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Abstract

Normal linear modeling methods are developed for analyzing read cooms¥NA-seq experiments.
The voom method estimates the mean-variance relationship of the log-coemésates a precisio
weight for each observation, and then enters these into a limma empiricat Bagdysis pipeline.
This opens access for RNA-seq analysts to a large body of methodateglogded for microarrays
Simulation studies show that voom performs as well or better than count-iRida-seq method
even when the data are generated according to the assumptions of thersattieds. Two cas
studies illustrate the use of linear modeling and gene set testing methods.
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Background

Gene expression profiling is one of the most commonly used genomic techniqueiological
research. For most of the past 16 years or more, DNA microarrays tiverpremier technology for
genome-wide gene expression experiments, and a large body of matisgcatanethods and tools
has been developed to analyze intensity data from microarrays. Thisésatethods for differential
expression analysis [1-3], random effects [4,5], gene set enrichfE gene set testing [7,8] and so
on. One popular differential expression pipeline is that provided by the lisoftavare package [9].
The limma pipeline includes linear modeling to analyze complex experiments with multiptentrat
factors, quantitative weights to account for variations in precision betwdferent observations, and
empirical Bayes statistical methods to borrow strength between genes.



Borrowing information between genes is a crucial feature of the genouestatistical methods, as it
allows for gene-specific variation while still providing reliable inference gitiiall sample sizes. The
normal-based empirical Bayes statistical procedures can adapt teedtftgpes of data sets and can
provide exact type | error rate control even for experiments with a sraaiber of replicate samples [3].

In the past few years, RNA-seq has emerged as a revolutionary néwmotegy for expression
profiling [10]. One common approach to summarize RNA-seq data is to coaintinber of sequence
reads mapping to each gene or genomic feature of interest [11-14]-9RNArofiles consist therefore
of integer counts, unlike microarrays which yield intensities that are eskgmtismtinuous numerical
measurements. A number of early RNA-seq publications applied statistical asetleweloped for
microarrays to analyze the RNA-seq read counts. For example, the limmageabks been used to
analyze the log-counts after normalization by sequencing depth [11]15-17

Later statistical publications argued that RNA-seq data should be anabyzetiatistical methods
designed specifically for counts. Much interest has focused on traivedinomial (NB) distribution
as a model for the read counts, and especially on the problem of estimatlogiteéd variability for
experiments with small numbers of replicates. One approach is to fit a glahed @r global trend to
the NB dispersions [13,18,19], although this has the limitation of not allowinggéare-specific
variation. A number of empirical Bayes procedures have been prdposestimate the genewise
dispersions [20-22]. Alternatively, Lund et al [23] proposed tha thsidual deviances from NB
generalized linear models be entered into the limma empirical Bayes procedusnatue
quasi-likelihood testing. Other methods based on over-dispersed Poissdels have also been
proposed [24-26].

Unfortunately, the mathematical theory of count distributions is less tractadettfat of the normal
distribution, and this tends to limit both the performance and the usefulnese &NKA-seq analysis
methods. One problem relates to error rate control with small sample sizespit®¢he use of
probabilistic distributions, all the statistical methods developed for RNA-sagnts rely on
approximations of various kinds. Many rely on the statistical tests that dyeasymptotically valid or
are theoretically accurate only when the dispersion is small. All the diffefeax@ession methods
currently available based on the NB distribution treat the estimated dispeesiahthey were known
parameters, without allowing for the uncertainty of estimation, and this leadatistisal tests that are
overly liberal in some situations [27,28]. This is true even of the NB exatf{18% which gives exact
type | error rate control when the dispersion is known but which becdipeial when an imprecise
dispersion estimator is inserted for the known value. Quasi-likelihood metfa&]saccount for
uncertainty in the dispersion by using &hrtest in place of the usual likelihood ratio test, but this relies
on other approximations, in particular that the residual deviances alegana to residual sums of
squares from a normal analysis of variance.

A related issue is the ability to adapt to different types of data with high or lowedsson
heterogeneity. None of the empirical Bayes methods based on the NB distrilghieve the same
adaptability, robustness or small sample properties as the correspondimgdséor microarrays, due
to the mathematical intractability of count distributions as compared to the norrrébuli®n.

The most serious limitation though is the reduced range of statistical toolsiatssbwith count
distributions as compared to the normal distribution. This is more fundamentathbather problems
because it limits the types of analyses that can be done. Much of the statistitaddology that has
been developed for microarray data relies on use of the normal distrib&orexample, we often find
it useful in our own microarray gene expression studies to estimate empijtedity weights to
downweight poor quality RNA samples [29], or to use random effects tovto repeated measures
on the same experimental units [4,5], or to conduct gene set tests fagseiqr signatures while
allowing for inter-gene correlations [7,8]. These techniques broaderatige of experimental designs



that can be analyzed or offer improved interpretation for differentigression results in terms of
higher level molecular processes. None of these techniques arantburagailable for RNA-seq
analysis using count distributions.

For these reasons, the purpose of this article is to revisit the idea of apphgmmal-based
microarray-like statistical methods to RNA-seq read counts. An obstacleplgiragp normal-based
statistical methods to read counts is that the counts have markedly unegaailiies, even after
log-transformation. Large counts have much larger standard deviatianssthall counts. While a
logarithmic transformation counteracts this, it overdoes the adjustment s@nhewshthat large
log-counts now have smaller standard deviations than small log-countsxMdeeethe idea that it is
more important to model the mean-variance relationship correctly than it is wfyspgbe exact
probabilistic distribution of the counts. There is a body of theory in the statidtiesature showing
that correct modeling of the mean-variance relationship inherent in a dagaging process is the key
to designing statistically powerful methods of analysis [30]. Such variamadeling may in fact take
precedence over identifying the exact probability law that the data vahlies/f31-33]. We therefore
take the view that it is crucial to understand the way in which the variability ofAF¢q read counts
depends on the size of the counts. Our work is in the spirit of pseudo-likel# [32] whereby
statistical methods based on the normal distribution are applied after estimatingravar@nce
function for the data at hand.

Our approach is to estimate the mean-variance relationship robustly anghremmetrically from the
data. We work with log-counts normalized for sequence depth, specifigaiyjog-counts-per-million
(log-cpm). The mean-variance is fitted to the genewise standard deviatithreslog-cpm as a function
of average log-count. We explore two ways to incorporate the meameariglationship into the
differential expression analysis. The first is to modify the limma empirical Bay@cedure to
incorporate a mean-variance trend. The second method incorporatee#itevariance trend into a
precision weight for each individual normalized observation. The nlizeth log-counts and
associated precision weights can then be entered into the limma analysis pipeiimgged into any
statistical pipeline for microarray data that is precision weight aware. Wetlm first method
limma-trend and the second method voom, an acronym for “variance mod¢lihg abservational
level”. Limma-trend applies the mean-variance relationship at the gene |&ezbas voom applies it
at the level of individual observations.

This article compares the performance of the limma-based pipelines to edgeR][2DESeq [13],
baySeq [21], TSPM [25], PoissonSeq [26] and DSS [22], all of Whie based on NB or over-dispersed
Poisson distributions. Simulation studies show that the limma pipelines perforasaakewell in terms
of power and error rate control as the NB or Poisson methods eventivbeiata is generated according
to the probabilistic assumptions of the earlier methods. A key advantage of the lupelanes is
that they provide accurate the type | error rate control even when tmberof RNA-seq samples is
small. The NB and Poisson based methods either fail to control the ermaictgror are excessively
conservative. Limma-trend and voom perform almost equally well whesdbfjgencing depths are the
same for each RNA sample. When the sequencing depths are differemt j¥the clear best performer.

Either voom or limma-trend give RNA-seq analysts immediate access to manygeetdeveloped for
microarrays that are not otherwise available for RNA-seq, including alftrality weighting, random
effects and gene set testing techniques mentioned above. This artidatsrago case studies which
demonstrate how voom can handle heterogeneous data and complarmexpeiras well as facilitating
pathway analysis and gene set testing.



Results
Counts per million; a simple interpretable scale for assessing differetiial expression

We suppose that RNA-seq profiles (diraries) are available for a set of RNA samples. Each profile
records the number of sequence reads from that sample that haveapped to each one 6f genomic
features. A genomic feature can be any pre-defined subset of tserigiome, for example a transcript
or an exon or a gene. For simplicity of language, we will assume throughigidrticle that reads have
been summarized by gene, so that the RNA-seq profiles give the numieaidsffrom each sample that
have been mapped to each gene. Typicéllis large, in the tens of thousands or more, whereaan
be as low as three. The total number of mapped reldloisu(y size) for each sample might vary from
a few hundred thousand to hundreds of millions. This is the same contess@amed by a number of
previous articles [13,18,20,21,34].

The number of reads observed for a given gene is proportional stabjthe expression level of the gene
but also to its gene transcript length and to the sequencing depth of thg.libraiding each read count
by the corresponding library size (in millions) yields counts-per-million (cnsjmple measure of read
abundance that can be compared across libraries of different Stsdardizing further by transcript
length (in kilobases) gives rise to reads per kilobase per million (rpkm),lbaseepted measure of
gene expression [35]. In this article we will work with the simpler cpm rathen tipkm, because we
are interested in relative changes in expression between conditionsthathebsolute expression.

This article treats log-counts per million (log-cpm) as analogous to log-intensityes from a
microarray experiment, with the difference that log-cpm values cannttebéed as having constant
variances. Differences in log-com between samples can be interpretddgdold-changes of
expression. The counts are augmented by a small positive value (a loak oéad) to avoid taking the
logarithm of zero. This ensures no missing log-cpm values and redueegtiability at low count
values.

Log-cpms have stabilized variances at high counts

Probability distributions for counts are naturally heteroscedastic, with rlargeances for larger
counts. It has previously been argued that the mean-variance relagidos RNA-seq counts should
be approximately quadratic [34]. This leads to the conclusion that the @eeffiof variation (CV) of
RNA-seq counts should be a decreasing function of count size for smmalbderate counts but should
asymptote for larger counts to a value that depends on biological varial8lagcifically, the squared
CV of the counts should be roughly

1/ A+ ¢

where is the expected size of the count afiik a measure of biological variation [34]. The first term
arises from the technical variability associated with sequencing, andahadecreases with expected
count size, while biological variation remains roughly constant. For lacgmts, the coefficient of
variation is determined mainly by biological variation.

A simple linearization calculation suggests that the standard deviation of theptogshould be
approximately equal to the CV of the counts (Methods). Examination of a aitiger of real data sets
confirms these expectations. For studies where the replicates are entofetycéd in nature, the
standard deviation of the log-cpm decreases steadily as a function of #re(Figure 1a). For studies
where the replicates are genetically identical mice, the standard deviatimptadgs at a moderate
level corresponding to a biological coefficient of variation of abo®lEigure 1b). Studies where the
replicates are unrelated human individuals show greater biological variakor these studies, the
standard deviation asymptotes early and at a relatively high level (Figijre 1



Figure 1 mean-variance relationships. Gene-wise means and variances of RNA-Seq data represented
by black points with a lowess trend. Plots are ordered by increasing lekél®logical variation

in datasets. Panéa), voom trend in HBRR and UHRR genes in Sample A, B, C and D of SEQC
project; technical variation only. Pan@l), C57BL/6J and DBA mouse experiment; low-level biological
variation. Panelc), simulation study in the presence of 100 up-regulating genes and 100- down
regulating genes; moderate-level biological variation. Pé#églNigerian lymphoblastoid cell lines;
high-level biological variation. Panéé), Drosophila melanogaster embryonic developmental stages;
very high biological variation due to systematic differences between sanipéesl(f), lowess voom
trends for datasets a—e.

We conclude that log-cpm values generally show a smoothly decreasimgvagance trend with count
size, and that the log-cpm transformation roughly de-trends the var@irtbe RNA-seq counts as a
function of count size for genes with larger counts.

Using log-cpm in a limma pipeline

A simple approach to analyzing RNA-seq data would be input the log-cprevaito a well established
microarray analysis pipeline such as that provided by the limma softwaraga¢®,9]. This would be
expected to behave well if the counts were all reasonably large, butiitégrthe mean-variance trend
for lower counts. The microarray pipeline should behave better if modifigtttode a mean-variance
trend as part of the variance modeling. We have therefore modified theiemhfayes procedure of
the limma package so that the genewise variances are squeezed towknioisl angan-variance trend
curve instead towards a constant pooled variance. This is similar in priricitile procedure proposed
by Sartor et al [36] for microarray data, except that we model the tusiith a regression spline and
our implementation allows for the possibility of missing values or differing residegrees of freedom
between genes. We call this stratdgyma-trend, whereby the log-com values are analyzed as for
microarray data but with a trended prior variance. For comparison, the madre approach without the
mean-variance trend will be calléisnma-notrend.

Voom: variance modeling at the observation-level

The limma-trend pipeline models the variance at the gene level. However indeiy&applications, the
count sizes may vary considerably from sample to sample for the same Ddfezent samples may
be sequenced to different depths, so different count sizes mayiteedifterent even if the cpm-values
are the same. For this reason, we wish to model the mean-variance trerediagttpm values at the
individual observation level, instead of applying a gene-level variabiktyneate to all observations
from the same gene.

Our strategy is to estimate non-parametrically the mean-variance trend of geallogad counts and to
use this mean-variance relationship to predict the variance of eachiogatpe. The predicted variance
is then encapsulated as an inverse weight for the log-cpm value. Whevetpbts are incorporated
into a linear modeling procedure, the mean-variance relationship in the fograjues is effectively
eliminated.

A technical difficulty is that we want to predict the variances of indivichzdervations although there is,
by definition, no replication at the observational level from which vagaroould be estimated. We work
around this inconvenience by estimating the mean-variance trend at thiegelnthen interpolating this
trend to predict the variances of individual observations (Figure 2).



Figure 2 Voom mean-variance modeling. Panel(a), gene-wise square-root residual standard
deviations are plotted against average log-count. P@nela functional relationship between gene-
wise means and variances is given by a robust lowess fit to the pointel (arthe mean-variance
trend enables each observation to map to a square-root standard dexadti® using its fitted value for
log-count.

The algorithm proceeds as follows. First, genewise linear models are fitted twrmalized log-cpm
values, taking into account the experimental design, treatment conditepigates and so on. This
generates a residual standard deviation for each gene (Figure Zapust trend is then fitted to the
residual standard deviations as a function of the average log-cauzdidb gene (Figure 2b).

Also available from the linear models is a fitted value for each log-cpm oasenv Taking the library
sizes into account, the fitted log-cpm for each observation is converted iptedicted count. The
standard deviation trend is then interpolated to predict the standard devéidtieach individual
observation based on its predicted count size (Figure 2c). Finally, tleesinsquared predicted
standard deviation for each observation becomes the weight for thexvakien.

The log-cpm values and associated weights are then input into the stéindaeddifferential expression
pipeline. Most limma functions are designed to accept quantitative weighgidprg the ability to
perform microarray-like analyses while taking account of the meannegiaelationship of the log-
cpm values at the observation level.

Voom and limma-trend control the type | error rate correctly

We have found the voom and limma-trend, especially voom, to perform welt@producep-values
that control error rates correctly over a wide range of simulation swendror illustration we present
results from simulations in which read counts were generated under theNBm®del as assumed
by a number of existing RNA-seq analysis methods. These simulations skepu&sent the ideal for
the NB-based methods. If the normal-based methods can give perf@roamparable or better than
count-based methods in these simulations, then this is strong evidence thatiltHey competitive
across a wide range of data types.

Six RNA-seq count libraries were simulated with counts for 10,000 genée fiist three libraries
were treated as group 1 and the others as group 2. The distribution ofaipes for each library was
simulated to match the distribution that we observed for a real RNA-seq ddtarseour own practice.
The NB dispersionp was set to decrease on average with expected count size, asymptotiryg to
squared for large counts. This degree of biological variation is reptatve of what we observe for real
RNA-seq data, being larger than we typically observe between geneticatiiiddl laboratory mice but
less than we typically see between unrelated human subjects (Figure 1)diidural dispersion) was
generated for each gene around the trend according to an invergeareislistribution on 40 degrees
of freedom. The voom mean-variance trend for one such simulated tietab®wn in Figure 1c. It
can be seen from Figure 1 that the simulated dataset is intermediate betweeutedata (Figure 1b)
and the human data (Figure 1d) both in terms of the absolute size of the disgaaad in terms of the
heterogeneity of dispersions between genes.

We found that variation in sequencing depth between libraries had a Huédegact on some RNA-
seq analysis methods. Hence all the simulations were repeated under twodibesscenarios, one with
the same sequencing depth for all six libraries and one with substantiaiaaiia sequencing depth.
In the equal size scenario, all libraries were simulated to contain 11 milliosréadhe unequal size
scenario, the odd-numbered libraries were simulated to have a seqegic®t20 million reads while



the even-numbered libraries had a sequence depth of 2 million readse Hensame total number of
reads was simulated in this scenario but distributed unevenly between thieibra

In the first set of simulations, we examined the ability of voom and limma-trendritvadhe type |
error rate correctly in the absence of any genuine differential egioredetween the groups. When
there are no truly differentially expressed genes, the genewsdues should follow an approximate
uniform distribution. If the type | error rate is controlled correctly, theneRkpected proportion gi-
values below any cutoff should be less than or equal to the cutoff valmein#er of popular RNA-seq
analysis methods based on the negative binomial or Poisson distributiomgwlexded for comparison.
Figure 3 shows results foravalue cutoff of 0.01. Results for other cutoffs are qualitatively similar.
None of the negative binomial or Poisson-based methods were foundtimicthe type | error rate
very accurately. When the library sizes are equal, the negative binormdalPaisson methods were
overly liberal, except for DESeq which is very conservative. Wherlititary sizes are unequal, DSS
and DESeq became extremely conservative. By contrast, all the norsed-baethods were slightly
conservative. Voom yields very close to the nominal type | error in bothrysize scenarios. Limma-
trend is similar to voom when the library sizes are equal but somewhatreatige when the library
sizes are unequal.

Figure 3 Type | error rates in the absence of true differential expession. The barplots show the
proportion of genes with p-value 0.01 for each methoda) when the library sizes are equal afi)
when the library sizes are unequal. The red line shows the nominal typerirate of 0.01. Results
are averaged over 100 simulations. Methods that control the type laroorbelow the nominal level
should lie below the red line.

BaySeq was not included in the type | error rate comparison becaussit’ticeturn p-values. However
results in the next section will show it to be relatively conservative in ternfedsd discovery rate (FDR)
(Figure 4).

Figure 4 Power to detect true differential expression. Bars show the total number of genes that are
detected as statistically significant (FRO0.1) (a) with equal library sizes anfb) with unequal library
sizes. The blue segments show the number of true positives while the radrasghow false positives.
200 genes are genuinely DE. Results are averaged over 100 simul&t&ght of the blue bars shows
empirical power. The ratio of the red to blue segments shows empirical FDR.

To check voom’s conservativeness on real data, we used a setrabfdicate libraries from the SEQC
Project [37]. All four libraries were lllumina HiSeq 2000 RNA-seq prdfilef samples of Ambion’s

Human Brain Reference RNA (HBRR) [38]. We split the four libraries into yvoups in all possible

ways, and tested for differential expression between the two grougsaéh partition. Voom returned
no DE genes at 5% FDR for six out the seven possible partitions, indicatiod error rate control.

The voom mean-variance trend for the SEQC data, using all the libraties than the HBRR samples
only, is shown in Figure la.

Voom has the best power of methods that control the type | errorate

Next we examine power to detect to true differential expression. Foralleving simulations, 100

randomly selected genes were 2-fold up-regulated in the first group@attier 100 were 2-fold up-
regulated in the second group. This represents a typical scenariduioctional genomics experiment
in which the differential expression effects are large enough to be hgallbgimportant but nevertheless
sufficiently subtle as to challenge many analysis methods. Figure 4 showsrttienof true and false
discoveries made by various analysis methods at significance cutofkkFDR When the library sizes



are equal, voom and limma-trend have next best power after edgeRogssb®Seq. However both
edgeR and PoissonSeq give empirical FDRs greater than 0.1, confirneingdhlts of the previous
section that these methods are somewhat liberal. Limma-trend gives empDiBaslightly greater
than voom but still less than 0.1. With unequal library sizes, voom has gig@bwer except for edgeR
while still maintaining a low FDR. TSPM declares by far the most DE genes, lesethre mostly
false discoveries. DSS also gives a worryingly high rate of false desas/when the library sizes are
unequal. Figures 3 and 4 together show that voom has the best potiasefmethods that correctly
control the type | and FDR error rates.

Voom has the lowest false discovery rate

Next we compared methods from a gene ranking point of view, comparitigoa® in terms of the
number of false discoveries for any given number of genes selecte# dglethods that perform well
will rank the truly DE genes in the simulation ahead of non-DE genes. Geaesranked by posterior
likelihoods for baySeq and by p-value for the other methods. The reswigthat voom has the lowest
FDR at any cutoff (Figure 5). When the library sizes are equal, limma-taewidPoissonSeq are very
close competitors (Figure 5a). When the library sizes are unequal, limnthaneiredgeR are the closest
competitors (Figure 5b).

Figure 5 False discovery rates.The number of false discoveries is plotted for each method versus the
number of genes selected as DE. Results are averaged over 100 sinsifitisith equal library sizes
and(b) with unequal library sizes. Voom has the lowest FDR at any cutoff in egbenario.

Next we compared FDRs using spike-in control transcripts from the SE@fect [39]. The data

consists of eight RNA-seq libraries, in two groups of four. A total of @#ieial control transcripts

were spiked-in at different concentrations in such as way that thredegs of the transcripts were
truly DE and the remaining quarter were not. To make the spike-ins more likaisti@data set, we

replicated the counts for each of the 23 non-DE transcripts three timesisThe treated each non-DE
transcript as three different transcripts. This resulted in a datas&8ofranscripts with half DE and
half non-DE. Figure 6 is analogous to Figure 5 but using the spike-in dsteaith of simulated data.
Voom again achieved the lowest FDR, with edgeR and the other limma methoddagajrthe closest

competitors (Figure 6).

Figure 6 False discovery rates evaluated from SEQC spike-in dataThe number of false discoveries
is plotted for each method versus the number of genes selected as DEhasdne lowest FDR overall.

Voom and limma-trend are faster than specialist RNA-seq methods

The different statistical methods compared varied considerably in comméhtime required, with
DESeq, TSPM and baySeq being slow enough to limit the number of simulatianggteadone. Voom
is easily the fastest of the methods compared, with edgeR-classic next {&$teire 7).

Figure 7 Computing times of RNA-seq methods.Bars show time in seconds required for the analysis
of one simulated dataset on a MacBook laptop. Methods are orderedjfrichkest to most expensive.




RNA-seq profiles of male and female Nigerian individuals

So far we have demonstrated the performance of voom on RNA-seqetatavish small numbers of
replicate libraries. To demonstrate the performance of voom on a heteroge data set with a
relatively large number of replicates and a high level of biological variapiiy compared males to
females using RNA-seq profiles of lymphoblastoid cell lines from 29 male @nfidhale unrelated
Nigerian individuals [40]. Summarized read counts and gene annotatiorpraxéded by the
Bioconductor tweeDEseqCountData package [41]. Figure 1d showstme mean-variance trend of
this dataset.

Voom yielded 16 genes up-regulated in males and 43 up-regulated in feam&sFDR. As expected,
most of the top differentially expressed genes belonged to the X or Y sercsomes (Table 1). The
top gene is XIST, which is a key player in X-inactivation and is known to l@essed at meaningful
levels only in females.

Table 1 Top 16 genes differentially expressed between males and fal®s in the Nigerian data

Synbol Chr | ogFC AveExpr t P.Value adj.P.Val B
ENSG@00000229807 XIST X -9.815 3.8084 -36.4 7.03e-48 1.19e-43 74.8
ENSGD0000099749 CYorf15A Y 4.251 0.3146 28.3 1.25e-40 1.05e-36 68.2
ENSG00000157828 RPS4Y2 Y 3.281 3.3081 26.5 9.38e-39 5.27e-3572.6
ENSG00000233864 TTTY15 Y 4.897 -0.5538 25.9 4.31e-38 1.82e-34 64.0
ENSG00000131002 Cyorfl5B Y 5.440 -0.1710 23.2 4.81e-35 1.62e-31 60.0
ENSG00000198692 ElIFIAY Y 2.398 2.6806 20.5 1.09e-31 3.07e-28 58.6
ENSG@00000165246 NLGN4Y Y 5.330 -0.4916 19.7 1.26e-30 3.03e-27 52.4
ENSG00000213318 RP11-331F4.1 16 4.293 2.2654 19.3 4.44e-30 9.34e-27 54.1
ENS@00000129824 RPS4Y1 Y 2.781 4.7118 17.6 9.28e-28 1.74e-24 51.5
ENSG00000183878 UTY Y 1.878 2.7430 16.6 2.88e-26 4.85e-23 47.7
ENSG00000012817 KDMbD Y 1.470 4.7046 14.9 1.45e-23 2.22e-20 42.6
ENSG00000146938 NLGN4X X 4.472 -0.7801 14.8 2.09e-23 2.94e-20 38.9
ENSG00000243209 AC010889.1 Y 2.528 -0.0179 14.5 5.48e-23 7.11le-20 37.9
ENSGD0000067048 DDX3Y Y 1.671 5.3077 13.4 3.05e-21 3.67e-18 37.5
ENSG00000006757 PNPLA4 X -0.988 2.5341 -10.4 4.78e-16 5.38e-13 25.7
ENSG00000232928 RP13-204A15.4 X 1.434 3.2506 10.3 1.02e-15 1.08e-12 25.2

We examined 12 particular genes that are known to belong to the male-spegifin of chromosome

Y [42,43]. A ROAST gene set test confirmed that these genes collectvelsignificantly up-regulated

in males (P = 0.0001). A CAMERA gene set test was even more convincing, confirming thaethes
genes are significantly more up-regulated in males than are other genegémtiree P = 2 x 1072%),

We also examined 46 X-chromosome genes that have been reportedpe &stectivation [43,44].
These genes were significantly up-regulated in females (RORST0.0001, CAMERA P = 10~19).
The log-fold-changes for the X and Y chromosome genes involved in the gt tests are highlighted
on an MA-plot (Figure 8).

Figure 8 MA-plot with male and female specific genes highlighted. The log-fold change of each
gene is plotted against its average log-cpm for the comparison betweenamdliEsnales. Genes on the
male-specific region of the Y chromosome genes are highlighted blue andrasistently up-regulated
in males, while genes on the X chromosome reported to escape X-inactivegibighlighted red and
are generally down in males.




Note that these gene set testing approaches are not available in comjuwvittiany of the count-based
approach to differential expression. If a count-based method haa s to assess differential
expression, we could still have examined whether sex-linked geneshigdtly ranked among the
differentially expressed genes, but we could not have undertakgnfaamal statistical test for

enrichment of this signature while accounting for inter-gene correlationth® other hand, the voom
expression values and weights are suitable for input into the ROAST andBERA procedures

without any further processing.

Development stages ob. melanogaster

Like edgeR-glm, but unlike most other analysis tools, voom and limma-treed foif-featured linear
modeling for RNA-seq data, meaning that they can analyze arbitrary conegleariments. The
possibilities of linear modeling are so rich that it is impossible to select a repiegise example.
Voom and limma could be used to analyze any gene-level RNA-seq diff@rerpression experiment,
including those with multiple experimental factors [34]. Here we give a namalysis illustrating the
use of quadratic regression to analyze a time-course study.

RNA-Seq was used to explore the developmental transcriptome of Dritesapklanogaster [45].
RNA-Seq libraries were formed from whole-animal samples to represtarga number of distinct
developmental stages. In particular, samples were collected from enbmimals at equi-spaced
development stages from 2 hours to 24 hours in 2-hour intervals. Heranalyze the 12 RNA-seq
libraries from these embryonic stages. We seek to identify those genesr¢hataracteristic of each
embryonic stage. In particular we wish to identify, for each embryonic stdgese genes which
achieve their peak expression level during that stage.

As all the samples are from distinct stages, there are no replicate libratieis study. However we
utilize the fact that gene expression should for most genes vary smootly tome. A
multidimensional scaling plot on log-cpm values shows the gradual charggnimexpression during
embryonic development, with each stage intermediate in expression profiledrethe stages before
and after (Figure 9). We use genewise linear models to fit a quadraticwiémdime to the log-cpm
values for each gene. These quadratic trends will not match all the inéscat gene expression
changes over time but are sufficient to model the major trends. The voomvaeance trend for this
data is shown in Figure le.

Figure 9 Multidimensional scaling plot of D. melanogaster embryonic stages. Distances are
computed from the log-cpm values. The 12 successive embryonic gevefdal stages are labeled
1to 12, from earliest to latest.

Out of 14869 genes that were expressed during embryonic develop83&6 showed a statistically
significant trend at 5% FDR using empirical Bayiédests. For each differentially expressed gene, we
identified the embryonic stage at which the fitted quadratic trend achieved iimmomaxvalue. This
allowed us to associate each significant gene with a particular developtagat(§igure 10). Most
genes peaked at the first or last stage (Figure 10), indicating smoottrigadéng or increasing trends
over time (Figure 11, panels 1 and 12). Genes peaking at the first enibrgtage tended to be
associated with the cell cycle. Genes peaking at the last stage tendeddsoeeated with precursor
metabolites and energy, the oxidation-reduction process and metabolicayathw

Figure 10 Number of genes associated with eadd. melanogaster embryonic stage. The number
of genes whose peak estimated expression occurs at each of theistagesded.




Figure 11 Expression trends for genes that peak at each. melanogaster embryonic stage. The
panels(1) to (12) correspond to the twelve successive developmental stages. Eadidispiegs the
fitted expression trends for the top ten genes that achieve their peadssixpr during that stage. In
particular, pane(l) shows genes that are most highly expressed at the first stage anqi@rshows
genes most highly expressed at the last stage. Péfjedsid (8) are notable because they show genes
with marked peaks at 12—14 hours and 14—16 hours respectively.

Genes peaking at intermediate stages showing expression trends witlreeseil shape (Figure 11,
panels 2—11). There was a substantial set of genes with peak activitgdrel2—-16 hours of embryonic
development (Figure 10), suggesting some important developmentalcbengrring during this period
requiring the action of special-purpose genes. Indeed, gene ontaladysis of the genes associated
with this period showed that anatomical structure morphogenesis was thesigraificantly enriched
biological process. Other leading terms were organ morphogenesiearahrdifferentiation.

This analysis demonstrates a simple but effective means of identifying geatdsave a particular role
at each developmental stage.

Discussion

This article follows the common practice of examining differential expressioa genewise basis. Our
preferred practice is to count the total number of reads overlappingtated exons for each genes.
While this approach does not allow for of the possibility that different isofof the same gene may
be differentially expressed in different directions, it does provide &sstally robust gene-level
analysis even when the sequencing depths are quite modest. The relefayene-level analyses is
also supported by recent surveys of transcription have shown tblatgeme tends to have a dominant
isoform that accounts for far more of the total expression for that ¢jestedo any of the remaining
isoforms [46,47]. The voom analysis can also be conducted at the era@iiristead of at the gene level
as an aid to detecting alternative splicing between the treatment groups.

In this article, voom has been applied to log-cpm values. Voom can warlever just as easily with
logged rpkm values in place of log-cpm, because the precision weighttseasame for both measures.
If the genomic length of each gene is known, then the log-cpm values daytpubm can be converted to
log-rpkm by subtracting the log-base-2 gene length in kilobases. Thesi@am analysis is unchanged
and will yield identical results in terms of differentially expressed genesatithated fold changes.

This article has shown that a normal-based analysis of RNA-seq reatl data performs surprisingly
well relative to methods that use special-purpose count distributions.mibtigation for examining
normal-based methods was to open up access to a range of microarragdigsis tools based on the
normal distribution. From this point of view, the normal-based methods onlyg neeperform
comparably to the count-based methods in terms of power and FDR contnalénto be a success.
Our comparisons suggest not only that this is so, but that the normal-basthods actually have a
performance advantage. We found voom to be the best performersacurssimulations and
comparisons, and even the simpler limma-trend method performed equal oithati¢he count-based
methods. Voom and limma-trend perform almost equally when the library sieesgaial, but voom
has the advantage when the library sizes are unequal. The bestiagaount-based methods were
edgeR and PoissonSeq, although neither of those methods controlledghetygr rate at the nominal
level, both being somewhat liberal.

The performance advantage of voom over many of the count-baseddsetfas quite substantial in
our simulations, despite the simulations being conducted under the same NButdmtdbassumptions



as made by a number of existing methods. Other simulation scenarios would tecdetmse voom’s
advantage. For example, it would be at least as scientifically reasonaklestione that the true
expression levels for each gene follow a log-normal distribution betweggitates instead of a gamma
distribution, and such an assumption would tend to improve the performangeoai relative to
edgeR, DESeq, baySeq and DSS. In general, voom makes feweruistrdd assumptions than do
competing methods and can therefore be expected to perform robustbg @crange of scenarios.

This study presented simulations with equal library sizes between replieatdsalso explored the
sensitivity of the methods to unequal library sizes. In our experienceedyrkinequal library sizes
can arise in real RNA-seq experiments for a variety of reasons. mago is when an experiment is
conducted in stages and samples sequenced at a later time have a muckddgkecing depth. Other
possible scenarios occur when technical replicates are combineddbsat ©f samples or when DNA
samples are multiplexed onto a sequencing lane in unequal quantities. Sorsenefytitive binomial
based analysis methods become very conservative or showed veriFpBocontrol when the library
sizes were unequal. In contrast, voom shows consistent perforrimaeaiéscenarios.

The worst performer in our simulation was TSPM, presumably becauseaveedimulated from NB
distributions, which have quadratic mean-variance relationships, wha8&8M assumes a linear
mean-variance relationship [25]. The second worst performer wasrtheary t-test. This shows that
traditional statistical methods cannot be reliably applied to genomic data witloutwing strength
between genes. The third worst performer was limma-notrend, showinthéhaean-variance trend in
the log-cpm values cannot be ignored.

To examine sensitivity of the results to the shape of the dispersion distributmmepeated all the

simulations using a log-normal distribution for the genewise dispersion insfeadhverse-chisquare
distribution. The two distributions were chosen to have the same mean andceacia the log-scale.

The results were virtually unchanged from those shown in Figures 3¢ 4 ashowing that the shape
of the dispersion distribution is not a major determination of performance. aguees with a similar

conclusion in Wu et al [22].

It requires some explanation why voom, a method that ignores the discregeringgure of the counts,
should perform so well. We think that several issues are important. Fiespatametric advantages of
the Poisson or NB distributions are mitigated by the fact that the observedvagance relationship

of RNA-seq data does not perfectly match the theoretical mean-varialat®nships inherent in these
distributions. While the quadratic mean-variance relationship of the NB distriibaaptures most of

the mean-variance trend, the NB dispersion still shows a non-ignoralpie wi&h gene abundance
[13,19,34]. This means that the mean-variance relationship still has to be testintan-parametrically,

at least in part.

Second, voom is more precise than previous methods in terms of its treatmtbet miean-variance
trend. While several previous methods fit a semi-parametric trend to thensesiaor to the NB
dispersions [13,19,23,34], the trend has always been used to estimatéegelnmodel parameters.
This ignores the fact that different counts for the same gene may vastasuially in size, meaning
that the trend should be applied differently to different observations ddnsideration becomes more
critical when different RNA samples are sequenced to different depths

Third, the use of normal models gives voom access to tractable empirigas Bigstribution theory [3],
facilitating reliable estimation of the Bayesian hyperparameters and exactssmmgdle distributions for
the test statistics. Amongst other things this facilitates accurate estimate of theqgiees of freedom
determining the optimal amount of squeezing to be applied to the variances.



Fourth, the use of normal distribution approximations in conjunction with veeianodeling is partly
supported by generalized linear model theory. Rao’s score test & €ovariate in a generalized
linear model is essentially equivalent to the normal theory test statistic, pithat the mean-variance
function is correctly estimated and incorporated into appropriate precissights [49]. Score tests
have similar performance to likelihood ratio tests when the null hypothesis istnrhaen the changes
being detected are relatively small.

Some of the count-based methods have been criticized as being sensititketocounts [28]. Voom
and limma-trend methods inherit good robustness properties from the nbased-procedures in limma
[28]. If necessary, they can be made extremely robust to outliers grashariable genes using the robust
empirical Bayes options of the limma package [50].

In addition to performance results, voom offers a number of qualitativeicements over the
count-based methods. It is fast and convenient. It allows RNA-seqrégrdarray data to be analyzed
in closely comparable ways, which may be an attraction for analysts compasguolis from the two
technologies. It gives access to a wealth of statistical methods develmp®itfoarrays, including for
example the gene set testing methods demonstrated on the Nigerian dataset.

Conclusions

Voom performs as well or better than existing RNA-seq methods, especiadiy tine library sizes are
unequal. It is moreover faster and more convenient, and convertssgijAtata into a form whereby it
can be analyzed using similar tools as for microarrays.

Materials and methods
Log-counts per million

We assume that an experiment has been conducted to generate a dJeN&f samples. Each RNA
sample has been sequenced, and the sequence reads have beenzaedhtowaecording the number
mapping to each gene. The RNA-seq data consist therefore of a mateadfcounts:,;, for RNA
samples = 1 ton, and geneg = 1 to G. Write R; for the total number of mapped reads for samiple
R; = EgG:1 rqi. We define the log-counts per million (log-cpm) value for each count as

rgi + 0.5
Yga = 10g2 (]%qz—i-lo X 106)
i .

The counts are offset away from zero by 0.5 to avoid taking the log of za&d to reduce the variability
of log-cpm for low expression genes. The library size is offset by hsuee thatr,; + 0.5)/(R; + 1)
is strictly less than 1 as well as strictly greater than zero.

Delta rule for log-cpm

Write A = E(r) for the expected value of a read count given the experimental condiiodssuppose
thatvar(r) = X + ¢\%, where¢ is a dispersion parameter. sifis large, then the log-cpm value of the
observation ig ~ log,(r) — logy(R) + 6 log,(10), whereR is the library size. Note that the analysis is
conditional onR, soR is treated as a constant. It follows that:(y) ~ var(log,(r). If X also is large,
thenlog,(r) ~ A + (r — A) /A by Taylor's theorem [51], s@ar(y) ~ var(r)/A\? = 1/ + ¢.



Linear models

This article develops differential expression methods for RNA-seqgrarpats of arbitrary complexity,
for example experiments with multiple treatment factors, batch effects or niaheoariates. As has
been done previously [3,7,8,34], we use linear models to describe hove#tteéant factors are assigned
to the different RNA samples. We assume that

E(ygi) = Hgi = sz/Bg

wherex; is a vector of covariates ang, is a vector of unknown coefficients representing,-fold-
changes between experimental conditions. In matrix terms,

E(yg) = Xﬁg

wherey, is the vector of log-cpm values for gegeand X is the design matrix with the; as rows.
Interest centers on testing whether one or more ofstheare equal to zero,

Voom variance modelling

The above linear model is fitted, by ordinary least squares, to the lograluesy,; for each gene. This
yields regression coefficient estimatgs fitted valuesi,; = 7 3, and residual standard deviatiogs

Also computed is the average log-cpgnfor each gene. The average log-cpm is converted to an average
log-count value by )
7 = 7y + 1ogo(R) — logy(10%)

whereR is the geometric mean of the library sizes plus one.

To obtain a smooth mean-variance trend, a loess curve is fitted to sqoargandard deviationsé/ 2

as a function of mean log-countgFigure 2ab). Square-root standard deviations are used becayse the
are roughly symmetrically distributed. The lowess curve [52] is statisticallystof®3] and provides a
trend line through the majority of the standard deviations. The lowess curgedsto define a piecewise
linear function Id) by interpolating the curve between ordered values. of

Next the fitted log-cpm valugs,; are converted to fitted counts by
j\gi = figi + logy(R; +1) — log,(10°).

The function valuéo()\,,) is then the predicted square-root standard deviatiay,of

Finally, the voom precision weights are the inverse varianggs= 10(5\92-)—4 (Figure 2c). The log-
cpm valuesy,; and associated weights,; are then input into the standard limma linear modeling and
empirical Bayes differential expression analysis pipeline.

Gene set testing methods

ROAST [7] and CAMERA [8] are gene set testing procedures whiclksssshanges in the overall
expression signature defined by a set of genes. ROAST [7] is aadtiiined test that assesses
differential expression of the gene set without regard to genes noteisgh CAMERA [8] is a
competitive test that assesses differential expression of the genglagaterto all other genes on the
array. Both procedures offer considerable flexibility as they havehhigyao test the association of a
genomic pathway or gene set sighature with quite general treatment coomgamiscontrasts defined
in the context of a microarray linear model. We have adapted both methods tousalof quantitative
weights as output by voom. The revised methods are implemented in the funcii@ty and camera()
of the limma software package.



Normalization

The log-cpm values are by definition normalized for sequencing deptrer @drmalization steps can
optionally be done. The library sizég can be scale normalized to adjust for compositional differences
between the RNA-seq libraries [54]. This produces normalized libraeg$iz that can be used in place

of R; in the voom pipeline. Alternatively, between-array normalization methoddajme for single
channel microarray data, such as quantile or cyclic loess, can beieddp the log-cpm values.

Simulations

The simulations were designed to generate data with characteristics similardateethat we analyze
in our own practice. First a set of baseline expression values wasageti@epresenting the relative
proportion of counts expected to arise from each gene. These tiomsowere translated into expected
count sizes by multiplying by library size, and then multiplied by true fold charageappropriate.
Counts were then generated following a NB distribution with the specified mehdigpersion for each
observation.

The distribution of baseline values was chosen to match that from RNAxgegiments conducted at
our institution. Specifically we used the goodTuringProportions functioth@fedgeR package [12],
which implements the Good-Turing algorithm [55], to predict the true proportd total RNA
attributable to each gene. We ran this function on a number of differentiébrgooled the predicted
proportions and formed a smoothed distribution function. The baselin@gionms for the simulations
were then generated to follow this distribution.

The NB dispersions were generated as follows. The trend in the dispensias set to be,; with

1/}22,/2 =02+ )\;2-1/2 where)\; is the expected count size. A modest amount of genewise biological
variation was generated from an inverse chisquare distribution with 4Geeegf freedom. The

individual dispersions were set to bg; = 1,;6, where40/5, ~ x3,.

In an alternative simulation, to investigate sensitivity to the distribution of geeetvépersions, thé,
were simulated as log-normal with mean 0 and standard deviation 0.25 on thedleg-This produces
a distribution with a similar coefficient of variation as for the inverse chisgjganulation.

For each simulated data set, genes with less than 10 reads across all saerpléidtered from the
analysis. PoissonSeq resets the seed of the random number geneRjteoiit was necessary to save
and restore the state of the random number generator before andeafiezadl of the main PoissonSeq
function.

Complete runnable code that reproduces all the simulations is providedd&®oAdl file 1. See also the
voom website [56].

SEQC data

The SEQC project, also known as MAQC-I1I, aims to provide a comprebhestudy of next-generation
sequencing technologies [37]. We analyze here a pilot SEQC datamsisting of 16 RNA-seq libraries
in four groups. The full SEQC data including the 16 libraries analyzed hélt become available
as GEO series GSE47792 when the main SEQC article is published in 2014e ineintime, the
aligned and summarized read counts for the pilot libraries needed to tbpeatalyses in this article
are available from the voom webpage [56].



The groups are labeled A-D and are closely analogous to the similarly IdRNl&damples used in the
earlier microarray quality control study [57]. Libraries in group A arefpes of Stratagene’s Universal
Human Reference RNA (UHRR) with the addition of RNA from Ambion’s ERCE&d RNA spike-in
mix 1 (Mix 1). Libraries in group B are profiles of Ambion’s Human Brain Refece RNA (HBRR)
with added RNA from Ambion’s ERCC ExFold RNA spike-in mix 2 (Mix 2). RNArsples in group
C and D are mixtures of A and B in proportions 75-25 and 25-75 respctihAn lllumina HiSeq
2000 was used to create a FastQ file of paired-end sequence readslidample. The library size for
each sample varied from 5.4 to 8.0 million read pairs. Fragments were mapp&BioBuild 37.2 of
the human genome using the Subread aligner [58]. Fragment countsumemgasized by Entrez Gene
ID using the featureCounts function [59] of version 1.8.2 of the Biocotmypackage Rsubread [60].
Fragments with both end reads mapped successfully contributed oneifcthenfragment overlapped
any annotated exon for that gene. Fragments for which only one regaeahapccessfully contributed
half a count if that read overlapped an exon. The summarized reatldataris available from the voom
webpage [56].

The voom mean-variance trend shown in Figure 1a was obtained frort ibraries, treated as four
groups. Genes were filtered out if they failed to achieve cpinin at least 4 libraries, and the remaining
log-cpm values were quantile normalized between libraries [61].

The comparison between technical replicates to check type | error mati®@lcesed only the four group
B libraries. Genes were filtered out if they failed to achieve a cprmin at least two libraries and the
log-cpm values for the 16745 remaining genes were quantile normalizetghl&aare separated into all
possible two-versus-two and three-versus-one combinations and a linatyaiamusing voom weights
are carried out for each partition.

The false discovery rate analysis was conducted on the spike-in ffatssanly. The ERCC Mixes 1
and 2 contain 92 transcripts spiked in at different concentrations. oattalysis, fragments were
mapped to the known sequences of the spiked-in transcripts using 8ubteaexperiment is designed
so that 23 transcripts have the same concentration in Mix 1 and Mix 2. Theniem&anscripts are
spiked-in in such a way that 23 transcripts are 4-fold more abundant ik MA8 are 1.5 higher in Mix
2 and 23 are 2-fold higher in Mix 2. A majority of the spike-in transcripts dagalxE. We replicated
the counts for each of the 23 non-DE transcripts three times, so that eadbEtranscript was treated
as three different transcripts. This resulted in a dataset of 138 tiptssaith half DE and half non-
DE. Our analysis used read counts for the spike-in transcripts only. ‘B normalization [54]
was used for all the analysis methods, except for DESeq and Poigsgomdeh have their own built-
in normalization methods. No transcripts were filtered, except for PoiggpasSits standard analysis
includes the removal of probes with low counts. The genes that were dilterieby PoissonSeq were
re-introduced to the end of the gene ranking ordered from largest cogent to lowest mean count.

Lymphoblastoid cell lines from Nigerian individuals

As part of the International HapMap Project, RNA samples were obtamwed fymphoblastoid cell
lines derived from 69 unrelated Nigerian individuals including 29 males 4bidfemales [40].
Sequencing performed using an lllumina Genome Analyzer Il. Read ¢awuntsnarized by Ensembl
gene, and transcript annotation were obtained from version 1.0.9 of theDiseqCountData
Bioconductor package [43], specifically from the data objeétskr el | 1, annot Ensenbl 63 and
gender Genes. Genes were filtered if they failed to achieve a cpm value of 1 in at least 20iéb.
Library sizes were scale normalized by the TMM method [54] using edgé&Rae [12] prior to the
voom analysis.



Development stages ob. melanogaster

RNA-seq was used to explore the developmental transcriptome of Dritesapklanogaster [45].
Mapped read counts are available from the ReCount project [62¢ifRjadly the pooled version of the
nmodencodef | y dataset from the ReCount website [63] provides read counts summédrized
Ensembl 61 gene IDs for 30 whole-animal biological samples. We distdinédarval, pupal and adult
stages and kept only the 12 embryonic samples. Genes were retained nalyssaif they achieved
cpm > 1 for any embryonic stage. Effective library sizes were estimated by TMM
scale-normalization [54] using edgeR software [12] prior to the voontysisa

Gene ontology analysis used the GOstats software package [64] amaiver9.0 of the org.Dm.eg.db
annotation package [65]. All GO terms mentioned in the Results section hazt'Biskact tesp-values
less thanl 0~ 10,

C57BL/6J and DBA/2J inbred mouse strains

An RNA-seq experiment was carried out to detect differential striatak gexpression between the
C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains [66]. Profileseweade of 10 B6 and 11 D2
mice. Mapped read counts summarized by Ensembl 61 gene IDs were dowdlas thbot t ol y
dataset from the ReCount website [63]. Genes were filtered out if Hikeglfto achieve cpm- 1 in at
least 4 libraries and the remaining log-cpm values are quantile normalizedliriifma-voom analysis
compared the two strains and included a batch effect correction for theidduflow cell in which each
sample was sequenced. The voom mean-variance trend is shown in Higure

Software

The results presented in this article are carried out using R version 3@ $bétware packages limma
3.16.2, edgeR 3.2.3, baySeq 1.14.1, DESeq 1.12.0, DSS 1.4.0, Poissdns€q and

tweeDEseqCountData 1.0.8. All of the packages mentioned above arefptr¢ Bioconductor

project [67,68], except for PoissonSeq which is part of the Compsbe R Archive Network [69].

The TSPM function, dated February 2011, was downloaded in Mard8B Zfom the author's

webpage [70].

The voom methodology proposed in the article is implemented in the voom fundtitre dimma
package. The limma-trend method was implemented using the log-cpm valuesdoomthen running
the usual standard limma pipeline using #ayes function witht r end=TRUE. Hence the limma-
trend pipeline was the same as that for voom except that weights wersingtin the linear modeling
fitting with | nFi t but trend was turned on witeBayes. The limma package can be installed from
the Bioconductor project repository [71].

All the count-based packages were used with the default differentiptession pipelines as
recommended in the software for each package. For edgeR 3.2.3 tlut gefar degrees of freedom
for squeezing the genewise dispersions is 10. Note that this is a changesions 3.0.X and earlier
for which the default had been 20. For DSS the Wald test was used ammanded in the
documentation. The DESeq defaults have changed considerably sinoedimal publication. We
used the DESeq functioresti mat eDi spersi ons with shari ngMode="maxi nun' and
fitType="1ocal " and conducted tests usingpi nonirest .

The different count-based packages implement different methodswggasitional normalization [54].
For our simulations, there are no compositional differences between thadibso there should be no
need to estimate compositional normalization factors. For this reason we diduset



cal cNornFactors with edgeR or estinmateSizeFactors with DESeq or

est Nor nfFact or s with DSS. This should tend to improve the performance of the packages and to
them more comparable, as any differences between the packages a#tribged to the statistical
procedures rather than to differences between the normalization stsategie
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