
Genome analysis

Mango: a bias-correcting ChIA-PET analysis

pipeline

Douglas H. Phanstiel1, Alan P. Boyle2, Nastaran Heidari1 and

Michael P. Snyder1,*

1Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 and 2Department of

Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on January 19, 2015; revised on May 11, 2015; accepted on May 26, 2015

Abstract

Motivation: Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) is an

established method for detecting genome-wide looping interactions at high resolution. Current

ChIA-PET analysis software packages either fail to correct for non-specific interactions due to

genomic proximity or only address a fraction of the steps required for data processing. We present

Mango, a complete ChIA-PET data analysis pipeline that provides statistical confidence estimates

for interactions and corrects for major sources of bias including differential peak enrichment and

genomic proximity.

Results: Comparison to the existing software packages, ChIA-PET Tool and ChiaSig revealed that

Mango interactions exhibit much better agreement with high-resolution Hi-C data. Importantly,

Mango executes all steps required for processing ChIA-PET datasets, whereas ChiaSig only com-

pletes 20% of the required steps. Application of Mango to multiple available ChIA-PET datasets per-

mitted the independent rediscovery of known trends in chromatin loops including enrichment of

CTCF, RAD21, SMC3 and ZNF143 at the anchor regions of interactions and strong bias for conver-

gent CTCF motifs.

Availability and implementation: Mango is open source and distributed through github at https://

github.com/dphansti/mango.

Contact: mpsnyder@standford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Increasing evidence suggests that the three-dimensional structure of

mammalian chromatin plays an important role in regulating gene

expression and biological function (Göndör and Ohlsson, 2009; Li

et al., 2012; Schoenfelder et al., 2010). To study chromatin struc-

ture, multiple high-throughput sequencing-based assays have been

developed including 3C, 4C, 5C, Hi-C and, the newest addition,

Chromatin Interaction Analysis by Paired End Tag sequencing

(ChIA-PET) (Dekker, 2002; Dostie et al., 2006; Fullwood et al.,

2009; Lieberman-Aiden et al., 2009; Simonis et al., 2006). Though

the methods differ in scope and resolution, they all share the same

basic steps including cross-linking native chromatin, ligating

interacting fragments and sequencing chimeric DNA fragments to

assess interaction frequency. Informatic analysis of the resulting

data then entails identifying which pairs of loci exhibit more inter-

actions than expected by random chance.

It has been well established by 3C, FISH and Hi-C studies that

pairs of genomic loci exhibit random-polymer-like behavior in

which genomic interaction frequencies decrease as a function of gen-

omic distance (Supplementary Fig. S1A and B) (Dekker, 2002;

Lieberman-Aiden et al., 2009). Therefore, it is critical that software

designed to detect interactions between pairs of loci must consider

and accurately model the expected interaction frequency of pairs of

loci given linear genomic distance. Indeed, most if not all available
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software packages to identify interactions from 5C and Hi-C data-

sets do consider genomic distance in the null model (Ay et al., 2014;

Duan et al., 2010; Sanyal et al., 2012). Furthermore, ChIA-PET has

the unique property of specifically enriching for loci bound by a spe-

cific protein. As these regions are bound at different affinities

throughout the genome, the depth of coverage at interacting peaks

must be considered in any analysis paradigm.

Several analysis methods exist to process ChIA-PET data.

However, these methods either fail to address the major sources of

bias or require the user to write a large portion of the analysis code

themselves rendering them unusable for many wet lab biologists.

ChIA-PET Tool (CPT) was the first software to address the

unique problems associated with ChIA-PET data and has established

an effective workflow for data processing (Li et al., 2010). The au-

thors of CPT employ both random sampling and statistical methods

to filter out noise due to random ligations that occur in solution ra-

ther than in vivo. However, CPT fails to address the most common

source of bias in 3 C-based techniques, non-specific interactions due

to linear genomic distance, i.e. the random-polymer effect. CPT uses

the hypergeometric distribution to assess significance of interactions.

This model assumes that any two genomic loci are equally likely to

be linked by a PET regardless of genomic distance. Therefore, in

addition to detecting true looping interactions, this approach is

likely to detect a large number of false positives that exhibit non-

random interaction frequencies due to genomic proximity rather

than genomic looping. Indeed, a recent study revealed that inter-

actions determined by CPT showed poor agreement with high-

resolution Hi-C datasets. In addition, CPT is extremely difficult to

install as it requires a very specific OS configuration including a

complex array of programming languages and environments includ-

ing C, perl, python, R, MySQL, Apache web server and PHP.

Recently, Paulsen et al described a novel method to process

ChIA-PET data that does consider genomic distance in the null

model. This method, ChiaSig, uses the non-central hypergeometric

to identify statistically significant interactions {Paulsen:2014bn}. As

expected, this method identifies far fewer interactions than CPT.

While this approach yields accurate interactions, the software only

executes the very final step in ChIA-PET data analysis, interaction

scoring. Therefore, users must write their own software to find and

remove linker sequences, align PETs, remove duplicates, call peaks,

group PETs into interactions and determine the lower bound cutoff

for PET distances. As such, this software is only useful to researchers

with significant programming skills. Other software packages have

been described but either are not publicly available or have similar

limitations to CPT and ChiaSig (Niu and Lin, 2014; Reeder and

Gifford, 2013).

To address these shortcomings, we introduce Mango an open

source ChIA-PET data analysis pipeline. Mango models the likeli-

hood of interactions between genomic loci as a function of both dis-

tance and peak depth and uses this model to assign statistical

confidence to interactions. This software is simple to install, requires

only fastq files as input and completes all steps required to analyze

ChIA-PET datasets with only a single command.

To evaluate the applicability of Mango, we compared the inter-

actions determined by Mango, ChiaSig and CPT for three publicly

available ChIA-PET datasets (Heidari et al., 2014). We demonstrate

that interactions detected by Mango show better agreement with

recently published high-resolution Hi-C data and independently

recapitulate several recently discovered characteristics of long-range

chromatin interactions. First, the anchor regions of interactions de-

tected by Mango were strongly enriched for the proteins CTCF,

RAD21, SMC3 and ZNF143 with between 92 and 98% of anchor

regions overlapping a CTCF binding site. Second, the majority

(73 to 94%) of interactions linked two loci that harbored CTCF

motifs that had a convergent orientation.

2 Methods

The general structure of the Mango workflow is divided into five

steps that can be executed all at once or one at time (Supplementary

Fig. S2). Step 1 involves finding and removing linker sequences from

reads as well as filtering reads based on the combination of linkers

observed. Only PETs that have the same linker sequences at both

ends are kept for further processing. In step 2, reads are aligned to

the genome using the widely used Bowtie software suite (Ben

Langmead et al., 2009). Step 3 removes reads that may be due to

polymerase chain reaction duplication and organizes the data for

peak calling and interaction analysis. Step 4 uses MACS2 to call

binding peaks, which are subsequently used as anchor regions for

the detection of interactions in step 5 (Zhang et al., 2008). In step 5,

statistical confidence estimates are assigned to interactions based on

comparison to a model that considers both genomic distance and

the read depth of each peak. The resulting P values are corrected to

account for multiple hypothesis testing and filtered to a user defined

false discovery rate (FDR).

2.1 Calculating statistical confidence estimates of

interactions
Calculating the statistical confidence estimates of interactions in

step 5 begins with two stages of filtering. Since previous studies have

shown that most interactions, especially functional interactions,

take place within megabase scale topological domains (TADs:

Supplementary Fig. S1A and B), Mango removes inter-chromosomal

PETs and PETs with a distance greater than a user-defined value

(1 Mb for this article) (Dixon et al., 2012; Phillips-Cremins et al.,

2013; Sanyal et al., 2012). This both reduces computational burden

and increases statistical power by minimizing the effect of multiple

hypothesis testing. The second step of filtering involves setting a

lower bound distance cutoff for PETs to eliminate bias introduced

by PETs that result from self-circularization rather than inter-

ligation of interacting loci. Mango uses the orientation of the strands

on either end of a PET to estimate the percent of reads due to self-

circularization as a function of distance and allows the user to define

an acceptable cutoff (5% for this article; see Supplementary

Methods and Fig. S1C). The remaining ‘mid-range’ PETs are used to

determine interactions.

PETs are next grouped into putative interactions. Since all

ligated fragments in a ChIA-PET experiment must be captured dur-

ing the chromatin immunoprecipitation step, there should be enrich-

ment of reads at both ends of each interaction. Therefore, Mango

uses the peaks detected in step 4 or a user supplied Browser

Extensible Data file of genomic regions, as the anchor regions for

putative interactions.

Mango then models the probability of observing a single PET

linking two loci as a function of their genomic distance of separation

and the product of their read depths (see Supplementary Methods

and Fig. S1C–F). These models are built empirically for each data

and are thus robust to differences in antibodies, sequencing depth

and experimental variation. A comparison of models built for three

different datasets is shown in Supplementary Figure S3. Application

of Bayes theorem shows that the probability of observing a PET

linking two loci separated by distance L and characterized by joint

peak depth D is a product of two other probabilities:
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(i) the probability of observing a PET with distance L connecting re-

gions with depth D and (ii) the probability of connecting these two

specific regions given length L and depth D (for details see

Supplementary Methods). That is:

PðIÞ ¼ PðL;DÞ � PðIjL;DÞ (1)

where P(I) is the probability of observing a PET connecting two spe-

cific loci, P(L,D) is the probability of observing a PET with a given

L and D and P(IjL,D) is the probability of the PET linking these

two specific loci given L and D.

L and D are independent (Supplementary Fig. S4) and therefore

this equation, can be represented by:

PðIÞ ¼ PðIjLÞ � PðIjDÞ
PðCjLÞ � PðCjDÞ � CT

(2)

where P(IjL) represents the probability of observing a PET linking

loci with distance L, P(IjD) represents the probability of observing a

PET linking loci with depth D, P(CjL) represents the probability of

observing a pair of loci with distance L (regardless of whether any

PETs link the two loci), P(CjD) represents the probability of observ-

ing a pair of loci with depth D (regardless of whether any PETs link

the two loci) and CT is the total number of pairwise combinations of

loci.

All the terms on the right side of this equation can be modeled

from the data itself (Supplementary Fig. S1D and E) allowing for the

determination of P(I) for each pair of loci (Supplementary Fig. S1F).

According to the binomial distribution, this probability can be used

to calculate the P value of observing exactly k PETs using the fol-

lowing equation:

PðK ¼ kÞ ¼ N
k

� �
PðIÞkð1� PðIÞÞN�k (3)

where N is the total number of mid-range PETs in the experiment.

The P value of observing k or more PETs can be calculated as

PðK�kÞ ¼
XN
i¼K

PðK ¼ iÞ (4)

Finally, P values for all possible pairs of interacting loci, not just the

ones connected by PETs, are corrected for multiple hypothesis test-

ing using the Benjamini–Hochberg method (Benjamini and

Hochberg, 1995) and filtered to a user-defined FDR.

3 Results

3.1 Comparison to existing ChIA-PET analysis methods
To evaluate Mango, we processed three publicly available ChIA-

PET datasets with Mango and two publicly available software pack-

ages, CPT and ChiaSig (Li et al., 2010; Paulsen et al., 2014). The

datasets targeted histone H3K4Me3, POLR2A and RAD21 in a

human myelogenous leukemia cell line (K562) (Heidari et al.,

2014). ChiaSig only performs the very final step in ChIA-PET data

analysis (Table 1). Therefore, we used Mango to perform linker

parsing, read alignment, duplicate removal, peak calling and PET

grouping and applied ChiaSig to resulting data. The exact com-

mands required to replicate the Mango results are available in the

Supplementary Information. Application of Mango to the

H3K4Me3, POLR2A and RAD21 data resulted in 1259, 4040 and

9168 significant interactions at an FDR of 0.05, respectively

(Fig. 1A, Supplementary Fig. S5). ChiaSig produced 1360, 2345 and

5869 interactions. CPT resulted in far more significant interactions

than either Mango or ChiaSig at the same FDR (66 787, 16 961 and

50 725). This large decrease in interactions compared with CPT is

expected since virtually all pairs of local intra chromosomal loci

should interact non-randomly according to the hypergeometric

model used by CPT. Mango and ChiaSig, in contrast, correct for

non-specific interaction frequencies due to genomic distance and

therefore report only those interactions with interaction frequencies

that significantly exceed those expected for a given distance. Despite

this sharp decrease in identified interactions, interactions detected

by Mango and ChiaSig show better agreement with alternative

methodologies for detecting chromatin loops (vide infra).

We next compared the sizes of the interactions detected by deter-

mining the number of base pairs between the interacting anchor re-

gions (Fig. 1B). Since Mango and ChiaSig account for random

interactions due to genomic proximity, the median interaction dis-

tances detected were significantly larger than the interactions de-

tected by CPT (Mango: 100 507, 117 861 and 177 846 bp; ChiaSig:

106 213, 140 738 and 158 898 bp; CPT: 1371, 120 and 1060 bp;

Wilcoxon test, P value<10�16). The minimum interaction distances

for CPT, ChiaSig and Mango were 1, 3398 and 13 425 bp. This

strong skew toward short interaction distances in CPT results helps

explain the poor overlap observed in Figure 1A as 83–98% of CPT

interactions were shorter than the shortest Mango interaction

(excluding intra-chromosomal interactions longer than 1 Mb and all

inter-chromosomal interactions).

Since pairs of loci interact non-specifically as a function of gen-

omic distance, we reasoned that short-range interactions should re-

quire more PETs to achieve significance compared with long-range

interactions. To test this, we binned significant interactions from the

RAD21 dataset by genomic distance ranging from 25 kb to 1 Mb

and plotted the percent of interactions in each bin that were sup-

ported by PETs ranging from 2 to�20 (Fig. 1C–E). CPT inter-

actions were fairly uniform with respect to distance. Across all bins,

the majority of significant interactions were supported by only two

PETs (Fig. 1C). In contrast, Mango and ChiaSig interactions showed

the expected trend in which shorter distance interactions required

more PETs to achieve a significant P value (Fig. 1E and F).

Conducting the same analysis for interactions detected by 5C re-

vealed a trend very similar to that observed in the Mango and

ChiaSig datasets (Supplementary Fig. S6) (Sanyal et al., 2012).

3.2 Comparison to Hi-C
To determine the accuracy and biological relevance of interactions

detected by Mango, we intersected our results with deeply

sequenced Hi-C data. Rao et al. (2014) recently published deeply

sequenced high-resolution Hi-C data for multiple cell lines including

Table 1. Comparison of ChIA-PET software packages

Software Linker parsing Read alignment Duplicate removal Peak calling Self-ligation cutoff PET grouping Statistical estimate

CPT � � � � � � �

ChiaSig � � � � � � �

Mango � � � � � � �
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K562. We plotted normalized Hi-C contact matrices and interaction

calls for each of the three algorithms (Fig. 2A).

Visual inspection of ChIA-PET interactions overlaid on top of

Hi-C contact matrices revealed a strong agreement between Hi-C

interactions and ChIA-PET interaction calls made by both ChiaSig

and Mango. A contact matrix for a 1 kb region on chromosome gen-

erated by Rao et al. is shown in Figure 2A. The resolution of the Hi-

C dataset permitted clear identification of genome-wide looping

interactions. Loops detected by Hi-C are characterized by islands of

high interaction frequency, which are surrounded on all sides by

lower interaction frequencies. Red squares mark interaction calls

made by each of the three algorithms. Loops called by Rao et al. are

shown in Supplementary Figure S7. Interactions detected by ChiaSig

and Mango exhibited good agreement with Hi-C contact matrices

as shown in Figure 2A. In contrast, although CPT interactions do

overlap some interactions that were detected by Mango, ChiaSig or

Rao et al., the majority linked extremely close genomic loci.

To quantify how well the Hi-C data supported the ChIA-PET

interactions, we generated aggregate peak analysis (APA) plots as

described by Rao et al. (2014) (Fig. 2B). These plots aggregate the

signal in pixels surrounding anchor regions across all interactions.

Rao et al. demonstrated that even low-sequencing depth Hi-C data-

sets can be used to evaluate the quality of interaction calls.

Moreover, this method does not depend heavily on the methods

used to process the Hi-C data as it uses contact matrices rather than

interaction calls to build the plots. To generate APA plots, inter-

action counts are summed for all pairs of loci in 5-kb bins spanning

50 kb up- and downstream of both interacting loci. These values are

plotted as a 21�21 pixel matrix colored by interaction count. Since

true looping interactions should interact more frequently than inter-

vening pairs of loci, they should be characterized by a dark center

pixel. To generate these plots, only interactions linking regions

separated by greater than 150 kb and less than 1 Mb were used. The

level of support for each set of interactions can be quantified by cal-

culating an APA score, which is simply the value of the center pixel

divided by the mean of pixels 15–30 kb downstream of the upstream

loci and 15–30 kb upstream of the downstream loci. Scores of 1 indi-

cate no evidence of a loop. Higher scores indicate stronger evidence.

For all three datasets, APA scores for mango and ChiaSig are similar

and both are greater than APA scores for CPT (Supplementary Fig. S8).

However, the different algorithms produced vastly different quantities

of significant interactions. Therefore, two equivalent interaction-

ranking algorithms could exhibit different APA scores simply based

on the cutoff applied to control FDR. To address this, we developed

an extension of APA methods that disentangles interaction-ranking

from these thresholding effects.

The quality of interaction detection between the three methods

was assessed using cumulative APA (CAPA) plots. To generate

CAPA plots, we ranked interactions by P values and calculated APA

score in a cumulative fashion adding 100 interactions at a time

(Fig. 2C). CAPA plots reveal that Mango interactions are better sup-

ported by Hi-C matrices than either ChiaSig or CPT across all three

datasets. Interestingly, sets of interactions deemed significant by ei-

ther ChiaSig or Mango had very similar APA scores for all three

datasets but since Mango’s interaction ranking is superior to

ChiaSig, Mango reported nearly twice as many interactions as

ChiaSig for both the POL2 and RAD21 datasets. Both Mango and

ChiaSig provided far better interaction ranking capabilities com-

pared with CPT.

3.3 Mango interactions recapitulate known

characteristics of DNA loops
To assess the biological relevance of Mango interaction calls, we

determined if the interaction calls made by Mango could

Fig. 1. Comparison of interactions reported by CPT, ChiaSig and Mango. (A) Venn diagram depicting overlap between interactions reported by CPT, ChiaSig and

Mango for the RAD21 dataset. (B) Density plots of interaction lengths for each dataset. (D–F) Barplots depicting the percentages of significant interactions sup-

ported by PETs ranging from 2 to �20 for interactions determined by CPT, ChiaSig and Mango for the RAD21 dataset
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recapitulate previous findings regarding 3D chromatin structure. We

and others have shown that anchor regions of 3D loops are very

strongly enriched for CTCF, members of the cohesion complex and

ZNF143. Intersecting these interactions with ChIP-Seq datasets

available from the ENCODE consortium revealed that these pro-

teins were indeed enriched at anchor regions detected by Mango

(Fig. 3A) (ENCODE Project Consortium, 2012).

Anchor regions identified from H3K4Me3 and POLR2A data-

sets showed enrichment for virtually all TFs. This finding is consist-

ent with Hi-C interaction calls from Rao et al. (2014). As we have

previously shown, interacting loci are enriched for HOT regions, re-

gions bound by many TFs, which would explain this enrichment for

all TFs (Heidari et al., 2014). Removing interacting loci which over-

lap HOT regions reveals only four strongly enriched chromatin-

associated proteins: CTCF, RAD21, SMC3 and ZNF143 (Fig. 3B).

These findings indicate that virtually all (between 97 and 99%) of

interacting loci overlap a HOT region, a CTCF binding site or both

(Supplementary Fig. S9). Further analysis of these two types of inter-

acting loci revealed unique characteristics of each subtype such as

differences in interaction distance and additive strength of inter-

actions (Supplementary Figs. S9 and S10).

Finally, we asked if interactions detected by Mango were charac-

terized by an orientation bias in CTCF motifs. Rao et al. revealed

that the majority of interactions contained CTCF motifs that were

oriented toward the intervening region between the two loci.

Indeed, all three datasets exhibited a strong bias for inward pointing

motifs and a virtual absence of outward pointing motifs (Fig. 3C).

These strong trends and overwhelming agreement with high-reso-

lution Hi-C data provides powerful validation of Mango results as

true looping chromatin interactions.

3.4 Implementation and availability
Mango was designed with both accuracy and ease of use in mind.

Mango runs on both Linux and OSX operating systems. Installation of

Mango requires only a single command and its dependencies are lim-

ited to four very commonly used software suites: R, bedtools, bowtie

and MACS2 (Ben Langmead et al., 2009; Quinlan and Hall, 2010;

Fig. 2. Intersection of CPT, ChiaSig and Mango interactions with Hi-C contact matrices. (A) 5 kb resolution normalized Hi-C contact matrix for K562 cells generated

by Rao et al. Red squares depict interactions determined by CPT, ChiaSig and Mango for the RAD21 dataset. (B) APA plots depicting normalized Hi-C counts for

all pairs of loci 650 kb summed across all interactions determined by CPT, ChiaSig and Mango for the RAD21 dataset. (C) CAPA plots depicting cumulative APA

scores as a function of interaction rank. Points represent significance thresholds determined by each application for reported interactions
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R Core Team, 2013; Zhang et al., 2008). Mango is open source, dis-

tributed through github, and can be downloaded at https://github.

com/dphansti/mango.

4 Discussion

Here we describe Mango a ChIA-PET data analysis pipeline that

corrects for non-specific interactions as a function of genomic prox-

imity and peak depth. We demonstrate that Mango exhibits

increased accuracy compared with both CPT, the only existing

ChIA-PET analysis pipeline, and ChiaSig, a software package that

provides statistical confidence estimates for ChIA-PET interactions.

Application of Mango to multiple ChIA-PET datasets allowed for

the independent replication of findings regarding the nature of 3D

chromatin loops including strong enrichment for CTCF binding sites

with inward oriented motifs.

In addition to improved accuracy, one of the key benefits of

Mango is usability. Mango was designed to be usable by all re-

searchers even those with minimal computer competency. Mango is

easily installed and completes all steps from fastq to interactions

with a single command. It relies on only four widely used and easily

installed software packages. In contrast, CPT requires a very specific

OS configuration including a complex array of programming lan-

guages and environments including C, perl, python, R, MySQL,

Apache web server and PHP and is accompanied by a seven page in-

stallation guide. ChiaSig can be installed easily yet only performs a

single step required for the analysis of ChIA-PET data. Users are

therefore required to write their own code to perform the majority

of processing steps including linker parsing, read alignment, dupli-

cate removal, peak calling and distance filtering.

The software presented here improves upon methods used in our

previous work (Heidari et al., 2014). Most notably Mango replaces

the computationally expensive distance matched rewiring method

with a simple and robust Bayesian approach.

Because of improvements in ease of use and accuracy, Mango will dras-

tically improve our ability to uncover the characteristics and function of 3D

chromatin structure through the analysis of ChIA-PET datasets.
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