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Abstract

Normal linear modeling methods are developed for analyzing read counts from RNA-seq experiments.
The voom method estimates the mean-variance relationship of the log-counts, generates a precision
weight for each observation, and then enters these into a limma empirical Bayes analysis pipeline.
This opens access for RNA-seq analysts to a large body of methodology developed for microarrays.
Simulation studies show that voom performs as well or better than count-based RNA-seq methods
even when the data are generated according to the assumptions of the earlier methods. Two case
studies illustrate the use of linear modeling and gene set testing methods.

Background

Gene expression profiling is one of the most commonly used genomic techniques in biological
research. For most of the past 16 years or more, DNA microarrays were the premier technology for
genome-wide gene expression experiments, and a large body of mature statistical methods and tools
has been developed to analyze intensity data from microarrays. This includes methods for differential
expression analysis [1-3], random effects [4,5], gene set enrichment [6], gene set testing [7,8] and so
on. One popular differential expression pipeline is that provided by the limmasoftware package [9].
The limma pipeline includes linear modeling to analyze complex experiments with multiple treatment
factors, quantitative weights to account for variations in precision between different observations, and
empirical Bayes statistical methods to borrow strength between genes.



Borrowing information between genes is a crucial feature of the genome-wide statistical methods, as it
allows for gene-specific variation while still providing reliable inference withsmall sample sizes. The
normal-based empirical Bayes statistical procedures can adapt to different types of data sets and can
provide exact type I error rate control even for experiments with a small number of replicate samples [3].

In the past few years, RNA-seq has emerged as a revolutionary new technology for expression
profiling [10]. One common approach to summarize RNA-seq data is to count the number of sequence
reads mapping to each gene or genomic feature of interest [11-14]. RNA-seq profiles consist therefore
of integer counts, unlike microarrays which yield intensities that are essentially continuous numerical
measurements. A number of early RNA-seq publications applied statistical methods developed for
microarrays to analyze the RNA-seq read counts. For example, the limma package has been used to
analyze the log-counts after normalization by sequencing depth [11,15-17].

Later statistical publications argued that RNA-seq data should be analyzedby statistical methods
designed specifically for counts. Much interest has focused on the negative binomial (NB) distribution
as a model for the read counts, and especially on the problem of estimating biological variability for
experiments with small numbers of replicates. One approach is to fit a global value or global trend to
the NB dispersions [13,18,19], although this has the limitation of not allowing forgene-specific
variation. A number of empirical Bayes procedures have been proposed to estimate the genewise
dispersions [20-22]. Alternatively, Lund et al [23] proposed that the residual deviances from NB
generalized linear models be entered into the limma empirical Bayes procedure toenable
quasi-likelihood testing. Other methods based on over-dispersed Poissonmodels have also been
proposed [24-26].

Unfortunately, the mathematical theory of count distributions is less tractable than that of the normal
distribution, and this tends to limit both the performance and the usefulness of the RNA-seq analysis
methods. One problem relates to error rate control with small sample sizes. Despite the use of
probabilistic distributions, all the statistical methods developed for RNA-seq counts rely on
approximations of various kinds. Many rely on the statistical tests that are only asymptotically valid or
are theoretically accurate only when the dispersion is small. All the differential expression methods
currently available based on the NB distribution treat the estimated dispersionsas if they were known
parameters, without allowing for the uncertainty of estimation, and this leads to statistical tests that are
overly liberal in some situations [27,28]. This is true even of the NB exact test [18], which gives exact
type I error rate control when the dispersion is known but which becomesliberal when an imprecise
dispersion estimator is inserted for the known value. Quasi-likelihood methods[23] account for
uncertainty in the dispersion by using anF -test in place of the usual likelihood ratio test, but this relies
on other approximations, in particular that the residual deviances are analogous to residual sums of
squares from a normal analysis of variance.

A related issue is the ability to adapt to different types of data with high or low dispersion
heterogeneity. None of the empirical Bayes methods based on the NB distribution achieve the same
adaptability, robustness or small sample properties as the corresponding methods for microarrays, due
to the mathematical intractability of count distributions as compared to the normal distribution.

The most serious limitation though is the reduced range of statistical tools associated with count
distributions as compared to the normal distribution. This is more fundamental than the other problems
because it limits the types of analyses that can be done. Much of the statisticalmethodology that has
been developed for microarray data relies on use of the normal distribution. For example, we often find
it useful in our own microarray gene expression studies to estimate empiricalquality weights to
downweight poor quality RNA samples [29], or to use random effects to allow for repeated measures
on the same experimental units [4,5], or to conduct gene set tests for expression signatures while
allowing for inter-gene correlations [7,8]. These techniques broaden the range of experimental designs



that can be analyzed or offer improved interpretation for differential expression results in terms of
higher level molecular processes. None of these techniques are currently available for RNA-seq
analysis using count distributions.

For these reasons, the purpose of this article is to revisit the idea of applying normal-based
microarray-like statistical methods to RNA-seq read counts. An obstacle to applying normal-based
statistical methods to read counts is that the counts have markedly unequal variabilities, even after
log-transformation. Large counts have much larger standard deviations than small counts. While a
logarithmic transformation counteracts this, it overdoes the adjustment somewhat so that large
log-counts now have smaller standard deviations than small log-counts. We explore the idea that it is
more important to model the mean-variance relationship correctly than it is to specify the exact
probabilistic distribution of the counts. There is a body of theory in the statistical literature showing
that correct modeling of the mean-variance relationship inherent in a data generating process is the key
to designing statistically powerful methods of analysis [30]. Such variancemodeling may in fact take
precedence over identifying the exact probability law that the data values follow [31-33]. We therefore
take the view that it is crucial to understand the way in which the variability of RNA-Seq read counts
depends on the size of the counts. Our work is in the spirit of pseudo-likelihoods [32] whereby
statistical methods based on the normal distribution are applied after estimating a mean-variance
function for the data at hand.

Our approach is to estimate the mean-variance relationship robustly and non-parametrically from the
data. We work with log-counts normalized for sequence depth, specificallywith log-counts-per-million
(log-cpm). The mean-variance is fitted to the genewise standard deviations of the log-cpm as a function
of average log-count. We explore two ways to incorporate the mean-variance relationship into the
differential expression analysis. The first is to modify the limma empirical Bayes procedure to
incorporate a mean-variance trend. The second method incorporates themean-variance trend into a
precision weight for each individual normalized observation. The normalized log-counts and
associated precision weights can then be entered into the limma analysis pipeline,or indeed into any
statistical pipeline for microarray data that is precision weight aware. We call the first method
limma-trend and the second method voom, an acronym for “variance modeling at the observational
level”. Limma-trend applies the mean-variance relationship at the gene level whereas voom applies it
at the level of individual observations.

This article compares the performance of the limma-based pipelines to edgeR [20,34], DESeq [13],
baySeq [21], TSPM [25], PoissonSeq [26] and DSS [22], all of which are based on NB or over-dispersed
Poisson distributions. Simulation studies show that the limma pipelines perform at least as well in terms
of power and error rate control as the NB or Poisson methods even whenthe data is generated according
to the probabilistic assumptions of the earlier methods. A key advantage of the limmapipelines is
that they provide accurate the type I error rate control even when the number of RNA-seq samples is
small. The NB and Poisson based methods either fail to control the error correctly or are excessively
conservative. Limma-trend and voom perform almost equally well when thesequencing depths are the
same for each RNA sample. When the sequencing depths are different, voom is the clear best performer.

Either voom or limma-trend give RNA-seq analysts immediate access to many techniques developed for
microarrays that are not otherwise available for RNA-seq, including all the quality weighting, random
effects and gene set testing techniques mentioned above. This article presents two case studies which
demonstrate how voom can handle heterogeneous data and complex experiments as well as facilitating
pathway analysis and gene set testing.



Results

Counts per million: a simple interpretable scale for assessing differential expression

We suppose that RNA-seq profiles (orlibraries) are available for a set ofn RNA samples. Each profile
records the number of sequence reads from that sample that have beenmapped to each one ofG genomic
features. A genomic feature can be any pre-defined subset of the transcriptome, for example a transcript
or an exon or a gene. For simplicity of language, we will assume throughoutthis article that reads have
been summarized by gene, so that the RNA-seq profiles give the number ofreads from each sample that
have been mapped to each gene. TypicallyG is large, in the tens of thousands or more, whereasn can
be as low as three. The total number of mapped reads (library size) for each sample might vary from
a few hundred thousand to hundreds of millions. This is the same context as assumed by a number of
previous articles [13,18,20,21,34].

The number of reads observed for a given gene is proportional not just to the expression level of the gene
but also to its gene transcript length and to the sequencing depth of the library. Dividing each read count
by the corresponding library size (in millions) yields counts-per-million (cpm),a simple measure of read
abundance that can be compared across libraries of different sizes.Standardizing further by transcript
length (in kilobases) gives rise to reads per kilobase per million (rpkm), a well-accepted measure of
gene expression [35]. In this article we will work with the simpler cpm rather than rpkm, because we
are interested in relative changes in expression between conditions rather than absolute expression.

This article treats log-counts per million (log-cpm) as analogous to log-intensity values from a
microarray experiment, with the difference that log-cpm values cannot betreated as having constant
variances. Differences in log-cpm between samples can be interpreted as log-fold-changes of
expression. The counts are augmented by a small positive value (a half ofone read) to avoid taking the
logarithm of zero. This ensures no missing log-cpm values and reduces the variability at low count
values.

Log-cpms have stabilized variances at high counts

Probability distributions for counts are naturally heteroscedastic, with larger variances for larger
counts. It has previously been argued that the mean-variance relationship for RNA-seq counts should
be approximately quadratic [34]. This leads to the conclusion that the coefficient of variation (CV) of
RNA-seq counts should be a decreasing function of count size for smallto moderate counts but should
asymptote for larger counts to a value that depends on biological variability.Specifically, the squared
CV of the counts should be roughly

1/λ+ φ

whereλ is the expected size of the count andφ is a measure of biological variation [34]. The first term
arises from the technical variability associated with sequencing, and gradually decreases with expected
count size, while biological variation remains roughly constant. For large counts, the coefficient of
variation is determined mainly by biological variation.

A simple linearization calculation suggests that the standard deviation of the log-cpm should be
approximately equal to the CV of the counts (Methods). Examination of a wide range of real data sets
confirms these expectations. For studies where the replicates are entirely technical in nature, the
standard deviation of the log-cpm decreases steadily as a function of the mean (Figure 1a). For studies
where the replicates are genetically identical mice, the standard deviation asymptotes at a moderate
level corresponding to a biological coefficient of variation of about 10% (Figure 1b). Studies where the
replicates are unrelated human individuals show greater biological variation. For these studies, the
standard deviation asymptotes early and at a relatively high level (Figure 1d).



Figure 1 mean-variance relationships.Gene-wise means and variances of RNA-Seq data represented
by black points with a lowess trend. Plots are ordered by increasing levels of biological variation
in datasets. Panel(a), voom trend in HBRR and UHRR genes in Sample A, B, C and D of SEQC
project; technical variation only. Panel(b), C57BL/6J and DBA mouse experiment; low-level biological
variation. Panel(c), simulation study in the presence of 100 up-regulating genes and 100 down-
regulating genes; moderate-level biological variation. Panel(d), Nigerian lymphoblastoid cell lines;
high-level biological variation. Panel(e), Drosophila melanogaster embryonic developmental stages;
very high biological variation due to systematic differences between samples. Panel(f), lowess voom
trends for datasets a–e.

We conclude that log-cpm values generally show a smoothly decreasing mean-variance trend with count
size, and that the log-cpm transformation roughly de-trends the varianceof the RNA-seq counts as a
function of count size for genes with larger counts.

Using log-cpm in a limma pipeline

A simple approach to analyzing RNA-seq data would be input the log-cpm values into a well established
microarray analysis pipeline such as that provided by the limma software package [3,9]. This would be
expected to behave well if the counts were all reasonably large, but it ignores the mean-variance trend
for lower counts. The microarray pipeline should behave better if modified toinclude a mean-variance
trend as part of the variance modeling. We have therefore modified the empirical Bayes procedure of
the limma package so that the genewise variances are squeezed towards a global mean-variance trend
curve instead towards a constant pooled variance. This is similar in principleto the procedure proposed
by Sartor et al [36] for microarray data, except that we model the trendusing a regression spline and
our implementation allows for the possibility of missing values or differing residual degrees of freedom
between genes. We call this strategylimma-trend, whereby the log-cpm values are analyzed as for
microarray data but with a trended prior variance. For comparison, the more naive approach without the
mean-variance trend will be calledlimma-notrend.

Voom: variance modeling at the observation-level

The limma-trend pipeline models the variance at the gene level. However in RNA-seq applications, the
count sizes may vary considerably from sample to sample for the same gene.Different samples may
be sequenced to different depths, so different count sizes may be quite different even if the cpm-values
are the same. For this reason, we wish to model the mean-variance trend of the log-cpm values at the
individual observation level, instead of applying a gene-level variability estimate to all observations
from the same gene.

Our strategy is to estimate non-parametrically the mean-variance trend of the logged read counts and to
use this mean-variance relationship to predict the variance of each log-cpm value. The predicted variance
is then encapsulated as an inverse weight for the log-cpm value. When theweights are incorporated
into a linear modeling procedure, the mean-variance relationship in the log-cpm values is effectively
eliminated.

A technical difficulty is that we want to predict the variances of individualobservations although there is,
by definition, no replication at the observational level from which variances could be estimated. We work
around this inconvenience by estimating the mean-variance trend at the genelevel, then interpolating this
trend to predict the variances of individual observations (Figure 2).



Figure 2 Voom mean-variance modeling. Panel (a), gene-wise square-root residual standard
deviations are plotted against average log-count. Panel(b), a functional relationship between gene-
wise means and variances is given by a robust lowess fit to the points. Panel (c), the mean-variance
trend enables each observation to map to a square-root standard deviation value using its fitted value for
log-count.

The algorithm proceeds as follows. First, genewise linear models are fitted tothe normalized log-cpm
values, taking into account the experimental design, treatment conditions, replicates and so on. This
generates a residual standard deviation for each gene (Figure 2a). Arobust trend is then fitted to the
residual standard deviations as a function of the average log-count for each gene (Figure 2b).

Also available from the linear models is a fitted value for each log-cpm observation. Taking the library
sizes into account, the fitted log-cpm for each observation is converted intoa predicted count. The
standard deviation trend is then interpolated to predict the standard deviationof each individual
observation based on its predicted count size (Figure 2c). Finally, the inverse squared predicted
standard deviation for each observation becomes the weight for that observation.

The log-cpm values and associated weights are then input into the standardlimma differential expression
pipeline. Most limma functions are designed to accept quantitative weights, providing the ability to
perform microarray-like analyses while taking account of the mean-variance relationship of the log-
cpm values at the observation level.

Voom and limma-trend control the type I error rate correctly

We have found the voom and limma-trend, especially voom, to perform well and to producep-values
that control error rates correctly over a wide range of simulation scenarios. For illustration we present
results from simulations in which read counts were generated under the sameNB model as assumed
by a number of existing RNA-seq analysis methods. These simulations should represent the ideal for
the NB-based methods. If the normal-based methods can give performance comparable or better than
count-based methods in these simulations, then this is strong evidence that theywill be competitive
across a wide range of data types.

Six RNA-seq count libraries were simulated with counts for 10,000 genes. The first three libraries
were treated as group 1 and the others as group 2. The distribution of cpm-values for each library was
simulated to match the distribution that we observed for a real RNA-seq data set from our own practice.
The NB dispersionφ was set to decrease on average with expected count size, asymptoting to0.2-
squared for large counts. This degree of biological variation is representative of what we observe for real
RNA-seq data, being larger than we typically observe between genetically identical laboratory mice but
less than we typically see between unrelated human subjects (Figure 1). An individual dispersionφ was
generated for each gene around the trend according to an inverse chisquare distribution on 40 degrees
of freedom. The voom mean-variance trend for one such simulated dataset is shown in Figure 1c. It
can be seen from Figure 1 that the simulated dataset is intermediate between themouse data (Figure 1b)
and the human data (Figure 1d) both in terms of the absolute size of the dispersions and in terms of the
heterogeneity of dispersions between genes.

We found that variation in sequencing depth between libraries had a noticeable impact on some RNA-
seq analysis methods. Hence all the simulations were repeated under two library size scenarios, one with
the same sequencing depth for all six libraries and one with substantial variation in sequencing depth.
In the equal size scenario, all libraries were simulated to contain 11 million reads. In the unequal size
scenario, the odd-numbered libraries were simulated to have a sequence depth of 20 million reads while



the even-numbered libraries had a sequence depth of 2 million reads. Hence the same total number of
reads was simulated in this scenario but distributed unevenly between the libraries.

In the first set of simulations, we examined the ability of voom and limma-trend to control the type I
error rate correctly in the absence of any genuine differential expression between the groups. When
there are no truly differentially expressed genes, the genewisep-values should follow an approximate
uniform distribution. If the type I error rate is controlled correctly, then theexpected proportion ofp-
values below any cutoff should be less than or equal to the cutoff value. Anumber of popular RNA-seq
analysis methods based on the negative binomial or Poisson distributions were included for comparison.
Figure 3 shows results for ap-value cutoff of 0.01. Results for other cutoffs are qualitatively similar.
None of the negative binomial or Poisson-based methods were found to control the type I error rate
very accurately. When the library sizes are equal, the negative binomial and Poisson methods were
overly liberal, except for DESeq which is very conservative. When thelibrary sizes are unequal, DSS
and DESeq became extremely conservative. By contrast, all the normal-based methods were slightly
conservative. Voom yields very close to the nominal type I error in both library size scenarios. Limma-
trend is similar to voom when the library sizes are equal but somewhat conservative when the library
sizes are unequal.

Figure 3 Type I error rates in the absence of true differential expression. The barplots show the
proportion of genes with p-value< 0.01 for each method(a) when the library sizes are equal and(b)
when the library sizes are unequal. The red line shows the nominal type I error rate of 0.01. Results
are averaged over 100 simulations. Methods that control the type I errorat or below the nominal level
should lie below the red line.

BaySeq was not included in the type I error rate comparison because it doesn’t return p-values. However
results in the next section will show it to be relatively conservative in terms offalse discovery rate (FDR)
(Figure 4).

Figure 4 Power to detect true differential expression. Bars show the total number of genes that are
detected as statistically significant (FDR< 0.1) (a) with equal library sizes and(b) with unequal library
sizes. The blue segments show the number of true positives while the red segments show false positives.
200 genes are genuinely DE. Results are averaged over 100 simulations.Height of the blue bars shows
empirical power. The ratio of the red to blue segments shows empirical FDR.

To check voom’s conservativeness on real data, we used a set of four replicate libraries from the SEQC
Project [37]. All four libraries were Illumina HiSeq 2000 RNA-seq profiles of samples of Ambion’s
Human Brain Reference RNA (HBRR) [38]. We split the four libraries into two groups in all possible
ways, and tested for differential expression between the two groups for each partition. Voom returned
no DE genes at 5% FDR for six out the seven possible partitions, indicating good error rate control.
The voom mean-variance trend for the SEQC data, using all the libraries rather than the HBRR samples
only, is shown in Figure 1a.

Voom has the best power of methods that control the type I error rate

Next we examine power to detect to true differential expression. For the following simulations, 100
randomly selected genes were 2-fold up-regulated in the first group andanother 100 were 2-fold up-
regulated in the second group. This represents a typical scenario for afunctional genomics experiment
in which the differential expression effects are large enough to be biologically important but nevertheless
sufficiently subtle as to challenge many analysis methods. Figure 4 shows the number of true and false
discoveries made by various analysis methods at significance cutoff FDR< 0.1. When the library sizes



are equal, voom and limma-trend have next best power after edgeR and PoissonSeq. However both
edgeR and PoissonSeq give empirical FDRs greater than 0.1, confirming the results of the previous
section that these methods are somewhat liberal. Limma-trend gives empirical FDR slightly greater
than voom but still less than 0.1. With unequal library sizes, voom has the best power except for edgeR
while still maintaining a low FDR. TSPM declares by far the most DE genes, but these are mostly
false discoveries. DSS also gives a worryingly high rate of false discoveries when the library sizes are
unequal. Figures 3 and 4 together show that voom has the best power ofthose methods that correctly
control the type I and FDR error rates.

Voom has the lowest false discovery rate

Next we compared methods from a gene ranking point of view, comparing methods in terms of the
number of false discoveries for any given number of genes selected asDE. Methods that perform well
will rank the truly DE genes in the simulation ahead of non-DE genes. Genes were ranked by posterior
likelihoods for baySeq and by p-value for the other methods. The results show that voom has the lowest
FDR at any cutoff (Figure 5). When the library sizes are equal, limma-trendand PoissonSeq are very
close competitors (Figure 5a). When the library sizes are unequal, limma-trend and edgeR are the closest
competitors (Figure 5b).

Figure 5 False discovery rates.The number of false discoveries is plotted for each method versus the
number of genes selected as DE. Results are averaged over 100 simulations (a) with equal library sizes
and(b) with unequal library sizes. Voom has the lowest FDR at any cutoff in eitherscenario.

Next we compared FDRs using spike-in control transcripts from the SEQCproject [39]. The data
consists of eight RNA-seq libraries, in two groups of four. A total of 92 artificial control transcripts
were spiked-in at different concentrations in such as way that three quarters of the transcripts were
truly DE and the remaining quarter were not. To make the spike-ins more like a realistic data set, we
replicated the counts for each of the 23 non-DE transcripts three times. That is, we treated each non-DE
transcript as three different transcripts. This resulted in a dataset of 138 transcripts with half DE and
half non-DE. Figure 6 is analogous to Figure 5 but using the spike-in data instead of simulated data.
Voom again achieved the lowest FDR, with edgeR and the other limma methods againbeing the closest
competitors (Figure 6).

Figure 6 False discovery rates evaluated from SEQC spike-in data.The number of false discoveries
is plotted for each method versus the number of genes selected as DE. voomhas the lowest FDR overall.

Voom and limma-trend are faster than specialist RNA-seq methods

The different statistical methods compared varied considerably in computational time required, with
DESeq, TSPM and baySeq being slow enough to limit the number of simulations that were done. Voom
is easily the fastest of the methods compared, with edgeR-classic next fastest (Figure 7).

Figure 7 Computing times of RNA-seq methods.Bars show time in seconds required for the analysis
of one simulated dataset on a MacBook laptop. Methods are ordered fromquickest to most expensive.



RNA-seq profiles of male and female Nigerian individuals

So far we have demonstrated the performance of voom on RNA-seq data sets with small numbers of
replicate libraries. To demonstrate the performance of voom on a heterogeneous data set with a
relatively large number of replicates and a high level of biological variability, we compared males to
females using RNA-seq profiles of lymphoblastoid cell lines from 29 male and 40 female unrelated
Nigerian individuals [40]. Summarized read counts and gene annotation areprovided by the
Bioconductor tweeDEseqCountData package [41]. Figure 1d shows thevoom mean-variance trend of
this dataset.

Voom yielded 16 genes up-regulated in males and 43 up-regulated in femalesat 5% FDR. As expected,
most of the top differentially expressed genes belonged to the X or Y sex chromosomes (Table 1). The
top gene is XIST, which is a key player in X-inactivation and is known to be expressed at meaningful
levels only in females.

Table 1 Top 16 genes differentially expressed between males and females in the Nigerian data
Symbol Chr logFC AveExpr t P.Value adj.P.Val B

ENSG00000229807 XIST X -9.815 3.8084 -36.4 7.03e-48 1.19e-43 74.8
ENSG00000099749 CYorf15A Y 4.251 0.3146 28.3 1.25e-40 1.05e-36 68.2
ENSG00000157828 RPS4Y2 Y 3.281 3.3081 26.5 9.38e-39 5.27e-35 72.6
ENSG00000233864 TTTY15 Y 4.897 -0.5538 25.9 4.31e-38 1.82e-34 64.0
ENSG00000131002 CYorf15B Y 5.440 -0.1710 23.2 4.81e-35 1.62e-31 60.0
ENSG00000198692 EIF1AY Y 2.398 2.6806 20.5 1.09e-31 3.07e-28 58.6
ENSG00000165246 NLGN4Y Y 5.330 -0.4916 19.7 1.26e-30 3.03e-27 52.4
ENSG00000213318 RP11-331F4.1 16 4.293 2.2654 19.3 4.44e-30 9.34e-27 54.1
ENSG00000129824 RPS4Y1 Y 2.781 4.7118 17.6 9.28e-28 1.74e-24 51.5
ENSG00000183878 UTY Y 1.878 2.7430 16.6 2.88e-26 4.85e-23 47.7
ENSG00000012817 KDM5D Y 1.470 4.7046 14.9 1.45e-23 2.22e-20 42.6
ENSG00000146938 NLGN4X X 4.472 -0.7801 14.8 2.09e-23 2.94e-20 38.9
ENSG00000243209 AC010889.1 Y 2.528 -0.0179 14.5 5.48e-23 7.11e-20 37.9
ENSG00000067048 DDX3Y Y 1.671 5.3077 13.4 3.05e-21 3.67e-18 37.5
ENSG00000006757 PNPLA4 X -0.988 2.5341 -10.4 4.78e-16 5.38e-13 25.7
ENSG00000232928 RP13-204A15.4 X 1.434 3.2506 10.3 1.02e-15 1.08e-12 25.2

We examined 12 particular genes that are known to belong to the male-specificregion of chromosome
Y [42,43]. A ROAST gene set test confirmed that these genes collectivelyare significantly up-regulated
in males (P = 0.0001). A CAMERA gene set test was even more convincing, confirming that these
genes are significantly more up-regulated in males than are other genes in thegenome (P = 2×10−28).

We also examined 46 X-chromosome genes that have been reported to escape X-inactivation [43,44].
These genes were significantly up-regulated in females (ROASTP = 0.0001, CAMERA P = 10−10).
The log-fold-changes for the X and Y chromosome genes involved in the gene set tests are highlighted
on an MA-plot (Figure 8).

Figure 8 MA-plot with male and female specific genes highlighted. The log-fold change of each
gene is plotted against its average log-cpm for the comparison between malesand females. Genes on the
male-specific region of the Y chromosome genes are highlighted blue and areconsistently up-regulated
in males, while genes on the X chromosome reported to escape X-inactivation are highlighted red and
are generally down in males.



Note that these gene set testing approaches are not available in conjunction with any of the count-based
approach to differential expression. If a count-based method had been used to assess differential
expression, we could still have examined whether sex-linked genes werehighly ranked among the
differentially expressed genes, but we could not have undertaken any formal statistical test for
enrichment of this signature while accounting for inter-gene correlation. On the other hand, the voom
expression values and weights are suitable for input into the ROAST and CAMERA procedures
without any further processing.

Development stages ofD. melanogaster

Like edgeR-glm, but unlike most other analysis tools, voom and limma-trend offer full-featured linear
modeling for RNA-seq data, meaning that they can analyze arbitrary complexexperiments. The
possibilities of linear modeling are so rich that it is impossible to select a representative example.
Voom and limma could be used to analyze any gene-level RNA-seq differential expression experiment,
including those with multiple experimental factors [34]. Here we give a novelanalysis illustrating the
use of quadratic regression to analyze a time-course study.

RNA-Seq was used to explore the developmental transcriptome of Drosophila melanogaster [45].
RNA-Seq libraries were formed from whole-animal samples to represent alarge number of distinct
developmental stages. In particular, samples were collected from embryonic animals at equi-spaced
development stages from 2 hours to 24 hours in 2-hour intervals. Here we analyze the 12 RNA-seq
libraries from these embryonic stages. We seek to identify those genes thatare characteristic of each
embryonic stage. In particular we wish to identify, for each embryonic stage, those genes which
achieve their peak expression level during that stage.

As all the samples are from distinct stages, there are no replicate libraries inthis study. However we
utilize the fact that gene expression should for most genes vary smoothly over time. A
multidimensional scaling plot on log-cpm values shows the gradual change ingene expression during
embryonic development, with each stage intermediate in expression profile between the stages before
and after (Figure 9). We use genewise linear models to fit a quadratic trendwith time to the log-cpm
values for each gene. These quadratic trends will not match all the intricacies of gene expression
changes over time but are sufficient to model the major trends. The voom mean-variance trend for this
data is shown in Figure 1e.

Figure 9 Multidimensional scaling plot of D. melanogaster embryonic stages. Distances are
computed from the log-cpm values. The 12 successive embryonic developmental stages are labeled
1 to 12, from earliest to latest.

Out of 14869 genes that were expressed during embryonic development, 8366 showed a statistically
significant trend at 5% FDR using empirical BayesF -tests. For each differentially expressed gene, we
identified the embryonic stage at which the fitted quadratic trend achieved its maximum value. This
allowed us to associate each significant gene with a particular development stage (Figure 10). Most
genes peaked at the first or last stage (Figure 10), indicating smoothly decreasing or increasing trends
over time (Figure 11, panels 1 and 12). Genes peaking at the first embryonic stage tended to be
associated with the cell cycle. Genes peaking at the last stage tended to be associated with precursor
metabolites and energy, the oxidation-reduction process and metabolic pathways.

Figure 10 Number of genes associated with eachD. melanogaster embryonic stage. The number
of genes whose peak estimated expression occurs at each of the stagesis recorded.



Figure 11 Expression trends for genes that peak at eachD. melanogaster embryonic stage. The
panels(1) to (12) correspond to the twelve successive developmental stages. Each panel displays the
fitted expression trends for the top ten genes that achieve their peak expression during that stage. In
particular, panel(1) shows genes that are most highly expressed at the first stage and panel (12) shows
genes most highly expressed at the last stage. Panels(7) and(8) are notable because they show genes
with marked peaks at 12–14 hours and 14–16 hours respectively.

Genes peaking at intermediate stages showing expression trends with an inverse-U shape (Figure 11,
panels 2–11). There was a substantial set of genes with peak activity between 12–16 hours of embryonic
development (Figure 10), suggesting some important developmental change occurring during this period
requiring the action of special-purpose genes. Indeed, gene ontologyanalysis of the genes associated
with this period showed that anatomical structure morphogenesis was the mostsignificantly enriched
biological process. Other leading terms were organ morphogenesis and neuron differentiation.

This analysis demonstrates a simple but effective means of identifying genesthat have a particular role
at each developmental stage.

Discussion

This article follows the common practice of examining differential expression on a genewise basis. Our
preferred practice is to count the total number of reads overlapping annotated exons for each genes.
While this approach does not allow for of the possibility that different isoforms of the same gene may
be differentially expressed in different directions, it does provide a statistically robust gene-level
analysis even when the sequencing depths are quite modest. The relevance of gene-level analyses is
also supported by recent surveys of transcription have shown that each gene tends to have a dominant
isoform that accounts for far more of the total expression for that genethat do any of the remaining
isoforms [46,47]. The voom analysis can also be conducted at the exon level instead of at the gene level
as an aid to detecting alternative splicing between the treatment groups.

In this article, voom has been applied to log-cpm values. Voom can work however just as easily with
logged rpkm values in place of log-cpm, because the precision weights arethe same for both measures.
If the genomic length of each gene is known, then the log-cpm values outputby voom can be converted to
log-rpkm by subtracting the log-base-2 gene length in kilobases. The downstream analysis is unchanged
and will yield identical results in terms of differentially expressed genes andestimated fold changes.

This article has shown that a normal-based analysis of RNA-seq read count data performs surprisingly
well relative to methods that use special-purpose count distributions. Themotivation for examining
normal-based methods was to open up access to a range of microarray-likeanalysis tools based on the
normal distribution. From this point of view, the normal-based methods only need to perform
comparably to the count-based methods in terms of power and FDR control in order to be a success.
Our comparisons suggest not only that this is so, but that the normal-based methods actually have a
performance advantage. We found voom to be the best performer across our simulations and
comparisons, and even the simpler limma-trend method performed equal or better than the count-based
methods. Voom and limma-trend perform almost equally when the library sizes are equal, but voom
has the advantage when the library sizes are unequal. The best performing count-based methods were
edgeR and PoissonSeq, although neither of those methods controlled the type I error rate at the nominal
level, both being somewhat liberal.

The performance advantage of voom over many of the count-based methods was quite substantial in
our simulations, despite the simulations being conducted under the same NB distributional assumptions



as made by a number of existing methods. Other simulation scenarios would tend toincrease voom’s
advantage. For example, it would be at least as scientifically reasonable toassume that the true
expression levels for each gene follow a log-normal distribution between replicates instead of a gamma
distribution, and such an assumption would tend to improve the performance ofvoom relative to
edgeR, DESeq, baySeq and DSS. In general, voom makes fewer distributional assumptions than do
competing methods and can therefore be expected to perform robustly across a range of scenarios.

This study presented simulations with equal library sizes between replicates,and also explored the
sensitivity of the methods to unequal library sizes. In our experience markedly unequal library sizes
can arise in real RNA-seq experiments for a variety of reasons. One scenario is when an experiment is
conducted in stages and samples sequenced at a later time have a much highersequencing depth. Other
possible scenarios occur when technical replicates are combined for a subset of samples or when DNA
samples are multiplexed onto a sequencing lane in unequal quantities. Some of the negative binomial
based analysis methods become very conservative or showed very poor FDR control when the library
sizes were unequal. In contrast, voom shows consistent performancein all scenarios.

The worst performer in our simulation was TSPM, presumably because we have simulated from NB
distributions, which have quadratic mean-variance relationships, whereas TSPM assumes a linear
mean-variance relationship [25]. The second worst performer was theordinary t-test. This shows that
traditional statistical methods cannot be reliably applied to genomic data without borrowing strength
between genes. The third worst performer was limma-notrend, showing that the mean-variance trend in
the log-cpm values cannot be ignored.

To examine sensitivity of the results to the shape of the dispersion distribution,we repeated all the
simulations using a log-normal distribution for the genewise dispersion insteadof a inverse-chisquare
distribution. The two distributions were chosen to have the same mean and variance on the log-scale.
The results were virtually unchanged from those shown in Figures 3, 4 and 5, showing that the shape
of the dispersion distribution is not a major determination of performance. Thisagrees with a similar
conclusion in Wu et al [22].

It requires some explanation why voom, a method that ignores the discrete integer nature of the counts,
should perform so well. We think that several issues are important. First, the parametric advantages of
the Poisson or NB distributions are mitigated by the fact that the observed mean-variance relationship
of RNA-seq data does not perfectly match the theoretical mean-variance relationships inherent in these
distributions. While the quadratic mean-variance relationship of the NB distribution captures most of
the mean-variance trend, the NB dispersion still shows a non-ignorable trend with gene abundance
[13,19,34]. This means that the mean-variance relationship still has to be estimated non-parametrically,
at least in part.

Second, voom is more precise than previous methods in terms of its treatment ofthe mean-variance
trend. While several previous methods fit a semi-parametric trend to the variances or to the NB
dispersions [13,19,23,34], the trend has always been used to estimate gene-level model parameters.
This ignores the fact that different counts for the same gene may vary substantially in size, meaning
that the trend should be applied differently to different observations. This consideration becomes more
critical when different RNA samples are sequenced to different depths.

Third, the use of normal models gives voom access to tractable empirical Bayes distribution theory [3],
facilitating reliable estimation of the Bayesian hyperparameters and exact smallsample distributions for
the test statistics. Amongst other things this facilitates accurate estimate of the prior degrees of freedom
determining the optimal amount of squeezing to be applied to the variances.



Fourth, the use of normal distribution approximations in conjunction with variance modeling is partly
supported by generalized linear model theory. Rao’s score test [48] for a covariate in a generalized
linear model is essentially equivalent to the normal theory test statistic, provided that the mean-variance
function is correctly estimated and incorporated into appropriate precision weights [49]. Score tests
have similar performance to likelihood ratio tests when the null hypothesis is trueor when the changes
being detected are relatively small.

Some of the count-based methods have been criticized as being sensitive to outlier counts [28]. Voom
and limma-trend methods inherit good robustness properties from the normal-based procedures in limma
[28]. If necessary, they can be made extremely robust to outliers and hypervariable genes using the robust
empirical Bayes options of the limma package [50].

In addition to performance results, voom offers a number of qualitative inducements over the
count-based methods. It is fast and convenient. It allows RNA-seq andmicroarray data to be analyzed
in closely comparable ways, which may be an attraction for analysts comparingresults from the two
technologies. It gives access to a wealth of statistical methods developed for microarrays, including for
example the gene set testing methods demonstrated on the Nigerian dataset.

Conclusions

Voom performs as well or better than existing RNA-seq methods, especially when the library sizes are
unequal. It is moreover faster and more convenient, and converts RNA-seq data into a form whereby it
can be analyzed using similar tools as for microarrays.

Materials and methods

Log-counts per million

We assume that an experiment has been conducted to generate a set ofn RNA samples. Each RNA
sample has been sequenced, and the sequence reads have been summarized by recording the number
mapping to each gene. The RNA-seq data consist therefore of a matrix of read countsrgi, for RNA
samplesi = 1 to n, and genesg = 1 toG. WriteRi for the total number of mapped reads for samplei,
Ri =

∑G
g=1 rgi. We define the log-counts per million (log-cpm) value for each count as

yga = log2

(

rgi + 0.5

Ri + 1.0
× 106

)

The counts are offset away from zero by 0.5 to avoid taking the log of zero, and to reduce the variability
of log-cpm for low expression genes. The library size is offset by 1 to ensure that(rgi + 0.5)/(Ri + 1)
is strictly less than 1 as well as strictly greater than zero.

Delta rule for log-cpm

Write λ = E(r) for the expected value of a read count given the experimental conditions, and suppose
thatvar(r) = λ + φλ2, whereφ is a dispersion parameter. Ifr is large, then the log-cpm value of the
observation isy ≈ log2(r)− log2(R)+ 6 log2(10), whereR is the library size. Note that the analysis is
conditional onR, soR is treated as a constant. It follows thatvar(y) ≈ var(log2(r). If λ also is large,
thenlog2(r) ≈ λ+ (r − λ)/λ by Taylor’s theorem [51], sovar(y) ≈ var(r)/λ2 = 1/λ+ φ.



Linear models

This article develops differential expression methods for RNA-seq experiments of arbitrary complexity,
for example experiments with multiple treatment factors, batch effects or numerical covariates. As has
been done previously [3,7,8,34], we use linear models to describe how the treatment factors are assigned
to the different RNA samples. We assume that

E(ygi) = µgi = xTi βg

wherexi is a vector of covariates andβg is a vector of unknown coefficients representinglog2-fold-
changes between experimental conditions. In matrix terms,

E(yg) = Xβg

whereyg is the vector of log-cpm values for geneg andX is the design matrix with thexi as rows.
Interest centers on testing whether one or more of theβgj are equal to zero,

Voom variance modelling

The above linear model is fitted, by ordinary least squares, to the log-cpmvaluesygi for each gene. This
yields regression coefficient estimatesβ̂g, fitted valueŝµgi = xTi β̂g and residual standard deviationssg.

Also computed is the average log-cpm̄yg for each gene. The average log-cpm is converted to an average
log-count value by

r̃ = ȳg + log2(R̃)− log2(10
6)

whereR̃ is the geometric mean of the library sizes plus one.

To obtain a smooth mean-variance trend, a loess curve is fitted to square-root standard deviationss1/2g

as a function of mean log-countsr̃ (Figure 2ab). Square-root standard deviations are used because they
are roughly symmetrically distributed. The lowess curve [52] is statistically robust [53] and provides a
trend line through the majority of the standard deviations. The lowess curve isused to define a piecewise
linear function lo() by interpolating the curve between ordered values ofr̃.

Next the fitted log-cpm valueŝµgi are converted to fitted counts by

λ̂gi = µ̂gi + log2(Ri + 1)− log2(10
6).

The function valuelo(λ̂ga) is then the predicted square-root standard deviation ofygi.

Finally, the voom precision weights are the inverse varianceswgi = lo(λ̂gi)
−4 (Figure 2c). The log-

cpm valuesygi and associated weightswgj are then input into the standard limma linear modeling and
empirical Bayes differential expression analysis pipeline.

Gene set testing methods

ROAST [7] and CAMERA [8] are gene set testing procedures which assess changes in the overall
expression signature defined by a set of genes. ROAST [7] is a self-contained test that assesses
differential expression of the gene set without regard to genes not in the set. CAMERA [8] is a
competitive test that assesses differential expression of the gene set relative to all other genes on the
array. Both procedures offer considerable flexibility as they have the ability to test the association of a
genomic pathway or gene set signature with quite general treatment comparisons or contrasts defined
in the context of a microarray linear model. We have adapted both methods to make use of quantitative
weights as output by voom. The revised methods are implemented in the functionsroast() and camera()
of the limma software package.



Normalization

The log-cpm values are by definition normalized for sequencing depth. Other normalization steps can
optionally be done. The library sizesRi can be scale normalized to adjust for compositional differences
between the RNA-seq libraries [54]. This produces normalized library sizesR∗

i that can be used in place
of Ri in the voom pipeline. Alternatively, between-array normalization methods developed for single
channel microarray data, such as quantile or cyclic loess, can be are applied to the log-cpm values.

Simulations

The simulations were designed to generate data with characteristics similar to real data that we analyze
in our own practice. First a set of baseline expression values was generated representing the relative
proportion of counts expected to arise from each gene. These proportions were translated into expected
count sizes by multiplying by library size, and then multiplied by true fold changes as appropriate.
Counts were then generated following a NB distribution with the specified mean and dispersion for each
observation.

The distribution of baseline values was chosen to match that from RNA-seq experiments conducted at
our institution. Specifically we used the goodTuringProportions function ofthe edgeR package [12],
which implements the Good-Turing algorithm [55], to predict the true proportion of total RNA
attributable to each gene. We ran this function on a number of different libraries, pooled the predicted
proportions and formed a smoothed distribution function. The baseline proportions for the simulations
were then generated to follow this distribution.

The NB dispersions were generated as follows. The trend in the dispersions was set to beψgi with

ψ
1/2
gi = 0.2 + λ

−1/2
gi whereλgi is the expected count size. A modest amount of genewise biological

variation was generated from an inverse chisquare distribution with 40 degrees of freedom. The
individual dispersions were set to beφgi = ψgiδg where40/δg ∼ χ2

40.

In an alternative simulation, to investigate sensitivity to the distribution of genewise dispersions, theδg
were simulated as log-normal with mean 0 and standard deviation 0.25 on the log-scale. This produces
a distribution with a similar coefficient of variation as for the inverse chisquare simulation.

For each simulated data set, genes with less than 10 reads across all sampleswere filtered from the
analysis. PoissonSeq resets the seed of the random number generator inR, so it was necessary to save
and restore the state of the random number generator before and after each call of the main PoissonSeq
function.

Complete runnable code that reproduces all the simulations is provided as Additional file 1. See also the
voom website [56].

SEQC data

The SEQC project, also known as MAQC-III, aims to provide a comprehensive study of next-generation
sequencing technologies [37]. We analyze here a pilot SEQC dataset consisting of 16 RNA-seq libraries
in four groups. The full SEQC data including the 16 libraries analyzed here will become available
as GEO series GSE47792 when the main SEQC article is published in 2014. In the meantime, the
aligned and summarized read counts for the pilot libraries needed to repeatthe analyses in this article
are available from the voom webpage [56].



The groups are labeled A–D and are closely analogous to the similarly labeledRNA samples used in the
earlier microarray quality control study [57]. Libraries in group A are profiles of Stratagene’s Universal
Human Reference RNA (UHRR) with the addition of RNA from Ambion’s ERCC ExFold RNA spike-in
mix 1 (Mix 1). Libraries in group B are profiles of Ambion’s Human Brain Reference RNA (HBRR)
with added RNA from Ambion’s ERCC ExFold RNA spike-in mix 2 (Mix 2). RNA samples in group
C and D are mixtures of A and B in proportions 75–25 and 25–75 respectively. An Illumina HiSeq
2000 was used to create a FastQ file of paired-end sequence reads foreach sample. The library size for
each sample varied from 5.4 to 8.0 million read pairs. Fragments were mapped to NCBI Build 37.2 of
the human genome using the Subread aligner [58]. Fragment counts were summarized by Entrez Gene
ID using the featureCounts function [59] of version 1.8.2 of the Bioconductor package Rsubread [60].
Fragments with both end reads mapped successfully contributed one countif the fragment overlapped
any annotated exon for that gene. Fragments for which only one read mapped successfully contributed
half a count if that read overlapped an exon. The summarized read count data is available from the voom
webpage [56].

The voom mean-variance trend shown in Figure 1a was obtained from all 16 libraries, treated as four
groups. Genes were filtered out if they failed to achieve cpm> 1 in at least 4 libraries, and the remaining
log-cpm values were quantile normalized between libraries [61].

The comparison between technical replicates to check type I error rate control used only the four group
B libraries. Genes were filtered out if they failed to achieve a cpm> 1 in at least two libraries and the
log-cpm values for the 16745 remaining genes were quantile normalized. Samples are separated into all
possible two-versus-two and three-versus-one combinations and a limma analysis using voom weights
are carried out for each partition.

The false discovery rate analysis was conducted on the spike-in transcripts only. The ERCC Mixes 1
and 2 contain 92 transcripts spiked in at different concentrations. For this analysis, fragments were
mapped to the known sequences of the spiked-in transcripts using Subread. The experiment is designed
so that 23 transcripts have the same concentration in Mix 1 and Mix 2. The remaining transcripts are
spiked-in in such a way that 23 transcripts are 4-fold more abundant in Mix1, 23 are 1.5 higher in Mix
2 and 23 are 2-fold higher in Mix 2. A majority of the spike-in transcripts data are DE. We replicated
the counts for each of the 23 non-DE transcripts three times, so that each non-DE transcript was treated
as three different transcripts. This resulted in a dataset of 138 transcripts with half DE and half non-
DE. Our analysis used read counts for the spike-in transcripts only. TMM-scale normalization [54]
was used for all the analysis methods, except for DESeq and PoissonSeq, which have their own built-
in normalization methods. No transcripts were filtered, except for PoissonSeq as its standard analysis
includes the removal of probes with low counts. The genes that were filtered out by PoissonSeq were
re-introduced to the end of the gene ranking ordered from largest meancount to lowest mean count.

Lymphoblastoid cell lines from Nigerian individuals

As part of the International HapMap Project, RNA samples were obtained from lymphoblastoid cell
lines derived from 69 unrelated Nigerian individuals including 29 males and40 females [40].
Sequencing performed using an Illumina Genome Analyzer II. Read counts, summarized by Ensembl
gene, and transcript annotation were obtained from version 1.0.9 of the tweeDEseqCountData
Bioconductor package [43], specifically from the data objectspickrell1, annotEnsembl63 and
genderGenes. Genes were filtered if they failed to achieve a cpm value of 1 in at least 20 libraries.
Library sizes were scale normalized by the TMM method [54] using edgeR software [12] prior to the
voom analysis.



Development stages ofD. melanogaster

RNA-seq was used to explore the developmental transcriptome of Drosophila melanogaster [45].
Mapped read counts are available from the ReCount project [62]. Specifically the pooled version of the
modencodefly dataset from the ReCount website [63] provides read counts summarizedby
Ensembl 61 gene IDs for 30 whole-animal biological samples. We discarded the larval, pupal and adult
stages and kept only the 12 embryonic samples. Genes were retained in the analysis if they achieved
cpm > 1 for any embryonic stage. Effective library sizes were estimated by TMM
scale-normalization [54] using edgeR software [12] prior to the voom analysis.

Gene ontology analysis used the GOstats software package [64] and version 2.9.0 of the org.Dm.eg.db
annotation package [65]. All GO terms mentioned in the Results section had Fisher’s exact testp-values
less than10−10.

C57BL/6J and DBA/2J inbred mouse strains

An RNA-seq experiment was carried out to detect differential striatal gene expression between the
C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains [66]. Profiles were made of 10 B6 and 11 D2
mice. Mapped read counts summarized by Ensembl 61 gene IDs were downloaded as thebottomly
dataset from the ReCount website [63]. Genes were filtered out if they failed to achieve cpm> 1 in at
least 4 libraries and the remaining log-cpm values are quantile normalized. The limma-voom analysis
compared the two strains and included a batch effect correction for the Illumina flow cell in which each
sample was sequenced. The voom mean-variance trend is shown in Figure1b.

Software

The results presented in this article are carried out using R version 3.0.0 and software packages limma
3.16.2, edgeR 3.2.3, baySeq 1.14.1, DESeq 1.12.0, DSS 1.4.0, PoissonSeq1.1.2 and
tweeDEseqCountData 1.0.8. All of the packages mentioned above are partof the Bioconductor
project [67,68], except for PoissonSeq which is part of the Comprehensive R Archive Network [69].
The TSPM function, dated February 2011, was downloaded in March 2013 from the author’s
webpage [70].

The voom methodology proposed in the article is implemented in the voom function of the limma
package. The limma-trend method was implemented using the log-cpm values fromvoom, then running
the usual standard limma pipeline using theeBayes function withtrend=TRUE. Hence the limma-
trend pipeline was the same as that for voom except that weights were not using in the linear modeling
fitting with lmFit but trend was turned on witheBayes. The limma package can be installed from
the Bioconductor project repository [71].

All the count-based packages were used with the default differential expression pipelines as
recommended in the software for each package. For edgeR 3.2.3 the default prior degrees of freedom
for squeezing the genewise dispersions is 10. Note that this is a change onversions 3.0.X and earlier
for which the default had been 20. For DSS the Wald test was used as recommended in the
documentation. The DESeq defaults have changed considerably since theoriginal publication. We
used the DESeq functionestimateDispersions with sharingMode="maximum" and
fitType="local" and conducted tests usingnbinomTest.

The different count-based packages implement different methods of compositional normalization [54].
For our simulations, there are no compositional differences between the libraries so there should be no
need to estimate compositional normalization factors. For this reason we did notuse



calcNormFactors with edgeR or estimateSizeFactors with DESeq or
estNormFactors with DSS. This should tend to improve the performance of the packages and to
them more comparable, as any differences between the packages can beattributed to the statistical
procedures rather than to differences between the normalization strategies.
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