Network-Based Penalized Regression With Application to Genomic Data

Sunkyung Kim, ${ }^{1}$ Wei Pan, ${ }^{1, *}$ Xiaotong Shen ${ }^{2}$
${ }^{1}$ Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55405, U.S.A. ${ }^{2}$ School of Statistics, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.
*email: weip@biostat.umn.edu

Abstract

Summary. Penalized regression approaches are attractive in dealing with high-dimensional data such as arising in highthroughput genomic studies. New methods have been introduced to utilize the network structure of predictors, for example, gene networks, to improve parameter estimation and variable selection. All the existing network-based penalized methods are based on an assumption that parameters, for example, regression coefficients, of neighboring nodes in a network are close in magnitude, which however may not hold. Here we propose a novel penalized regression method based on a weaker prior assumption that the parameters of neighboring nodes in a network are likely to be zero (or non-zero) at the same time, regardless of their specific magnitudes. We propose a novel non-convex penalty function to incorporate this prior, and an algorithm based on difference convex programming. We use simulated data and two breast cancer gene expression datasets to demonstrate the advantages of the proposed methods over some existing methods. Our proposed methods can be applied to more general problems for group variable selection.

Key words: Gene expression; Networks analysis; Nonconvex minimization; Penalty; Truncated Lasso penalty.

1. Introduction

With large amounts of high-dimensional data accumulating from high-throughput genomic studies, penalized regression methods equipped with simultaneous variable selection and parameter estimation have been increasingly used in practice. Most popular generic methods exploiting sparsity of highdimensional data include the Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic net (Enet) (Zou and Hastie, 2005) and LARS (Efron et al., 2004), among others. In addition to sparsity, other structures may be present in a given high-dimensional problem. For example, in genomics, various types of gene networks describe gene-gene interactions and their coordinated functioning: proteinprotein interaction (PPI) networks as available from the Biomolecular Interaction Network Database (BIND) (Alfarano et al., 2005) and the Human Protein Reference Database (HPRD) (Peri et al., 2004), biological pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000), and gene functional annotations in the Gene Ontology (Ashburner et al., 2000). Regardless of the network type, often it is reasonable to assume that two neighboring genes in a network are more likely to participate together in the same biological process than two genes far away in the network. Hence, incorporating prior biological knowledge by exploiting the network structure in a frequentist or Bayesian method is expected to improve its performance (Li and Zhang, 2010; Monni and Li, 2010; Tai, Pan, and Shen, 2010; Huang and Wang, 2012). In particular, as demonstrated in cancer marker discovery (Chuang et al., 2007), changes in expression of some causal genes governing metastatic poten-
tial (e.g., ERBB2 and MYC) may be only subtle and nonsignificant while some of their neighbors have much stronger alterations; incorporation of gene networks can improve the chance of identifying these cancer-causing genes.

A natural way to utilize gene network information is to smooth parameters of neighboring genes over a network: given any two neighboring genes in a network, denoted as $j \sim j^{\prime}$, and their parameters β_{j} and $\beta_{j^{\prime}}$, it may be reasonable to assume that $\beta_{j} / w_{j} \approx \beta_{j^{\prime}} / w_{j^{\prime}}$ with some known or chosen weights w_{j} and $w_{j^{\prime}}$ (Li and Li, 2008). More generally, since the effect directions could be different, for example, regulation of gene expression could be either stimulatory or inhibitory, we can assume $\left|\beta_{j}\right| / w_{j} \approx\left|\beta_{j^{\prime}}\right| / w_{j^{\prime}}$ (Li and Li, 2010; Pan, Xie, and Shen, 2010). Although the aforementioned assumptions are reasonable, they may be too strong in some cases: in general, it is valid to assume two neighboring genes in a network to be co-functioning, but their effect sizes may or may not be equal. Hence, rather than smoothing the (weighted) parameters over a network, we only assume that two neighboring genes are more likely to participate together in the same biological process than two non-neighboring genes. This latter prior knowledge was recently used by (Percival et al., 2011) in a modified forward stepwise variable selection scheme. In this article, we propose a novel penalty to incorporate this prior in a general framework of penalized regression. Simply speaking, we propose a penalty to encourage $I\left(\left|\beta_{j}\right| \neq 0\right)=I\left(\left|\beta_{j^{\prime}}\right| \neq 0\right)$ for $j \sim j^{\prime}$. Since the indicator function (or the L_{0}-loss) is not even continuous, it is not computationally feasible to use it directly in an objective function to be minimized. Our major contributions include proposing a novel penalty as its
approximation (or surrogate) and a corresponding non-convex minimization method.

This article is organized as follows. Section 2 first briefly reviews some existing methods, then describes two implementations of our new idea in detail. In Section 3 simulation results are presented to investigate the finite sample performance of the methods, demonstrating the advantages of the proposed methods over several existing methods. Section 4 illustrates the application of the methods to predict metastases of breast cancer patients with their gene expression profiles and a PPI network. We end with a short summary and discussion outlining a few future research topics.

2. Methods

2.1. Review: Penalized Regression

In a linear regression model,

$$
\begin{equation*}
Y_{i}=\beta_{0}+\sum_{j=1}^{p} X_{i j} \beta_{j}+\epsilon_{i}, \quad E\left(\epsilon_{i}\right)=0 \tag{1}
\end{equation*}
$$

for $i=1, \ldots, n$, we often have a "large p, small n " problem, as arising in high-throughput genomic studies. With a large p, for example, $p>n$, the ordinary least squares estimate (OLSE) does not perform well due to its over-fitting. As one remedy, penalized regression is proposed: a penalty $P(\beta)$ is added to the objective function

$$
\begin{equation*}
S(\beta)=\frac{1}{2}\|Y-X \beta\|^{2}+P(\beta) . \tag{2}
\end{equation*}
$$

The penalty $P(\beta)$ not only regularizes parameter estimation as desired, but also can realize effective variable selection. The Lasso (Tibshirani, 1996) with an L_{1}-penalty is well-known: $P(\beta)=\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|$, where λ is a tuning parameter to be determined. With a large λ, the Lasso yields a sparse (i.e., few non-zero components of) estimate of β, effectively realizing variable selection. However, the Lasso and many other generic penalized methods ignore network structures in the predictors, hence may not be efficient. To take advantage of given information embedded in a predictor network, Li and Li (2008, 2010) and Pan et al. (2008) introduced network-based penalized regression methods. We implicitly assume that a network is given, and as before two directly connected nodes/genes (i.e., with an edge connecting them) are represented as $j \sim j^{\prime}$. The first is a graph constrained estimation (Grace) method (Li and $\mathrm{Li}, 2008$) with penalty

$$
P(\beta)=\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\lambda_{2} \sum_{j \sim j^{\prime}}\left(\frac{\beta_{j}}{\sqrt{d_{j}}}-\frac{\beta_{j^{\prime}}}{\sqrt{d_{j^{\prime}}}}\right)^{2}
$$

where d_{j} is the degree of node j, that is, the number of edges connected to j. The first term is an L_{1}-penalty for variable selection, while the second aims to smooth (weighted) β_{j} 's over the network. As discussed before, since in some applications two neighboring genes might have β_{j} 's with oppo-
site signs, it is more desirable to shrink (weighted) $\left|\beta_{j}\right|$'s towards each other in a network: we'd like to encourage $\left|\beta_{j}\right| / \sqrt{d_{j}}=\left|\beta_{j^{\prime}}\right| \sqrt{d_{j^{\prime}}}$ for $j \sim j^{\prime}$. For this purpose, an adaptive version (aGrace) was proposed (Li and Li, 2010):

$$
P(\beta)=\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\lambda_{2} \sum_{j \sim j^{\prime}}\left(\frac{\operatorname{sign}\left(\tilde{\beta}_{j}\right) \beta_{j}}{\sqrt{d_{j}}}-\frac{\operatorname{sign}\left(\tilde{\beta}_{j^{\prime}}\right) \beta_{j^{\prime}}}{\sqrt{d_{j^{\prime}}}}\right)^{2},
$$

where $\tilde{\beta}_{j}$ is an initial estimate based on OLSE for $p<n$, or an elastic net (Enet) estimate (Zou and Hastie, 2005) for $p \geqslant n$. The main idea is to use $\operatorname{sign}\left(\tilde{\beta}_{j}\right)$ to estimate $\operatorname{sign}\left(\beta_{j}\right)$, which however may not work well for high-dimensional data: since we do not even know which β_{j} 's are 0 for variable selection, it is more difficult to estimate their signs. As an alternative, Pan et al. (2010) proposed a direct approach with a class of penalties

$$
P(\beta)=\lambda \sum_{j \sim j^{\prime}}\left[\left(\frac{\left|\beta_{j}\right|}{\sqrt{d_{j}}}\right)^{\gamma}+\left(\frac{\left|\beta_{j^{\prime}}\right|}{\sqrt{d_{j^{\prime}}}}\right)^{\gamma}\right]^{1 / \gamma}
$$

with a $\gamma>1$ to be specified. This class of penalties are essentially a weighted L_{γ}-norm with some attractive properties: for $j \sim j^{\prime}$, in addition to the grouping effect of shrinking weighted $\left|\beta_{j}\right|$ and $\left|\beta_{j^{\prime} \mid}\right|$ towards each other, it also realizes group variable selection that encourages both β_{j} and $\beta_{j^{\prime}}$ to be zero simultaneously (Yuan and Lin, 2006; Zhao, Rocha, and Yu, 2009). Pan et al. (2010) demonstrated better performance of the method for variable selection than Lasso, Enet, and Grace, though the parameter estimates may be severely biased. Luo, Pan, and Shen (2012)proposed a 2 -step procedure similar to that of Li and Li (2010)for bias reduction; with a new convex programming method, they also showed that the penalty with $\gamma=\infty$ performed better than that with smaller $\gamma=2$ or 8 . The penalty with $\gamma=\infty$ is linear:

$$
P(\beta)=\lambda \sum_{j \sim j^{\prime}} \max \left(\frac{\left|\beta_{j}\right|}{\sqrt{d_{j}}}, \frac{\left|\beta_{j^{\prime}}\right|}{\sqrt{d_{j^{\prime}}}}\right)
$$

closely related to a penalty proposed by Bondell and Reich (2008), though a separate L_{1}-penalty is added in the latter for variable selection. Hence, in the following we consider only $\gamma=\infty$, and simply denote the method with an $L_{\infty^{-}}$ norm penalty as L_{∞}, while the two-step procedure as $a L_{\infty}$. Finally we note that in the above methods, we can replace $\sqrt{d_{j}}$ with a more general weight w_{j}, which for example can be simply 1 .

Although these methods appear to be useful, their assumption on the smoothness of (weighted) β_{j} 's or $\left|\beta_{j}\right|$'s over a network may be questionable in some applications. Therefore, next we propose a new network-based penalty with a much less stringent assumption.

2.2. New Methods

Our new methods are based on the below "ideal" penalty:

$$
\begin{align*}
P(\beta)= & \lambda_{1} \sum_{j=1}^{p} I\left(\left|\beta_{j}\right| \neq 0\right) \\
& +\lambda_{2} \sum_{j \sim j^{\prime}}\left|I\left(\frac{\left|\beta_{j}\right|}{w_{j}} \neq 0\right)-I\left(\frac{\left|\beta_{j^{\prime}}\right|}{w_{j^{\prime}}} \neq 0\right)\right|, \tag{3}
\end{align*}
$$

where the first penalty is the L_{0}-loss for sparsest variable selection and unbiased parameter estimation (Shen, Pan, and Zhu, 2012), while the second one encourages simultaneous selection (or elimination) of two neighboring nodes in a network. Since the indicator function $I()$ is not continuous, it is not computationally tractable. As a computational surrogate of $I(|z| \neq 0)$, Shen, Pan, and Zhu (2012)proposed a truncated Lasso penalty (TLP), $J_{\tau}(|z|)=\min \left(\frac{|z|}{\tau}, 1\right)$, which tends to $I(|z| \neq 0)$ as $\tau \rightarrow 0^{+}$; the tuning parameter τ determines the degree of approximation. Thus, applying the TLP to (3) leads to a new penalty with a TLP for variable selection and a TLP-based penalty for grouping of indicators, shortened as $T T L P_{I}$:

$$
\begin{equation*}
P(\beta)=\lambda_{1} \sum_{j=1}^{p} J_{\tau}\left(\left|\beta_{j}\right|\right)+\lambda_{2} \sum_{j \sim \sim^{\prime}}\left|J_{\tau}\left(\frac{\left|\beta_{j}\right|}{w_{j}}\right)-J_{\tau}\left(\frac{\left|\beta_{j^{\prime}}\right|}{w_{j^{\prime}}}\right)\right|, \tag{4}
\end{equation*}
$$

where a common τ is used in both terms for variable selection and grouping.

Note that, although the weights w_{j} can be omitted in (3), they may play an important role in (4) (and other penalties shown earlier), as to be shown later.

For any given $\left(\lambda_{1}, \lambda_{2}, \tau\right)$, we present a difference convex (DC) programming algorithm to minimize $S(\beta)$ with the new penalty. First, we decompose the non-convex function $J_{\tau}(|z|)$ in (4) into a difference of two convex functions: $J_{\tau}(|z|)=$ $\frac{1}{\tau}(|z|-\max (|z|-\tau, 0))$. Additionally, to deal with the absolute value function in the second term of (4), we construct another DC decomposition: $\left|f_{1}-f_{2}\right|=2 \max \left(f_{1}, f_{2}\right)-\left(f_{1}+\right.$ f_{2}) for two convex functions f_{1} and f_{2}. After applying these two DC decompositions to (4), we have

$$
\begin{aligned}
& \frac{\lambda_{1}}{\tau}\left(\sum_{j=1}^{p}\left|\beta_{j}\right|-\max \left(\left|\beta_{j}\right|-\tau, 0\right)\right) \\
& \quad+\frac{\lambda_{2}}{\tau} \sum_{j^{\prime} \sim j} 2 \max \left(u_{j, j^{\prime}}, v_{j, j^{\prime}}\right)-\left(u_{j, j^{\prime}}+v_{j, j^{\prime}}\right),
\end{aligned}
$$

where $\quad u_{j, j^{\prime}}=\frac{\left|\beta_{j}\right|}{w_{j}}+\max \left(\frac{\left|\beta_{j^{\prime}}\right|}{w_{j^{\prime}}}-\tau, 0\right) \quad$ and $\quad v_{j, j^{\prime}}=\frac{\left|\beta_{j^{\prime}}\right|}{w_{j^{\prime}}}+$ $\max \left(\frac{\left|\beta_{j}\right|}{w_{j}}-\tau, 0\right)$ are defined to simplify notation. Then, (4) can be rewritten as a difference of two convex functions P_{1}
and P_{2},

$$
\begin{aligned}
P(\beta) & =P_{1}(\beta)-P_{2}(\beta) \\
P_{1}(\beta) & =\frac{1}{\tau}\left(\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\lambda_{2} \sum_{j^{\prime} \sim j} 2 \max \left(u_{j, j^{\prime}}, v_{j, j^{\prime}}\right)\right) \\
P_{2}(\beta) & =\frac{1}{\tau}\left(\lambda_{1} \sum_{j=1}^{p} \max \left(\left|\beta_{j}\right|-\tau, 0\right)+\lambda_{2} \sum_{j^{\prime} \sim j}\left(u_{j, j^{\prime}}+v_{j, j^{\prime}}\right)\right) .
\end{aligned}
$$

Linearizing P_{2} at a current estimate $\hat{\beta}^{(m-1)}$ and ignoring terms independent of β, we obtain a convex approximation of $S(\beta)$:

$$
\begin{aligned}
S^{(m)}(\beta)= & \frac{1}{2}\|Y-X \beta\|^{2}+\frac{\lambda_{1}}{\tau} \sum_{j=1}^{p}\left|\beta_{j}\right| I\left(\left|\hat{\beta}_{j}^{(m-1)}\right| \leqslant \tau\right) \\
& +\frac{\lambda_{2}}{\tau} \sum_{j \sim j^{\prime}} 2 \max \left(u_{j, j^{\prime}}, v_{j, j^{\prime}}\right) \\
& -\frac{\lambda_{2}}{\tau} \sum_{j \sim j^{\prime}}\left(\frac{\beta_{j}}{w_{j}} \operatorname{sign}\left(\hat{\beta}_{j}^{(m-1)}\right)\left[1+I\left(\frac{\left|\hat{\beta}_{j}^{(m-1)}\right|}{w_{j}}>\tau\right)\right]\right. \\
& \left.+\frac{\beta_{j^{\prime}}}{w_{j^{\prime}}} \operatorname{sign}\left({\hat{\beta_{j}}}^{(m-1)}\right)\left[1+I\left(\frac{\left|\hat{\beta}_{j^{\prime}}^{(m-1)}\right|}{w_{j^{\prime}}}>\tau\right)\right]\right)
\end{aligned}
$$

which is minimized to obtain an updated estimate $\hat{\beta}^{(m)}$. Since $S^{(m)}(\beta)$ is convex, we use Matlab package CVX (Grant and Boyd, 2011) to minimize it. The DC algorithm to compute the final estimate $\hat{\beta}$ is as follows.
[A1] Start with an initial estimate $\hat{\beta}^{(0)}$ and $m=1$.
[A2] At iteration m, compute $\hat{\beta}^{(m)}$ that minimizes $S^{(m)}(\beta)$.
[A3] Stop if $S\left(\hat{\beta}^{(m-1)}\right)-S\left(\hat{\beta}^{(m)}\right) \leqslant \epsilon$ with a small tolerance ϵ (e.g., 10^{-4} used throughout); otherwise, return to [A2].

We have the following convergence result with its proof given in Web Appendix B.

Theorem 1: The sequence $S\left(\hat{\boldsymbol{\beta}}^{(m)}\right)$ decreases strictly in m unless $\hat{\boldsymbol{\beta}}^{(m)}=\hat{\boldsymbol{\beta}}^{(m-1)}$. In addition, the DC algorithm terminates in finite steps; that is, there exists $m^{*}<\infty$ such that $\hat{\boldsymbol{\beta}}^{(m)}=\hat{\boldsymbol{\beta}}^{\left(m^{*}-1\right)}$ for all $m \geqslant m^{*}$. Finally, $\hat{\boldsymbol{\beta}}^{\left(m^{*}\right)}$ is a local minimizer of (2) with penalty (4).
We used the Lasso estimate $\hat{\beta}_{\text {lasso }}$ as the initial value $\hat{\beta}^{(0)}$ in step [A1]. The three tuning parameters $\left(\delta_{1}, \delta_{2}, \tau\right)$ with $\delta_{1} \equiv \lambda_{1} / \tau$ and $\delta_{2} \equiv \lambda_{2} / \tau$ were searched over a set of 4,4 , and 5 equally spaced grid points, respectively within the following ranges: let t denote the maximum absolute value of the components of the lasso estimate $\hat{\beta}_{\text {lasso }}$, and g denote the total number of the edges in the network, we used intervals $\left[t, \frac{p t}{4}\right]$ for $\delta_{1},[t, t g]$ for δ_{2}, and $\left[10^{-6}, \frac{t}{2}\right]$ for τ.

The TLP has been shown to perform well for accurate variable selection and almost unbiased parameter estimation for sparse models (Shen et al., 2012). An intuition behind the TLP is that, if a parameter β_{j} is large with $\beta_{j}>\tau$, then no
penalty is imposed on β_{j}, which is in contrast to universal penalization of Lasso on all β_{j} 's that leads to Lasso's biased parameter estimation and over selection of too large models. However, with a non-sparse true model, universal penalization imposed by Lasso may be beneficial to parameter estimation and outcome prediction due to its better bias-variance tradeoff. In our current context, since the true model may not be too sparse, it might be interesting to contrast the performance of the TLP and Lasso. Furthermore, to save computing time, we have used a common τ for both variable selection and grouping in (4), which might not be optimal. Thus, rather than using the TLP for variable selection in (4), we can simply use the Lasso, leading to a modification with a Lasso penalty for variable selection and a TLP-based penalty for grouping indicators, called $L T L P_{I}$:

$$
\begin{equation*}
P(\beta)=\lambda_{1} \sum_{j=1}^{p}\left|\beta_{j}\right|+\lambda_{2} \sum_{j \sim j^{\prime}}\left|J_{\tau}\left(\frac{\left|\beta_{j}\right|}{w_{j}}\right)-J_{\tau}\left(\frac{\left|\beta_{j^{\prime}}\right|}{w_{j^{\prime}}}\right)\right| . \tag{5}
\end{equation*}
$$

The computational algorithm and its convergence properties are similar to that for $T T L P_{I}$. In particular, the intermediate objective function $S^{(m)}(\beta)$ is the same as before except that its second term $\frac{\lambda_{1}}{\tau} \sum_{j=1}^{p}\left|\beta_{j}\right| I\left(\left|\hat{\beta}_{j}^{(m-1)}\right| \leqslant \tau\right)$ is replaced by $\frac{\lambda_{1}}{\tau} \sum_{j=1}^{p}\left|\beta_{j}\right|$.

The tuning parameters $\left(\lambda_{1}, \lambda_{2}, \tau\right)$ were tuned in the same way as in $T T L P_{I}$, except that the searching range of λ_{1} was set as interval $\left[\hat{\lambda}_{\text {lasso }} / 1.5,1.5 \hat{\lambda}_{\text {lasso }}\right]$, where $\hat{\lambda}_{\text {lasso }}$ was the chosen tuning parameter for the Lasso.
simulation I, we had
$\beta=(5, \underbrace{\frac{5}{\sqrt{10}}, \ldots, \frac{5}{\sqrt{10}}}_{10},-3, \underbrace{-\frac{3}{\sqrt{10}}, \ldots,-\frac{3}{\sqrt{10}}}_{10}, 0, \ldots, 0)^{\prime}$,
the first 11 were for the TF and its 10 targets in subnetwork 1 , followed by subnetworks 2 to 10 . Note that there were $p_{1}=22$ informative predictors with $\beta_{j} \neq 0$, and there was a strong relationship among β_{j} 's: $\beta_{j} / \sqrt{d_{j}}=\beta_{j^{\prime}} / \sqrt{d_{j^{\prime}}}$ for any $j \sim j^{\prime}$. The set-up 2 was similar to set-up 1 except that the signs of the first three target genes' β_{j} 's in the first two subnetworks were flipped; that is, for $j \sim j^{\prime}, \beta_{j} / \sqrt{d_{j}}=\beta_{j^{\prime}} / \sqrt{d_{j^{\prime}}}$ might not hold, though $\left|\beta_{j}\right| / \sqrt{d_{j}}=\left|\beta_{j^{\prime}}\right| / \sqrt{d_{j^{\prime}}}$ always held. Similarly set-up 3 was another type of perturbation to setup 1: the first 5 genes' β_{j} 's were set to 0 in the first two subnetworks; $\left|\beta_{j}\right| / \sqrt{d_{j}}=\left|\beta_{j^{\prime}}\right| / \sqrt{d_{j^{\prime}}}$ held for only some, but not all, gene pairs $j \sim j^{\prime}$.

In the first set-up of simulation II, we had

$$
\beta=(1.5, \underbrace{\beta_{2}, \ldots, \beta_{11}}_{10}, 0.5, \underbrace{\beta_{13}, \ldots, \beta_{22}}_{10}, 0, \ldots, 0)^{\prime},
$$

where we randomly drew $\beta_{2}, \ldots, \beta_{11} \sim \operatorname{Unif}(0,3)$, and $\beta_{13}, \ldots, \beta_{22} \sim \operatorname{Unif}(-3,3)$; then we flipped the signs of $\beta_{7}, \ldots, \beta_{11}$. Specifically the generated regression coefficient vector β was:

$$
\beta=(1.5, \underbrace{2.98,2.01,1.35,1.03,2.7,-0.98,-2.39,-1.33,-0.37,-1.24}_{10},
$$

$$
0.5, \underbrace{1.85,2.91,2.48,1.45,2.25,0.34,-1.12,-1.03,-0.2,0.7}_{10}, 0 . \ldots, 0)^{\prime}
$$

3. Simulations

3.1. Simulation Set-ups

Our simulation set-ups are similar to those in Li and Li (2008) and Pan et al. (2010). Briefly, the responses Y were generated from linear model (1) with iid error $\epsilon_{i} \sim N\left(0, \sum_{j} \beta_{j}^{2} / 2\right)$. A gene regulatory network consisted of 10 independent subnetworks, each including one transcription factor (TF) and its 10 target genes (and thus $p=110$); each TF was connected to each of its 10 target genes while there was no edge between any other two genes. All predictors were marginally distributed as $N(0,1)$; conditional on the TF's expression level $X_{T F}$, a target gene's expression level $X_{t g}$ was distributed as $N\left(0.5 X_{T F}, 0.75\right)$; any two $X_{t g} \mathrm{~s}$ were conditionally independent given $X_{T F}$. The expression levels of any two genes from two different subnetworks were independent. Two types of the true regression coefficient vector β were considered in two sets of simulations respectively: in simulation I, the (weighted) magnitudes of the non-zero β_{j} 's were close to each other, while in simulation II they were completely random. Specifically, in set-up 1 of

In set-up 2 , we used a true β similar to that of set-up 1 except that five target genes in each of the first two subnetworks were randomly selected to have their corresponding $\beta_{j}=0$, mimicking a setting with $I\left(\beta_{j} \neq 0\right)=I\left(\beta_{j^{\prime}} \neq 0\right)$ for some, but not all, gene pairs $j \sim j^{\prime}$. A sparser true model was used in set-up 3 , in which only the TF and its five randomly selected genes in the first subnetwork had non-zero β_{j} 's while all others were zero.

We generated 100 replicates for each set-up, where each replicate consisted of a training set, a tuning set, both of size $n=50$, and a test set of size $m=200$. The training set was used to fit the model to obtain parameter estimates $\hat{\beta}$ for any given tuning parameter values. The tuning set was used to select the tuning parameters as the ones with the smallest predictive residual sum of squares (PRSS) for the response on the tuning data. To evaluate the performance, the model error (ME) and the prediction error (PE) were calculated: $\mathrm{ME}=(\beta-\hat{\beta})^{\prime} E\left(X^{\prime} X\right)(\beta-\hat{\beta})$ with $E\left(X^{\prime} X\right)$ as the population covariance matrix of X (since $E(X)=0$), and $\mathrm{PE}=\sum_{i=1}^{m}\left(Y_{i}-\hat{Y}_{i}\right)^{2} / m$ (based on the test data). We also calculated the mean and median numbers of the true positives
(TPs) and false positives (FPs) for variable selection, where $\left|\hat{\beta}_{j}\right|>10^{-3}$ was considered as non-zero (or a positive). We considered two types of weights, $w_{j}=1$ and $w_{j}=\sqrt{d_{j}}$.

We also note that, following Li and Li (2010), unlike in Li and Li (2008) and Pan et al. (2010), we did not rescale the estimates of Grace and Enet; we found that the un-scaled versions here performed either better than or almost the same as the rescaled ones.

3.2. Main Results

Simulation results for simulation I are summarized in Table 1. The weights $w_{j}=1$ were mis-specified in the sense of having $\left|\beta_{j}\right| / w_{j} \neq\left|\beta_{j^{\prime}}\right| / w_{j^{\prime}}$ for any two non-null neighboring genes $j \sim$ j^{\prime} with non-zero β_{j} and $\beta_{j^{\prime}}$, whereas the weights $w_{j}=\sqrt{d_{j}}$ were correctly specified in the above sense for set-ups 1 and 2 , but only partially correctly specified for set-up 3 , for the methods depending on the assumptions on the magnitudes of the regression coefficients, that is, Grace, aGrace, L_{∞}, and $a L_{\infty}$. For set-up 1, in which the true regression coefficients of all the directly connected genes in a network had the same signs, with $w_{j}=1$, Grace yielded the lowest mean ME and PE, followed closely by $L T L P_{I}$ and $a L_{\infty}$. All the network-based methods except L_{∞} performed better than the generic Lasso and Enet for parameter estimation and outcome prediction. For variable selection, however, Grace performed poorly with a too large mean number of FPs; $L_{\infty}, a L_{\infty}, T T L P_{I}$, and $L T L P_{I}$ had a comparable large number of TPs but a much smaller number of FPs. With weights $w_{j}=\sqrt{d_{j}}$, the $a L_{\infty}$ had the smallest mean ME and PE, closely followed by Grace, then by $L T L P_{I}$. For variable selection, perhaps due to the group selection, L_{∞} and $a L_{\infty}$ gave the most sparse models with the highest number of TPs, then followed by $T L P I_{I}$ and $L T L P_{I}$.

In set-up 2 some neighboring genes had true regression coefficients with opposite signs. As expected, Grace was no longer the winner, and aGrace slightly improved over Grace with a smaller mean ME and PE. With the mis-specified weights $w_{j}=1, L T L P_{I}$ gave the smallest mean ME and PE, then followed by aGrace and $a L_{\infty}$. For variable selection, $T T L P_{I}$ was the winner, giving a similarly large number of TPs but fewer FPs than $L T L P_{I}$; other methods all yielded much smaller numbers of TPs. On the other hand, with the correctly specified weights $w_{j}=\sqrt{d_{j}}, a L_{\infty}$ was the winner with the smallest ME and PE, followed by $L T L P_{I}$ and then aGrace. For variable selection, $a L_{\infty}$ and L_{∞} seemed to be the winners, though $T T L P_{I}$ was also quite competitive; again $L T L P_{I}$ gave less sparse models than $T T L P_{I}$, both performing better than Grace and aGrace.

For set-up 3 , with the mis-specified weights $w_{j}=1, L T L P_{I}$ performed best with the smallest mean ME and PE, while all other network-based methods gave larger MEs than the generic Lasso and Enet, though $T T L P_{I}$ and Grace gave smaller mean PEs than those of Lasso and Enet. On the other hand, with the weights $w_{j}=\sqrt{d_{j}}$, Grace had the smallest ME, closely followed by $L T L P_{I}$ and $a L_{\infty}$.

With random regression coefficients in simulation II (Table 2), our new methods showed more substantial advantages over other methods, in terms of both parameter estimation (and outcome prediction) and variable selection. With a sparse true model in set-up 3 , the $T T L P_{I}$ method performed best.

In summary, in cases that the regression coefficients of neighboring nodes had the same signs, that is, effect directions, with correctly specified weights Grace performed well in parameter estimation and outcome prediction, otherwise it did not perform well; in both cases, however, it gave too large models. Its modification aGrace could slightly improve over Grace in the case that neighboring nodes had different association directions with the outcome. As expected, L_{∞} and $a L_{\infty}$ were not sensitive to different association directions of neighboring nodes, but they did not perform well if the weights were mis-specified; otherwise they performed best in variable selection, possibly due to their mechanisms of group variable selection. As discussed by (Luo et al., 2012), due to the overshrinkage and thus large biases of its parameter estimates (Table 3), L_{∞} did not perform well in parameter estimation and prediction. On the other hand, our proposed methods, especially $L T L P_{I}$, seemed to perform reasonable well across all the scenarios; $T T L P_{I}$ seemed to have some edge over $L T L P_{I}$ with a comparable number of TPs but fewer FPs, though the former lost its edge to the latter in parameter estimation and outcome prediction, perhaps due to the larger variability of the former's parameter estimates in the not-so-sparse true models considered here (Table 3); for more sparse true models, we did observe that $T T L P_{I}$ performed better than $L T L P_{I}$ for both parameter estimation and variable selection, as shown in set-up 3 in Table 2. Overall, our methods gave less biased estimates than other network-based methods (Table 3). We conclude that our proposed new methods were more robust to mis-specified weights or mis-specified relationships among the true regression coefficients than other network-based methods.

3.3. Other Results

As shown in Web Appendix B, the DC algorithm typically converged in about three iterations for simulated data, in agreement with Theorem 1. Since our penalties are not convex, the local minimum the DC algirthm converges to depends on the starting values. In general, better starting values give better results. For example, for set-up 1 of simulation I as shown in Web Appendix B, since the Enet estimates performed only slightly better than the Lasso estimates with smaller MEs, the $T T L P_{I}$ and $L T L P_{I}$ estimates with the Enet estimates as the starting values gave also slightly smaller MEs than those with the Lasso estimates as the starting values; with weight $w=\sqrt{d}$, since the L_{∞} method performed much better than the Lasso method, the $T T L P_{I}$ and $L T L P_{I}$ estimates with the former as their starting values yielded much smaller MEs than those with the latter. More studies are warranted on this topic.

4. Example

We applied the methods to two breast cancer gene expression datasets, named the Wang data (Wang et al., 2005) and van de Vijver data (van de Vijver et al., 2002), respectively. The two datasets contained 286 and 295 patients, respectively, out of which 106 and 78 developed metastasis within a 5 -year follow-up after surgery. In the analysis, we considered three tumor suppressor genes, BRCA1, BRCA2, TP53, and their direct neighbors in a PPI network (Chuang et al., 2007), which formed our prior gene network with 294 genes (nodes) and 326

Table 1
Simulation I: Mean (SD) of ME and PE, mean [median] (SD) of the numbers of TP, FP, and the TFs from 100 simulated datasets for each set-up

Set-up	w	Method	ME (SD)	PE (SD)	$T P$	FP	TF
1	1	Lasso	44.2 (13.2)	66.2 (13.1)	13.5 [14] (3.2)	16.8 [13] (19.2)	2.0 [2] (0.2)
		Enet	34.2 (13.1)	65.0 (13.5)	16.5 [17] (3.7)	22.2 [18] (16.6)	2.0 [2] (0.2)
		Grace	15.1 (3.9)	42.4 (6.4)	21.9 [22] (0.9)	61.2 [66.5] (21.0)	2.0 [2] (0.0)
		aGrace	31.9 (13.2)	61.3 (14.9)	16.9 [17] (4.1)	24.3 [18.5] (19.7)	2.0 [2] (0.2)
		L_{∞}	41.2 (12.4)	71.1 (17.6)	21.1 [22] (2.0)	13.7 [12] (9.9)	1.8 [2] (0.4)
		$\mathrm{a} L_{\infty}$	19.3 (8.8)	45.4 (12.5)	21.1 [22] (2.1)	4.6 [3] (9.5)	1.8 [2] (0.4)
		$T T L P_{I}$	24.8 (20.6)	50.5 (11.4)	20.4 [22] (4.6)	12.0 [0.0] (21.5)	2.0 [2] (0.0)
		$L T L P_{I}$	17.6 (9.5)	46.7 (9.8)	21.3 [22] (2.2)	17.0 [11] (14.2)	2.0 [2] (0.0)
	\sqrt{d}	Grace	4.7 (3.6)	39.7 (5.8)	22.0 [22] (0.1)	59.5 [63] (21.2)	2.0 [2] (0.0)
		aGrace	23.9 (16.4)	55.6 (14.4)	17.6 [18] (4.1)	29.4 [23.5] (22.3)	2.0 [2] (0.2)
		L_{∞}	14.2 (8.0)	50.4 (11.2)	22.0 [22] (0.0)	9.7 [8] (6.8)	2.0 [2] (0.0)
		$\mathrm{a} L_{\infty}$	4.3 (4.1)	38.8 (6.0)	22.0 [22] (0.0)	4.1 [2] (5.4)	2.0 [2] (0.0)
		$T T L P_{I}$	12.4 (12.0)	45.4 (9.1)	21.5 [22] (2.7)	20.2 [1] (28.3)	2.0 [2] (0.0)
		$L T L P_{I}$	9.6 (8.5)	43.4 (8.5)	21.7 [22] (1.4)	23.4 [22] (17.0)	2.0 [2] (0.0)
2	1	Lasso	34.6 (8.8)	67.9 (11.4)	10.2 [9.5] (3.0)	13.4 [9.0] (15.4)	1.8 [2] (0.4)
		Enet	34.8 (8.5)	68.2 (11.4)	13.2 [13.0] (4.3)	24.4 [18] (22.1)	1.9 [2] (0.3)
		Grace	37.6 (7.2)	63.4 (10.1)	17.7 [19.5] (4.9)	42.5 [38.5] (27.1)	2.0 [2] (0.1)
		aGrace	33.7 (8.3)	63.8 (11.5)	15.0 [15] (5.6)	32.3 [27] (25.5)	1.9 [2] (0.3)
		L_{∞}	54.2 (6.8)	77.2 (12.1)	13.0 [14] (3.9)	12.1 [11] (6.9)	0.6 [1] (0.6)
		$\mathrm{a}^{\text {L }}$ ¢	48.9 (10.1)	71.5 (12.8)	12.7 [13] (3.7)	8.1 [8] (5.4)	0.6 [1] (0.6)
		$T T L P_{I}$	33.9 (14.0)	60.0 (13.3)	20.3 [22] (3.7)	16.2 [3] (24.5)	2.0 [2] (0.2)
		$L T L P_{I}$	31.8 (9.2)	58.3 (9.8)	20.5 [22] (3.2)	30.5 [29] (21.1)	2.0 [2] (0.1)
	\sqrt{d}	Grace	27.1 (5.7)	59.8 (9.0)			2.0 [2] (0)
		aGrace	25.3 (10.9)	58.4 (11.6)	17.5 [19] (5.0)	41.9 [39.5] (24.1)	1.9 [2] (0.2)
		L_{∞}	34.5 (10.2)	65.1 (12.2)	20.9 [22] (2.6)	15.2 [13] (11.0)	1.8 [2] (0.4)
		${ }^{\text {a }} L_{\infty}$	20.7 (9.9)	53.5 (11.6)	20.7 [22] (3.1)	8.3 [5] (10.7)	1.8 [2] (0.4)
		$T T L P_{I}$	28.5 (11.0)	59.5 (11.3)	21.0 [22] (3.3)	26.7 [15] (28.6)	2.0 [2] (0.2)
		$L T L P_{I}$	23.2 (8.1)	55.3 (9.3)	21.4 [22] (2.2)	37.2 [33] (21.4)	2.0 [2] (0.1)
3	1	Lasso	18.4 (6.3)	43.1 (8.6)	8.4 [8.5] (1.7)	14.7 [12.5] (11.4)	2.0 [2] (0.2)
		Enet	18.2 (6.5)	43.5 (8.7)	9.0 [9.0] (1.9)	17.5 [17] (11.6)	2.0 [2] (0.2)
		Grace	22.5 (6.0)	40.7 (6.7)	10.9 [12] (1.8)	52.7 [60] (32.6)	2.0 [2] (0.1)
		aGrace	20.0 (7.0)	44.0 (8.5)	9.0 [9] (1.9)	19.2 [16] (16.6)	2.0 [2] (0.2)
		L_{∞}	41.4 (7.1)	57.4 (12.4)	10.4 [10] (1.7)	20.5 [20] (6.8)	1.4 [1] (0.6)
		${ }^{\text {a }} L_{\infty}$	32.2 (6.5)	46.1 (10.1)	10.3 [10] (1.7)	12.9 [12] (4.5)	1.4 [1] (0.6)
		$T T L P_{I}$	21.4 (7.8)	40.5 (7.5)	9.7 [12] (3.3)	14.6 [10] (19.2)	2.0 [2] (0.0)
		$L T L P_{I}$	17.6 (7.2)	39.5 (7.1)	11.1 [12] (1.3)	28.7 [22.5] (16.8)	2.0 [2] (0.0)
	\sqrt{d}	Grace					
		aGrace	16.4 (6.5)	41.8 (8.3)	9.3 [9] (2.0)	27.1 [19] (22.6)	2.0 [2] (0.2)
		L_{∞}	19.9 (5.6)	43.4 (8.4)	11.9 [12] (0.4)	23.3 [20] (11.3)	2.0 [2] (0.1)
		$\mathrm{a} L_{\infty}$	13.7 (4.0)	37.4 (6.6)	11.9 [12] (0.4)	16.6 [13] (11.1)	2.0 [2] (0.1)
		$T T L P_{I}$	18.4 (7.0)	40.0 (7.2)	10.0 [12] (3.2)	21.9 [10] (25.9)	2.0 [2] (0)
		$L T L P_{I}$	13.6 (4.1)	38.0 (6.6)	11.5 [12] (1.0)	36.5 [32] (21.4)	2.0 [2] (0)

The true numbers of $T P$ are 22 for set-ups 1 and 2 , and 12 for set-up 3 . The true number of TFs is 2 for all set-ups.
edges. Among the 294 genes 18 were breast cancer (BC) genes from the 60 -gene list given in (Chuang et al., 2007). Since all the methods were developed for linear regression, we fitted linear models to the binary metastasis status as the response. Each full model included all the 294 genes as its candidate predictors.

We standardized the data in the following way: across the samples, the outcomes were centered to have mean 0 , and each gene's expression levels were standardized to have mean 0 and standard deviation 1 . We first assessed marginal association between the binary metastasis status and each gene' expression level by fitting marginal linear regression models.

For TP53 with the van de Vijver data, its regression coefficient estimate was -0.0189 , while those for its neighbors ranged from -0.1123 to 0.1488 with the three quartiles as $-0.0177,0.0079$, and 0.0377 , respectively; similar results were obtained for the three tumor suppressor genes and their neighboring genes on each dataset as shown in Web Appendix C. These results suggest that the association strength of a hub gene like TP53 could be quite different from its direct neighbors. In particular, as pointed out by Chuang et al. (2007), the expression changes of some cancer-causing genes like TP53 might be much weaker than some downstream ones.

Table 2
Simulation II: Mean (SD) of ME and PE, mean [median] (SD) of the numbers of TP, FP, and the TFs from 100 simulated datasets for each set-up

Set-up	w	Method	ME (SD)	PE (SD)	$T P$	FP	TF	
1	1	Lasso	36.2 (9.4)	67.0 (1.1)	10.0 [10] (3.3)	13.6 [10] (16.3)	0.7 [1]	(0.6)
		Enet	34.9 (7.9)	65.8 (1.0)	12.7 [12] (3.8)	22.7 [17] (19.2)	1.1 [1]	(0.7)
		Grace	32.8 (7.5)	64.3 (1.0)	14.0 [13.5] (3.7)	25.7 [19.5] (19.0)	1.5 [2]	(0.7)
		aGrace	31.6 (7.2)	62.5 (9.0)	15.2 [15] (5.2)	31.8 [23.5] (24.6)	1.4 [2]	(0.7)
		L_{∞}	34.4 (8.3)	66.1 (1.0)	10.2 [10] (3.1)	11.8 [10] (10.0)	0.1 [0]	(0.4)
		$\mathrm{a} L_{\infty}$	34.0 (8.4)	65.9 (1.1)	10.1 [10] (3.1)	11.2 [9.5] (9.7)	0.1 [0]	(0.4)
		$T T L P_{I}$	31.2 (1.0)	62.1 (1.1)	19.2 [22] (5.4)	17.9 [11] (22.4)	1.7 [2]	(0.7)
		$L T L P_{I}$	28.1 (8.0)	59.0 (9.5)	20.6 [22] (3.6)	37.0 [33.5] (21.7)	1.8 [2]	(0.5)
	\sqrt{d}	Grace	34.9 (7.8)	65.4 (1.0)	13.6 [14] (4.2)	24.8 [19] (19.3)		
		aGrace	36.2 (8.4)	63.1 (9.0)	15.2 [15] (5.6)	32.0 [24] (24.3)	1.2 [1]	(0.8)
		L_{∞}	33.9 (8.1)	65.1 (1.0)	15.3 [15] (4.6)	13.8 [11] (11.5)	1.0 [1]	(0.6)
		$\mathrm{a} L_{\infty}$	37.6 (9.2)	66.0 (1.2)	15.0 [15] (4.7)	9.7 [7.5] (11.0)	1.0 [1]	(0.6)
		$T T L P_{I}$	34.2 (1.0)	63.9 (1.0)	19.1 [22] (5.2)	20.1 [13] (22.7)	1.6 [2]	(0.7)
		$L T L P_{I}$	31.3 (7.4)	61.1 (9.6)	20.5 [22] (3.7)	39.2 [44] (21.9)	1.8 [2]	(0.5)
2	1	Lasso	15.7 (4.7)	33.6 (5.9)	6.2 [6] (1.6)	14.2 [11] (13.7)	0.5 [0.5]	(0.6)
		Enet	16.1 (4.5)	34.3 (5.8)	7.0 [7] (2.1)	20.6 [16] (17.1)	0.8 [1.0]	(0.7)
		Grace	15.8 (4.3)	34.0 (5.4)	7.3 [7] (1.9)	20.6 [16] (16.1)	1.1 [1.0]	(0.8)
		aGrace	15.5 (4.0)	33.7 (5.5)	7.2 [7] (2.2)	21.0 [16.5] (16.9)	0.9 [1.0]	(0.8)
		L_{∞}	15.1 (4.2)	33.2 (5.7)	5.8 [6] (1.5)	12.9 [11] (10.5)		
		$\mathrm{a} L_{\infty}$	15.1 (4.3)	33.3 (5.8)	5.8 [6] (1.4)	12.4 [11] (10.5)	0.0 [0.0]	(0.3)
		$T T L P_{I}$	15.3 (5.6)	32.3 (6.4)	8.5 [7] (3.2)	19.2 [10] (23.9)	1.1 [1.0]	(0.8)
		$L T L P_{I}$	14.9 (4.3)	32.9 (5.6)	10.8 [12] (2.2)	46.8 [54] (24.5)	1.7 [2.0]	(0.6)
	\sqrt{d}	Grace	16.1 (4.6)	34.1 (5.6)	7.1 [7] (2.0)	20.8 [17] (16.7)	0.9 [1.0]	(0.8)
		aGrace	16.7 (5.4)	34.0 (5.6)	7.3 [7] (2.5)	24.1 [17] (20.2)	0.8 [1.0]	(0.8)
		L_{∞}	15.2 (4.1)	33.3 (5.6)	7.3 [7.5] (2.2)	17.0 [14.5] (9.9)	0.6 [1.0]	(0.6)
		$\mathrm{a} L_{\infty}$	17.8 (5.6)	35.7 (7.0)	$7.2[7]$ (2.1)	14.0 [12] (8.0)	0.6 [1.0]	(0.6)
		$T T L P_{I}$	15.7 (6.5)	32.6 (6.8)	8.2 [7] (3.1)	20.3 [11] (24.4)	1.1 [1.0]	
		$L T L P_{I}$	15.7 (5.5)	33.5 (5.8)	10.6 [12] (2.3)	47.1 [46.5] (25.0)	1.6 [2.0]	(0.7)
3	1	Lasso	6.0 (2.2)	18.2 (2.9)	4.0 [4] (0.8)	11.9 [10] (11.4)	0.8 [1]	(0.5)
		Enet	6.4 (2.3)	18.6 (3.3)	4.2 [4] (0.8)	13.8 [12] (11.9)		
		Grace	6.2 (2.3)	18.4 (3.0)	4.3 [4] (0.8)	14.9 [12] (13.1)	0.9 [1]	(0.5)
		aGrace	6.1 (2.1)	18.4 (2.9)	4.2 [4] (0.8)	15.1 [12] (12.5)	0.8 [1]	(0.5)
		L_{∞}	6.5 (2.1)	18.3 (3.0)	3.5 [3] (0.9)	11.6 [10] (7.8)	0.1 [0]	
		a_{∞}	6.6 (2.1)	18.5 (3.1)	3.5 [3] (0.9)	10.6 [9] (7.1)	0.1 [0]	(0.3)
		$T T L P_{I}$	4.8 (2.1)	16.1 (2.8)	5.0 [6] (1.2)	8.5 [5] (12.7)	0.8 [1]	(0.5)
		$L T L P_{I}$	6.5 (2.3)	18.4 (2.9)	5.5 [6] (0.9)	41.9 [38] (26.1)	1.2 [1]	
	\sqrt{d}	Grace	6.2 (2.4)	18.5 (3.0)	4.2 [4] (0.8)	14.0 [12] (12.7)	0.8 [1]	(0.5)
		aGrace	7.4 (4.2)	18.8 (3.0)	4.5 [4] (1.0)	24.1 [13] (25.6)	0.9 [1]	(0.6)
		L_{∞}	6.1 (2.1)	18.1 (2.9)	5.2 [6] (1.3)	15.7 [13] (9.7)	0.8 [1]	(0.5)
		$\mathrm{a}^{L_{\infty}}$	8.0 (3.1)	20.1 (3.9)	5.2 [6] (1.3)	13.3 [12] (8.4)	0.8 [1]	(0.5)
		$T T L P_{I}$	4.7 (2.2)	16.0 (2.7)	4.9 [6] (1.3)	10.2 [5] (15.9)	0.7 [1]	(0.5)
		$L T L P_{I}$	6.1 (2.2)	18.2 (2.8)	5.6 [6] (0.8)	45.0 [46.5] (27.6)	1.3 [1]	(0.6)

The true numbers of $T P$ are 22,12 , and 6 , and the true numbers of TFs are 2,2 , and 1 for the three set-ups, respectively.

Since the sample size was relatively small, we ran each method 20 times on each dataset. In each of 20 runs, each dataset was randomly split into the training, tuning, and test sets with almost equal sample sizes (i.e., with 95, 95, 96 observations for the Wang data, and 95, 95, 105 for the van de Vijver data). We compared the methods' performance in PE, selection of the breast cancer (BC) genes and model size, all averaged over 20 runs. For each method, we used fivefold cross-validation to select the tuning parameter values by minimizing the PRSS and then used the selected tuning parameters to fit a final model to the whole dataset. As before, we explored the use of two weights, $w_{j}=1$ and $w_{j}=\sqrt{d_{j}}$; since
for this dataset, it is known that some important cancer hub genes, like TP53, had only moderate to small effect sizes, and it is desirable to select those hub genes (Chuang et al., 2007), we present the results only for using weight $w_{j}=\sqrt{d_{j}}$ that favored the selection of hub genes, though similar conclusions were reached with the other weight.

For the Wang data, as shown in Table 4, averaged over the 20 runs, our proposed $T T L P_{I}$ selected most BC genes at 2.90, followed by the $L T L P_{I}$ and aGrace at 1.35 and 1.30 , respectively, all much higher than those from other methods, though our two methods tended to select slightly larger models with slightly larger PEs than those of the other methods. It is

Table 3
Simulation I: Mean, SD, and MSE of regression coefficient estimates from 100 simulated datasets in each set-up

Set-up	w	Methods	$\beta_{1}=5$			$\beta_{2}=1.58$			$\beta_{11}=1.58$		
			Mean	SD	MSE	Mean	SD	MSE	Mean	SD	MSE
1	1	Lasso	7.10	1.66	9.92	0.98	1.03	2.46	0.93	0.99	2.40
		Enet	5.20	1.69	5.71	1.19	0.91	1.82	1.15	0.94	1.95
		Grace	1.99	0.73	10.11	1.93	0.22	0.21	1.91	0.24	0.22
		aGrace	3.96	2.17	10.46	1.46	0.96	1.86	1.39	1.01	2.05
		L_{∞}	1.09	0.34	15.49	1.88	0.98	2.00	1.94	1.04	2.28
		$\mathrm{a} L_{\infty}$	2.03	0.20	8.93	2.03	0.28	0.36	2.04	0.24	0.32
		$T T L P_{I}$	4.35	2.51	12.96	1.68	0.94	1.76	1.69	0.83	1.40
		$L T L P_{I}$	4.05	1.93	8.32	1.64	0.77	1.18	1.69	0.70	0.98
	\sqrt{d}	Grace	4.70	0.42	0.44	1.49	0.19	0.08	1.48	0.20	0.09
		aGrace	5.35	1.16	2.79	1.29	0.72	1.12	1.21	0.78	1.36
		L_{∞}	3.93	0.54	1.73	1.47	0.60	0.73	1.55	0.63	0.80
		$\mathrm{a} L_{\infty}$	4.95	0.47	0.44	1.54	0.38	0.29	1.59	0.23	0.11
		$T T L P_{I}$	5.28	1.08	2.42	1.52	0.79	1.25	1.53	0.61	0.73
		$L T L P_{I}$	5.16	0.90	1.65	1.44	0.63	0.82	1.52	0.58	0.66
			$\beta_{1}=5$			$\beta_{2}=-1.58$			$\beta_{11}=1.58$		
			Mean	SD	MSE	Mean	SD	MSE	Mean	SD	MSE
2	1	Lasso	3.83	1.39	5.18	-0.04	0.31	2.57	0.92	0.97	2.29
		Enet	2.89	1.05	6.64	-0.03	0.38	2.69	1.08	0.89	1.82
		Grace	1.66	1.12	13.66	0.36	0.44	4.16	1.29	0.72	1.13
		aGrace	2.35	1.24	10.10	-0.26	0.81	3.05	1.34	0.92	1.73
		L_{∞}	0.15	0.23	23.64	0.07	0.39	3.02	1.59	1.24	3.04
		$\mathrm{a} L_{\infty}$	0.70	0.79	19.75	0.09	0.95	4.59	1.60	1.01	2.01
		$T T L P_{I}$	3.23	1.78	9.44	-0.61	1.33	4.46	1.70	0.79	1.27
		LTL $P_{\text {I }}$	2.77	1.43	9.05	-0.40	1.27	4.64	1.53	0.71	1.00
	\sqrt{d}	Grace	2.90	0.53	4.97	0.24	0.38	3.62	1.07	0.54	0.85
		aGrace	3.88	0.83	2.63	-0.51	0.75	2.27	1.15	0.75	1.31
		L_{∞}	2.18	0.77	9.13	-0.10	0.65	3.04	1.34	0.86	1.51
		$\mathrm{a}^{\circ}{ }_{\infty}$	3.94	0.78	2.32	-0.31	1.24	4.65	1.31	0.36	0.34
		$T T L P_{I}$	3.73	1.30	4.97	-0.33	1.10	3.99	1.36	0.77	1.23
		$L T L P_{I}$	3.55	0.96	3.95	-0.29	1.08	3.99	1.30	0.66	0.95
			$\beta_{1}=5$			$\beta_{2}=0$			$\beta_{11}=1.58$		
			Mean	SD	MSE	Mean	SD	MSE	Mean	SD	MSE
3	1	Lasso	5.15	1.22	2.98	0.13	0.35	0.25	1.01	0.93	2.05
		Enet	4.47	1.20	3.14	0.20	0.41	0.37	1.08	0.90	1.87
		Grace	2.45	1.76	12.62	0.81	0.56	1.28	1.27	0.62	0.86
		aGrace	3.94	1.61	6.28	0.25	0.53	0.62	1.20	0.98	2.04
		L_{∞}	0.43	0.29	21.05	0.66	0.66	1.30	1.81	1.11	2.51
		${ }^{\text {a }} L_{\infty}$	1.26	0.48	14.44	1.05	0.69	2.07	1.56	0.57	0.64
		$T T L P_{\text {I }}$	4.91	2.13	9.02	0.33	0.71	1.10	1.20	0.98	2.06
		$L T L P_{I}$	3.94	1.50	5.62	0.40	0.71	1.16	1.31	0.71	1.07
	\sqrt{d}	Grace	3.45	0.86	3.90	0.71	0.38	0.79	1.11	0.46	0.66
		aGrace	4.37	1.05	2.58	0.22	0.55	0.66	1.11	0.80	1.50
		L_{∞}	2.46	0.52	6.98	0.59	0.50	0.85	1.42	0.77	1.21
		$\mathrm{a} L_{\infty}$	3.55	0.54	2.68	0.74	0.80	1.81	1.21	0.32	0.34
		$T T L P_{I}$	4.82	1.86	6.88	0.40	0.72	1.20	1.13	0.90	1.83
		$L T L P_{I}$	4.14	1.07	3.02	0.43	0.68	1.10	1.23	0.65	0.97

interesting to note that our two new methods and aGrace selected the three hub genes, BRCA1, BRCA2, and TP53, most frequently over the 20 runs. Furthermore, our two new methods were the only ones selecting all three hub genes (and another BC gene) in their final models.

For the van de Vijver data (Table 5), compared to the Wang data, although all the methods tended to select slightly smaller models, we reached the same conclusion. As before, our proposed $T T L P_{I}$ selected most BC genes, including the three hub genes, both across the 20 runs and in the final

Table 4
Results for the Wang data with $w=\sqrt{d}$: PE (SE), mean [median] (SE) of the frequencies of selecting breast cancer (\# BC) genes and all genes (\# Genes) over 20 runs and in the final models

Method	PE	\# BC	\# Genes
Lasso	$0.235(0.004)$	$0.30[0.00](0.13)$	$8.80[8.00](1.91)$
Final	-	1	30
Enet	$0.227(0.003)$	$0.20[0.00](0.09)$	$9.90[1.00](2.60)$
Final	-	2	51
Grace	$0.227(0.003)$	$0.70[1.00](0.16)$	$9.50[2.50](2.38)$
Final	-	2	49
aGrace	$0.229(0.003)$	$1.30[1.00](0.25)$	$10.20[6.00](2.10)$
Final	-	2	52
L_{∞}	$0.236(0.005)$	$0.10[0.00](0.07)$	$10.35[7.50](1.97)$
Final	-	0	3
$a L_{\infty}$	$0.239(0.005)$	$0.10[0.00](0.07)$	$10.20[7.50](2.43)$
Final	-	0	3
TTLP	$0.282(0.015)$	$2.90[3.00](0.34)$	$12.00[8.00](2.68)$
Final	-	4	30
LTLP	$0.256(0.009)$	4	$11.10[8.00](2.07)$
Final	-	$1.35[1.50](0.28)$	30

Frequency of the three tumor genes being selected (Freq) Frequency of other genes selected $\geqslant 5$ times (Freq)

Lasso	BRCA1 (1), BRCA2 (0), TP53 (1)
	MAPK9 (10), TOP1 (6)
Enet	BRCA1 (0), BRCA2 (0), TP53 (0)
	ERCC2 (6), MAPK9 (7), TOP1 (6)
Grace	BRCA1 (7), BRCA2 (2), TP53 (2)
	BRCA1 (7), ERCC2 (5), MAPK9 (7), TOP1 (6)
aGrace	BRCA1 (10), BRCA2 (4), TP53 (9)
	ERCC2 (5), MAPK9 (8)
L_{∞}	BRCA1 (0), BRCA2 (0), TP53 (0)
	CD74 (6), HIF1A (5), MAPK9 (12), RFC1 (5), TOP1 (7)
$a L_{\infty}$	BRCA1 (0), BRCA2 (0), TP53 (0)
	HIF1A (5), MAPK9 (11), TOP1 (7), CEBPZ (5)
$T T L P_{I}$	BRCA1 (20), 促CA2 (10), TP53 (20),
	MAPK9 (8), TOP1 (5)
$L T L P_{I}$	BRCA1 (9), BRCA2 (5), TP53 (9)
	HIF1A (5), MAPK9 (9) TOP1 (7)

The frequencies of selecting the three tumor suppressor genes (BRCA1/BRCA2/TP53) and other genes selected $\geqslant 5$ times are given. The BC genes are underlined.
model, though $L T L P_{I}$ and aGrace also performed well. In particular, in agreement with the biological knowledge and with the results from the Wang data, again our two methods $T T L P_{I}$ and $L T L P_{I}$ along with aGrace selected the three tumor suppressor genes more often than any other method. Also note that the fitted final models from our two new methods selected almost the same set of the genes with almost equal regression coefficient estimates for each dataset. Figure 1 shows the selected genes in the final models for $T T L P_{I}$.

Since the Wang data also contained the time to metastasis, possibly right censored, we fitted penalized linear regression models to approximate penalized proportional hazards models. As shown in Web Appendix C, we reached similar conclusions: our proposed methods were more likely to select the three tumor hub genes and other BC genes. We also applied the methods to an RNA-seq gene expression dataset for breast cancer tumor and normal samples as shown in Web Appendix C.

5. Discussion

In this article, we have proposed a network-based penalized regression approach with a novel penalty $T T L P_{I}$ containing two penalty terms for two different goals: the first uses a TLP for variable selection while the second $\left(T L P_{I}\right)$ smooths approximate indicators of the nodes' being selected over a network. We have also considered one of its modifications by replacing the TLP by the Lasso for variable selection for not-too-sparse models. Our main contribution is that, in contrast to previously developed network-based methods aiming to smooth the (weighted) regression coefficients or their absolute values over a network (Li and $\mathrm{Li}, 2008$, 2010; Pan et al., 2010), we adopt a less stringent assumption to smooth the indicators of the regression coefficients' being non-zero. Specifically, for any two neighboring nodes $j \sim j^{\prime}$ in a network, rather than assuming and thus encouraging $\beta_{j} / w_{j} \approx \beta_{j^{\prime}} / w_{j^{\prime}}$ or $\left|\beta_{j}\right| / w_{j} \approx\left|\beta_{j^{\prime}}\right| / w_{j^{\prime}}$, our method assumes and aims to smooth $I\left(\left|\beta_{j}\right| / w_{j} \neq 0\right) \approx I\left(\left|\beta_{j^{\prime}}\right| / w_{j^{\prime}} \neq 0\right)$. As shown in our simulation

Table 5
Results for the van de Vijver data with $w=\sqrt{d}: P E$ (SE), mean [median] (SE) of the frequencies of selecting breast cancer (\# BC) genes and all genes (\# Genes) over 20 runs and in the final models

Method	PE	\# BC	\# Genes
Lasso	0.192 (0.005)	0.70 [1] (0.16)	7.35 [6] (0.97)
Final		1	10
Enet	0.189 (0.004)	0.75 [1] (0.18)	8.00 [6] (1.64)
Final	(0.00000	1	9
Grace	0.190 (0.004)	0.80 [1] (0.17)	7.90 [5] (1.65)
Final		[1	,
aGrace	0.189 (0.003)	1.25 [1] (0.18)	8.20 [7] (1.61)
Final		1	${ }^{9}$
L_{∞}	0.193 (0.006)	0.65 [1] (0.13)	7.10 [6] (0.96)
Final	-	1	2
$a L_{\infty}$	0.193 (0.006)	0.65 [1] (0.13)	7.15 [6] (0.97)
Final	-	1	2
$T T L P_{I}$	0.217 (0.008)	1.50 [1] (0.26)	4.90 [4] (0.44)
Final	-	4	12
LTL $P_{\text {I }}$	0.203 (0.005)	1.00 [1] (0.21)	6.45 [4] (1.15)
Final	-	4	13

> Frequency of the three tumor genes being selected (Freq)
> Frequency of other genes selected $\geqslant 5$ times (Freq)

Lasso	$\begin{aligned} & \text { BRCA1 (1), BRCA2 (0), TP53 (0) } \\ & \text { E2F1 (6), JAK2 (7), STAT5A (5), TK1 (8), USP4 (6) } \end{aligned}$
Enet	BRCA1 (1), BRCA2 (0), TP53 (0)
	E2F1 (5), JAK2 (5), TK1 (8), PCAF (7)
Grace	BRCA1 (2), BRCA2 (0), TP53 (1)
	E2F1 (5), TK1 (7), PCAF (7)
aGrace	BRCA1 (5), BRCA2 (3), TP53 (5)
	E2F1 (5), TK1 (6), PCAF (6)
L_{∞}	BRCA1 (0), BRCA2 (0), TP53 (0)
	GSK3B (5), JAK2 (7), RPL5 (5), TK1 (10), USP4 (7), BTG2 (5)
$a L_{\infty}$	BRCA1 (0), BRCA2 (0), TP53 (0)
	GSK3B (5), JAK2 (7), RPL5 (5), TK1 (10), USP4 (7)
$T T L P_{I}$	BRCA1 (8), BRCA2 (2), TP53 (11),
	E2F1 (5), TK1 (7), USP4 (5)
$L T L P_{I}$	BRCA1 (5), BRCA2 (0), TP53 (5)
	E2F1 (5), JAK2 (6), TK1 (8), USP4 (6)
	Final model: selected genes ($\left.\hat{\beta}_{j} \times 100\right)$
$T T L P_{I}$	ANXA3 (-5.88), BRCA1 (-4.53), BRCA2 (-1.70), JAK2 (-3.52),
	PPA1 (-6.83), MED1 (3.91), RPL5 (-1.51), TK1 (1.94)
	TP53 (-7.02), USP4 (-9.75), BTG2 (-3.13), PCAF (4.86)

The frequencies of selecting the three tumor suppressor genes (BRCA1/BRCA2/TP53) and other genes selected $\geqslant 5$ times are given. The final model for $T T L P_{I}$ with the selected genes (their regression coefficient estimates $\times 100$) are listed. The BC genes are underlined.
studies, if the former assumption holds, then some existing methods, such as Grace and $a L_{\infty}$, which fully incorporate this former assumption, may be more efficient; however, even in this situation, our proposed methods seem to be robust with good performance. More generally, if this assumption does not hold, or even if this assumption holds but the weights w_{j} are mis-specified, then our proposed methods perform much better. In particular, in our real data application, we have demonstrated the effectiveness of the proposed methods in selecting biologically important hub genes with only small to moderate effect sizes. We also note that our proposed methods have broad applications beyond microarray gene expression data: since no assumption is imposed on the distribution of the pre-
dictors, we can equally apply our methods (as other penalized regression methods) to risk prediction and phenotype modeling with RNA-seq, DNA sequence, and other high-throughput genomic data, for example. In summary, we regard our proposed methods as a useful tool complementary to existing methods.

We note that, although our methods encourage simultaneous selection (or elimination) of any two nodes connected in a network, it is related to but significantly different from group variable selection. A main difference is that group variable selection only encourages indirectly, through shrinkage and soft-thresholding, simultaneous elimination, but not necessarily simultaneous selection. Consider a simple case with two

Figure 1. The genes selected in the final models by $T T L P_{I}$ with the Wang data and the van de Vijver data in the used PPI subnetwork: the 5 genes (in hexagons) appearing in both models, 25 genes (in triangles) only in the model with the Wang data, and 7 genes (in large circiles) only in the model with the van de Vijver data; the 5 BC genes are BRCA1, BRCA2, TP53, TK1, and CHEK2.
orthogonal covariates and $\beta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$: with a group Lasso penalty (i.e., the L_{2}-norm), as shown in Yuan and Lin (2006), the penalized estimate is $\hat{\beta}=(1-\sqrt{2} \lambda /\|\tilde{\beta}\|)_{+} \tilde{\beta}$, where $\tilde{\beta}$ is the OLSE. While the simultaneous elimination effect of the group Lasso is clear with the soft-thresholding, the shrinkage effect is also persistent: we always have $\left|\hat{\beta}_{j}\right| \leq\left|\tilde{\beta}_{j}\right|$ for any component j. Hence, if $\tilde{\beta}_{1}=0$ (or close to 0), no matter how large is $\tilde{\beta}_{2} \neq 0$, we will never have $\hat{\beta}_{1} \neq 0$ (or larger than $\tilde{\beta}_{1}$); in contrast, with our proposed penalty, it is possible to have $\hat{\beta}_{1} \neq 0$ (or larger than $\tilde{\beta}_{1}$), in which sense we say that our methods can perform simultaneous selection (while the group Lasso cannot). Furthermore, existing penalties for group variable selection, for example, the L_{γ}-norm for $\gamma>1$, have strong shrinkage effects on parameter estimation, often leading to severely biased parameter estimation, as demonstrated by the L_{∞} method compared here. In addition, although we focus on network-based regression, our proposed penalty can be also applied to more general grouping problems (Pan, 2009; Shen and Huang, 2010); for example, with no given network, we can construct a complete graph with an edge connecting each pair of nodes, or we can form a linear chain graph as used in the fused Lasso (Tibshirani et al., 2005), before applying our methods. More studies are needed.

Computationally, we have developed a DC method to relax a non-convex minimization problem into iterative convex programs to be solved. Currently we use the existing Matlab package CVX for convex programming; a more efficient implementation for high-dimensional data is desired. In particular, to save computing time, we used a common tuning parameter τ for both variable selection and network smoothing; using two different τ_{1} and τ_{2} might perform better. In addition, due to the presence of multiple tuning parameters, we only searched a limited number of grid points (4-5) for each tuning
parameter, which might not be optimal. Developing more efficient computational algorithms and further investigating the properties of our proposed methods are worthwhile for future study.

Matlab code will be posted at http://www.biostat.umn. edu/~weip/prog.html.

6. Supplementary Materials

Web Appendices A-C referenced in Sections 2-4 are available with this paper at the Biometrics website on Wiley Online Library.

Acknowledgments

We thank the reviewers and editors for helpful and constructive comments. This research was supported by NIH grants R01GM081535, R01HL65462, and R01HL105397.

References

Alfarano, C., Andrade, CE., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K., Burgess, E., Buzadzija, K., Cavero, R., D'Abreo, C., Donaldson, I., Dorairajoo, D., Dumontier, MJ., Dumontier, MR., Earles, V., Farrall, R., Feldman, H., Garderman, E., Gong, Y., Gonzaga, R., Grytsan, V., Gryz, E., Gu, V., Haldorsen, E., Halupa, A., Haw, R., Hrvojic, A., Hurrell, L., Isserlin, R., Jack, F., Juma, F., Khan, A., Kon, T., Konopinsky, S., Le, V., Lee, E., Ling, S., Magidin, M., Moniakis, J., Montojo, J., Moore, S., Muskat, B., Ng, I., Paraiso, JP., Parker, B., Pintilie, G., Pirone, R., Salama, JJ., Sgro, S., Shan, T., Shu, Y., Siew, J., Skinner, D., Snyder, K., Stasiuk, R., Strumpf, D., Tuekam, B., Tao, S., Wang, Z., White, M., Willis, R., Wolting, C., Wong, S., Wrong, A., Xin, C., Yao, R., Yates, B., Zhang, S., Zheng, K., Pawson, T., Ouellette, BF., and Hogue, CW. (2005). The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Research 33(Database Issue), D418-D424.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., and Sherlock, G. (2000) Gene ontology: Tool for the unification of biology The Gene Ontology Consortium. Nature Genetics 25: 25-29.
Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, feature selection and supervised clustering of predictors with OSCAR. Biometrics 64, 115-123.
Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Molecular Systems Biology 3, 140.
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2011). Least angle regression (with discussion). Annals of Statistics 32, 407-499.
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties Journal of the American Statistical Association 96, 1348-1360.
Grant, M. and Boyd, S. (2011). CVX: Matlab software for disciplined convex programming, version $1.21 \mathrm{http}: / / \mathrm{cvxr}$. com/cvx
Huang, Y. and Wang, P. (2012) Network based prediction model for genomic data analysis. Statistics in Biosciences 4, 47-65.
Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30.

Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175-1118.
Li, C. and Li, H. (2010). Variable selection and regression analysis for graph-structured covariates with an application to genomics. Annals of Applied Statistics 4, 1498-1516.
Li, F. and Zhang, N.Z. (2010). Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. JASA 105, 1202-1214.
Luo, C., Pan, W., and Shen, X. (2012). A two-step penalized regression method with networked predictors. Statistics in Biosciences 4, 27-46.
Monni, S. and Li, H. (2010). Bayesian methods for networkstructured genomics data. In Frontiers of Statistical Decision Making and Bayesian Analysis, Honor of J. O. Berger, M.-H. Chen, D. K. Dey, P. Mueller, D. Sun, and K. Ye (eds), New York: Springer.
Pan, W. (2009). Network-based multiple locus linkage analysis of expression traits. Bioinformatics 25(11), 1390-1396.
Pan, W., Xie, B., and Shen, X. (2010). Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66(2), 474-484.
Percival, D., Roeder, K., Rosenfeld, R., and Wasserman, L. (2011). Structured, sparse regression with application to HIV drug resistance Annals of Applied Statistics 5(2A), 628-644
Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M., Look, M.P., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M.E., Yu, J., Jatkoe, T., Berns, E.M., Atkins, D., and Foekens, J.A. (2004). Human protein reference database as a discovery resource for proteomics. Nucleic Acids Research 32 (Database Issue), D497-D501.
Shen, X. and Huang, H.-C. (2010). Grouping pursuit through a regularization solution surface. Journal of the American Statistical Association 105, 727-739.
Shen, X., Pan, W., and Zhu, Y. (2012). Likelihood-based selection and sharp parameter estimation. Journal of the American Statistical Association 107, 223-232.

Tai, F., Pan, W., and Shen, X. (2010) Bayesian variable selection in regression with networked predictors. In Analysis of High Dimensional Data, T. Cai and X. Shen (eds), 147-165. Beijing, China: Higher Education Press.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society 58, 267-288.
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society 67, 91-108.
van de Vijver, M.J., He, Y.D., van't Veer, L.J., Dai, H., Hart, A.A., Voskuil, D.W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., Parrish, M., Atsma, D., Witteveen, A., Glas, A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S., Rutgers, E.T., Friend, S.H., and Bernards, R. (2002) A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine 347, 19992009.

Wang, Y., Klijn, J.G., Zhang, Y., Sieuwerts, A.M., Look, M.P., Yang, F., Talantov, D., Timmermans, M., Meijer-van Gelder, M.E., Yu, J., Jatkoe, T., Berns, E.M., Atkins, D., and Foekens, J.A. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671-679.
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B 68, 49-67.
Zhao, P., Rocha, G., and Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics 37, 3468-3497.
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B 67, 301-320.

Received June 2012. Revised October 2012. Accepted January 2013.

