) Pr(Aff|D/D)

S1 0.03 0.125 0.440

S2 0.06 0.084 0.218

S3 0.09 0.066 0.237

S4 0.12 0.060 0.173

S5 0.20 0.053 0.100

S6 0.30 0.050 0.080

Here, “d” denotes the wild type allele at the disease locus, and “D” denotes the
causal allele thatincreases risk. DAF is the disease allele frequency.

A recent case-control study among type 1 diabetics (Lip-
ner et al., 2013), reported a protective effect of DRB1∗03:01
for microvascular complications (e.g., retinopathy, nephropathy,
and/or neuropathy) (p < 0.045). Therefore, to demonstrate the
utility of POPFAM, we analyzed 117 case-parent trios, and 277
controls at the DRB1∗03 marker of the human leukocyte anti-
gen (HLA) class II locus. In our analysis, two lines of correlated
information were combined (1) the DRB1∗03:01 allele frequency
difference between type 1 diabetics with and without complica-
tions, and (2) the preferential transmission of DRB1∗03:01 alleles
from heterozygous parents to type 1 diabetic offspring without
complications. Note that, in this example, the second line of
evidence is no longer straightforward in that the excess trans-
mission measured by F is no longer measured relative to one half.
Instead, it must be measured relative to the over-transmission of
DRB1∗03:01 alleles to type 1 diabetics with complications. SCOUT
cannot accommodate such an analysis, and this line of evidence
was ignored in the original study that first reported the associ-
ation between DRB1∗03 and microvascular complications (e.g.,
retinopathy, nephropathy, and/or neuropathy).

RESULTS
From Table 2, we can see that all three tests (our proposed test POP-
FAM, the population-based test P, and the family based test F) are
valid in that their type I errors are controlled. Moreover, for the six
alternative hypotheses considered (i.e., scenarios 1–6), POPFAM
outperforms P and F, and usually outperforms SCOUT in terms
of power (Table 3). Note that, since the program SCOUT requires
specification a priori of a genetic model (e.g., additive, dominant,
recessive, or multiplicative), it is difficult to compare SCOUT to
a non-parametric test like POPFAM. Nevertheless, POPFAM out-
performs SCOUT in 5 of 6 scenarios even if the best fitting genetic
model were known. Also, if one happens to choose the worst fitting
genetic model, then even the component tests: P and F outperform
SCOUT.

In our secondary data analysis of type 1 diabetics, POPFAM
confirmed the association between DRB1∗03 and microvascular
complications (p = 0.04). Specifically, the p-value of the case-
control test was 0.045, whereas the p-value for POPFAM (i.e., the
test that integrates population-based and family-based lines of
evidence) was 0.04. Note that, the family-based test alone was not
significant (p < 0.12), but when combined with the case-control
test the overall evidence for association increased. This same phe-
nomenon also occurs in the simulated data, and it explains why
POPFAM is always more powerful than P or F alone Table 3.

Table 2 |Type I error of POPFAM, P and F.

Test 5% 1%

POPFAM 0.045 0.009

P 0.054 0.009

F 0.064 0.007

Type I errors are based on 1000 null replicates. POPFAM is our proposed test, P
is the trend (i.e., case-control) test, and F is the Wald equivalent of the TDT.
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Table 3 | Power (%) to detect an association.

Scenario POPFAM P F SCOUT*

S1 91.0 88.0 74.8 [29.1, 84.1]

S2 72.6 63.3 54.5 [24.1, 68.1]

S3 69.0 60.8 55.0 [49.0, 66.5]

S4 57.0 47.1 43.0 [38.3, 54.0]

S5 41.7 31.2 32.4 [25.2, 41.0]

S6 30.3 24.8 23.9 [15.9, 33.2]

*For each scenario, the power of POPFAM is given in bold, while the minimum and
maximum power of SCOUT across additive, dominant, multiplicative, and reces-
sive models is shown in brackets. The scenarios (S1–S6) are defined in Table 1.
The power for component tests, P (population-based) and F (family based) are
also shown for comparison.

DISCUSSION
We have demonstrated that POPFAM–our fast, flexible, and non-
parametric test of association increases power and controls the
type I error. Relative to test that rely either upon population-
based or family-based data alone, POPFAM can substantially boost
power with gains as large as 14%. We are particularly interested in
the increased power for SNPs with MAFs between 0.03 and 0.12
because the power to detect associations using SNPs in this class
is quite low (Pelak et al., 2010), and because some SNPs in this
class are undoubtedly highly correlated with clinically meaningful
disease-related variants. In addition, we have shown that POP-
FAM performs as well as, or better than SCOUT. This is important,
because SCOUT is generally better than CPG (Schaid and Som-
mer, 1993) and Chen and Lin (2008), with only a slight decline in
power relative to Guo et al. (2009).

The meta-analysis literature in statistical genetics and epidemi-
ology has been somewhat misleading with respect to claims of
optimally weighted linear combinations of component tests. The
problem arises from the fact that several authors have used the
term optimal in the context of parameter estimation (Bagos and

Nikolopoulos, 2007; Chen and Lin, 2008), whereas readers tend
to interpret the word in the context of hypothesis testing. In the
context of hypothesis testing, the word optimal is generally taken
to mean most powerful (as opposed to most accurate). In the special
case that both summary statistics are normally distributed about
the same mean under the alternative hypothesis of association,
there is no confusion because both interpretations yield the same
weights. However, this condition is rarely met, and in practice
the optimal weight will tend to depend on unknown parameters
under the alternative (i.e., the marginal power of each summary
statistic).

POPFAM is more than a test of association; it is a testing
framework. The attractive features that POPFAM brings to the
case-parent/case-control design are likely to transfer to more com-
plex designs as well (i.e., designs that involve covariates, and that
may require a larger and more diverse set of component tests). For
example, we have already successfully applied POPFAM to a real
mixed data set with large, extended families and publicly available
controls (i.e., HapMap CEU samples; data not shown). In princi-
ple, these wider applications can be carried out in one of two ways:
(1) decompose the large families into trios whenever both parents
provide genotype data, or (2) choose a family based test statis-
tic that can accommodate large families (e.g., GDT). To facilitate
power analyses, POPFAM can also simulate case-parent/case-
control genotype data conditional on the affectedness status of
each case and control. Overall, POPFAM represents the next log-
ical step for detecting genetic associations with disease from the
analysis (or re-analysis) of mixed data. The software is freely avail-
able from the web at: http://www.mathmed.org/wclstewart/ and is
distributed as part of the EAGLET suite.
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APPENDIX A
COVARIANCE OF P AND F UNDER THE NULL
For ease of exposition, let p, σ2, H, M, N, T i, Rj, Sk, P, F and X be defined as before (see Methods) and define θ ≡ √

σ 2(N−1 + M−1).
Without loss of generality, we shall assume that the “test allele” is also the minor allele. Therefore, under the null hypothesis of no
association, Cov(P,F) is:

= Cov
[(∑

Rj
/

N −
∑

Sk
/

M
) /

θ,
√

4H
(∑

Ti
/

H − 1/2

)]

= E
[(∑

Rj
/

N −
∑

Sk
/

M
) /

θ · √
4H

(∑
Ti

/
H − 1/2

)]
(EP = EF = 0)

= (Nθ)−1 · E
[(∑

Rj · √
4H

) (∑
Ti

/
H − 1/2

)] (∑
Sk ⊥ F

)

= (Nθ)−1 · E
[

E
(∑

Rj · √
4H

(∑
Ti

/
H − 1/2

)
|H , X

)]

Now, let v index the informative trios (i.e., trios for which there is at least one heterozygous parent). To compute the iterated
expectation, it is also useful to define Rv = Rj whenever the jth case is a member of the vth informative trio. Similarly, we also need to
keep track of Qv = the number of transmitted “1” alleles, and Dv = the number of heterozygous parents, where both Qv and Dv are
defined relative to the vth informative trio. Therefore, �Ti = �Qv , H = �Dv , and (�R − �Qv)⊥F. Continuing with the computation
of Cov(P,F), we now have that the last expression

= (Nθ)−1 · E

[
2√
H

E
(∑

Rv ·
∑

(Qv − Dv/2) |H , X
)]

= (Nθ)−1 · E

[
2X√

H
E (Rv · (Qv − Dv/2))

]
(H , X) ⊥ (Qv − Dv/2)

Now, the inner expectation is easily computed using the unconditional probabilities of the seven possible genotypic configurations
for an informative trio. The outer expectation is tedious, but tractable since X ∼ Bin(N, p′)/Pr(X > 0 ), and since H − x |X ∼ Bin(x,
p′′), where p′ is the unconditional probability of a randomly chosen trio being informative, and p′′ is the conditional probability of a
double heterozygote mating type given that the trio is informative.

Frontiers in Genetics | Statistical Genetics and Methodology October 2013 | Volume 4 | Article 200 | 6

http://www.frontiersin.org/Statistical_Genetics_and_Methodology/
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive

	Increasing the power of association studies with affected families, unrelated cases and controls
	Introduction
	Methods
	Data: simulated and real
	Results
	Discussion
	Acknowledgments
	References
	Appendix a
	Covariance of p and f under the null



