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Abstract Genomic imprinting, an epigenetic phenome-

non of parent-of-origin-specific gene expression, has been

widely observed in plants, animals, and humans. To detect

imprinting genes influencing quantitative traits, the least

squares and maximum likelihood approaches for fitting a

single quantitative trait locus (QTL) and Bayesian methods

for simultaneously modeling multiple QTL have been

adopted, respectively, in various studies. However, most of

these studies have only estimated imprinting main effects

and thus ignored imprinting epistatic effects. In the pres-

ence of extremely complex genomic imprinting architec-

tures, we introduce a Bayesian model selection method to

analyze the multiple interacting imprinted QTL (iQTL)

model. This approach will greatly enhance the computa-

tional efficiency through setting the upper bound of the

number of QTLs and performing selective sampling for

QTL parameters. The imprinting types of detected main-

effect QTLs can be estimated from the Bayes factor sta-

tistic formulated by the posterior probabilities for the

genetic effects being compared. The performance of the

proposed method is demonstrated by several simulation

experiments. Moreover, this method is applied to dissect

the imprinting genetic architecture for body weight in

mouse and fruit weight in tomato. Matlab code for

implementing this approach will be available from the

authors upon request.

Introduction

Through molecular mechanisms such as DNA methylation,

histone modification, noncoding RNAs (ncRNA), and

long-distance interchromosomal interactions (Allis et al.

2007; Kiefer 2007; Pauler and Barlow 2006; Wood et al.

2008), genes may exhibit distinct expression patterns,

depending on the parent who passes on the alleles. Such a

parent-of-origin effect on allele activities and phenotypes is

a type of epigenetic processes, or genomic imprinting,

which has been widely observed in plants (Alleman and

Doctor 2000) and animals (Falls et al. 1999; Jeon et al.

1999; McInnis et al. 2003; McKeigue and Wild 1997;

Nezer et al. 1999; Paterson et al. 1999; Tuiskula-Haavisto

et al. 2004; Van Laere et al. 2003) and has been unani-

mously recognized for its role in shaping organisms’

developmental processes (Constancia et al. 2004; Isles and

Holland 2005; Tycko and Morison 2002). In addition to

single imprinted genes, evidence of interaction between
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imprinted genes has been also reported (Cattanach et al.

2004; Wolf and Cheverud 2009). Different types of

imprinting effects on traits of interest have been defined.

Based on the parental origin of the expressed allele,

imprinting can be classified into paternal imprinting and

maternal imprinting, whereas based on the extent of

expression difference, imprinting can then be categorized

as either complete imprinting when only one parental allele

is expressed or partial imprinting when both parental

alleles are expressed but in different levels (Naumova and

Croteau 2004; Sandovici et al. 2003, 2005). Aiming to

provide a comprehensive classification scheme, a recent

study (Cheverud et al. 2008) classified imprinting types

into either parental expression or dominance imprinting.

Genetic mapping approaches have been developed to

detect the epigenetic modification of an imprinted gene on

quantitative traits in populations with different structures.

For a complex pedigree, the iQTLs can be identified using

identical-by-descent-based random models (Haghighi and

Hodge 2002; Hanson et al. 2001; Shete and Amos 2002;

Shete et al. 2003). For the controlled crosses between

outbred parents (de Koning et al. 2000, 2002; Knott et al.

1996; Tuiskula-Haavisto et al. 2004), tracing parental ori-

gins of alleles from the offsprings to the parents can be

used to study genomic imprinting (Knott et al. 1998). Note

that when the reciprocal heterozygotes are fully informa-

tive or distinguishable, imprinted effects of QTLs can be

uniquely tested and estimated by means of genetic asso-

ciation of phenotype with markers (Cheverud et al. 2008;

Hager et al. 2009; Wolf et al. 2008) or interval mapping

with conditional probabilities of QTL genotypes on given

flanking marker genotypes (Cheverud et al. 2008; Hager

et al. 2009; Mantey et al. 2005). On the other hand, when

the reciprocal heterozygotes are not fully informative or

distinguishable, the information of sex-specific differences

in recombination fraction (De Vicente and Tanksley 1991;

Dib et al. 1996; Dietrich et al. 1996; Groover et al. 1995;

Haldane 1992; Huxley 1928; Knott et al. 1998; Neff et al.

1999) can be used to make imprinted effects of QTLs

estimable, allowing us to infer the inheritance patterns of

quantitative traits in the genetically designed population

with only one heterozygote, such as inbred F2 population.

Some available methods for detecting imprinting locus

have been extended from methods for interval mapping of

Mendelian QTLs. Imprinting effects can be estimated using

either least squares (de Koning et al. 2000, 2002; Knott

et al. 1996; Tuiskula-Haavisto et al. 2004) or maximum

likelihood methods (Cui et al. 2006). Multiple step tests for

contrast models have been also proposed to identify the

imprinting pattern (de Koning et al. 2000, 2002; Knott

et al. 1996; Tuiskula-Haavisto et al. 2004). All those

mapping approaches are based on a single QTL model, i.e.

estimating and testing one locus at a time. Bayesian

mapping, on the other hand, is able to simultaneously map

multiple QTLs and plays an important role in detecting

iQTLs and distinguishing between Mendelian and

imprinting expressions of QTLs (Hayashi and Awata

2008). Although the Bayesian mapping approach improves

statistical power of QTL detection, its attempt to estimate

the number of QTLs using a reversible-jump MCMC

procedure may result in lower convergence efficiency and

poor mixing. Given maximum number of QTLs, therefore,

Yang et al. (2010) have adopted Bayesian model selections

to estimate the iQTLs and estimated their imprinting types

in a computationally efficient manner. However, these

Bayesian mapping methods mainly focus on main effects

of iQTLs, without considering the interactions between

iQTLs, which is largely due to the fact that statistical

analyses for interacting iQTLs can be more complex in the

presence of various factors, such as unknown number of

iQTLs and the huge number of possible epistatic effects.

To better understand genomic imprinting architecture of

quantitative traits, in this study, we extend Bayesian model

selection for analyzing epistatic QTLs inherited in Men-

delian fashion (Yi et al. 2005) to interacting iQTLs. We

demonstrate the performance of the proposed method using

computer simulation experiments and apply the method to

studying the genetic controls of body weight in mouse and

fruit weight in tomato.

Theory and method

Genetic model

We take an F2 mating design as an example to describe the

imprinting genetic model for quantitative traits. To locate

the iQTLs, we measure genotypes of a set of codominant

molecular markers with a known genetic linkage map as

well as phenotypes for the trait of interest on n individuals.

Suppose there are m QTLs controlling a trait of interest.

The phenotypic value yk of individual k can be represented

by the following multiple interacting QTL model:

yk ¼ lþ
Xm

j¼1

Mkj þ
Xm

h [ j

Dkjh þ ek ð1Þ

where l is the population mean, and ek is a random envi-

ronmental error, distributed as N(0, r2) with r2 being

residual variance; in particular, Mkj denotes the main effect

of the jth QTL, and Dkjhis the interaction between the jth

QTL and the hth QTL for the kth individual. Mkj and Dkjh

will be formulated based on the genetic imprinting theory.

For two alleles Q and q of a QTL in an F2 population,

their parental origins are represented by QM and qM when

they are derived from the F1 maternal parent, and QP and
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qP when from F1 paternal parent. Therefore, there are four

possible imprinted genotypes: QMQP, QMqP, qMQP, and

qMqP. Different from traditional Mendelian inheritance,

genetic imprinting theory suggests that the two reciprocal

heterozygotes, QMqP, and qMQP, are distinguishable,

because the alleles inherited from one parent are not

completely expressed. Thus, the main effects of the jth

iQTL can be decomposed as

Mkj ¼ ckjaj þ zkjdj þ skjij ð2Þ

for j = 1, 2,…, m, where aj, dj, and ij are additive,

dominance, and imprinting effects, respectively, for the

jth QTL. Variable ckj; zkj; and skj are the genotype

indicators for individual k at locus j and are defined as

(Mantey et al. 2005)

ckj ¼

þ1

0

0

�1

8
>><

>>:
; zkj ¼

0

þ1

þ1

0

8
>><

>>:
and skj ¼

0 for QMQP

þ1 for qMQP

�1 for QMqP

0 for qMqP

8
>><

>>:

The relationship of interactions among iQTLs is very

complicated because of the complex types of their main

effects. For simplicity, only pairwise interactions between

main effects from different QTLs are considered. We form

the interactions between the jth QTL and the hth QTL by

pairing the components from main-effect Mj and Mh (Wolf

and Cheverud 2009); the interaction of the two QTLs for

individual i can be then written as

Dkjh ¼ waa
kjhd

aa
jh þ wad

kjhd
ad
jh þ wai

kjhd
ai
jh þ wda

kjhd
da
jh þ wdd

kjhd
dd
jh

þ wdi
kjhd

di
jh þ wia

kjhd
ia
jh þ wid

kjhd
id
jh þ wii

kjhd
ii
jh ð3Þ

where daa
jh ; dad

jh ; dai
jh; dda

jh ; ddd
jh ; ddi

jh; dia
jh; did

jh; and dii
jh are

the epistatic (interactive) effects between the jth QTL and

the hth QTL, corresponding to additive 9 additive,

additive 9 dominant, additive 9 imprinting, dominant 9

additive, dominant 9 dominant, dominant 9 imprinting,

imprinting 9 additive, imprinting 9 dominant and imprint-

ing 9 imprinting, respectively. The dummy variables are

waa
kjh ¼ ckjckh; wad

kjh ¼ ckjzkh; wai
kjh ¼ ckjskh;

wda
kjh ¼ zkjckh; wdd

kjh ¼ zkjzkh; wdi
kjh ¼ zkjskh;

wia
kjh ¼ skjckh; wid

kjh ¼ skjzkh and

wii
kjh ¼ skjskh; respectively:

Bayesian model selection for QTL parameters

To facilitate our description below, we also transform the

model (1) to a simple linear model:

yk ¼ lþ xkbþ ek ð4Þ

As compared with multiple main-effect QTL model in

Yang et al. (2010), the components in xk include not only

indicator variables or dummy variables of main-effect

iQTLs, but also that of interactions between iQTLs, and b

consists of corresponding main and epistatic effects.

Different from a common linear model, the number of

independent variables in the model (4) are unknown and

the associated design matrix are unobservable due to the

number of QTLs and QTL positions being estimated.

It is hypothesized in quantitative genetics that, the

genetic variation of most quantitative traits is actually

controlled by a few loci with large effects and a large

number of loci with small effects (Lynch and Walsh 1998).

This suggests that among those estimated genetic effects,

only a few are large or significant and most of them are

small or negligible. Therefore, Bayesian model selection

based on a composite space representation (Carlin and

Chib 1995; Yi 2004; Yi et al. 2005, 2007) provides a

simple and efficient way to identify a small number of large

or significant genetic effects in multiple interacting QTL

model.

Bayesian model selection approach for mapping QTLs

starts with specifying the upper bound of the number of

QTLs included in the model (Yi et al. 2005), which is

greater than the number of detectable QTLs in a given data

set. Given the upper bound of the number of QTLs, QTLs

will be randomly drawn from all possible spaced loci

across the genome. Even with a moderate value of the

upper bound, there are many genetic effects being esti-

mated in the model (4). To test of the existence of these

effects, a random binary variable cj is introduced to indi-

cate which genetic effects are included (cj = 1) in or

excluded from (cj = 0) the model (George and McMul-

lochr 1997; Kuo and Mallick 1998). Let C be a diagonal

matrix consisting of all binary variables; the model (4)

becomes

yk ¼ lþ xkCbþ ek ð5Þ

Unknown parameters in the model, which include l, C
and b, are estimated by the implementation of MCMC

algorithms. During the MCMC sampling, the real sampling

value for c in the matrix C within one sampling cycle

determines which genetic effect and position of QTL will

be drawn or estimated in next sampling cycle. As a rule,

QTLs with larger genetic effects are included in the model

with higher probabilities than those with smaller genetic

effects. This will greatly reduce the computational time,

since only a few large main and epistatic effects are drawn

in each MCMC iteration.

In fact, Bayesian mapping of iQTLs has the same form

of likelihood function, the same method for specifying the

priors, and the same forms of conditional posteriors as

QTLs inherited under Mendelian law (Yi et al. 2005,

2007). The difference between two models is that the iQTL

involves more types of main and epistatic effects than the
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inherited QTL under Mendelian law with the same genetic

design. This distinction may result in a decreased prior

inclusion probability for each genetic effect and an

increased computational cost. We specify the prior distri-

bution for each QTL parameter (see Appendix A) and

derive the conditional posterior distribution for each QTL

parameter from the joint posterior distribution for all

unknown parameters (see Appendix B). According to these

conditional posterior distributions, full Bayesian sampling

for all known parameters is implemented via the MCMC

algorithm. Specifically, the associated design matrix is

jointly sampled along with QTL positions, instead of the

expectation of prior conditional probabilities for QTL

genotypes as in Yi et al. (2005, 2007).

Bayesian inference for imprinting patterns

As usual, the mixing behavior and convergence rates of

MCMC processes are monitored by visually inspecting

trace plots of the sample values for scalar quantities of

interest or by using formal diagnostic methods provided in

the package R/coda (Plummer et al. 2004). Characteristics

of the imprinting genetic architecture are assessed through

model averaging (Raftery et al. 1997; Sillanpää and Cor-

ander 2002). The posterior inclusion probability of each

locus or effect is estimated as its frequency in the posterior

samples. Bayes factor (BF), used as the criterion for

including each QTL locus or effect (Kass and Raftery

1995; Yi et al. 2005), is defined as

BFh ¼
ph

1� ph
� 1� p�h

p�h

where h ¼ k; a; d; i and d, corresponding to the QTL

position, additive, dominant, imprinting, and epistatic

effects, respectively, conditional on which ph is the prior

probability and ph
* is the posterior probability. Here, when

h ¼ a; d; i and d, ph
* is calculated as the proportion of

samples with corresponding c = 1, but when h = k, ph
* is

calculated as the proportion of samples with c = 1 for

a; d; i or d in the whole MCMC sampling iterations.

Generally, a threshold of BF for declaring statistical sig-

nificance is empirically determined as 3, or 2 lnBF = 2.197.

Next, we need to test whether the QTL exists, which

fashion the detected QTL inherits in and which imprinting

pattern of the iQTL. Given the existence of a QTL, if the

imprinting effect is not significant, the detected QTL inherits

in Mendelian fashion; otherwise, it is imprinted. The

imprinting patterns can be defined as either additive

imprinting or dominance imprinting. Furthermore, the

additive imprinting is composed of four subtypes, namely,

the complete or partial paternal additive imprinting, corre-

sponding to hypothesis d ¼ 0 and a ¼ i or d ¼ 0 and a 6¼ i,

respectively, and the complete or partial maternal additive

imprinting, corresponding to hypothesis d ¼ 0 and a ¼ �i

or d ¼ 0 and a 6¼ �i, respectively. Finally, the dominance

imprinting is further classified into bipolar dominance (H0:

a ¼ 0 and d ¼ 0), polar over-dominance (H0: a ¼ 0

and d ¼ i), and polar under-dominance (H0: a ¼ 0 and

d ¼ �i). Following the definition of imprinting types and the

corresponding null hypothesis (Cheverud et al. 2008; Wolf

et al. 2008; Yang et al. 2010), the imprinting pattern for the

detected QTL depends on whether genetic effect a or

d equals imprinting effect i and can also be statistically

inferred by BF, which is defined as the ratio of posterior

probabilities for the genetic effects being compared.

Imprinting patterns, hypotheses, and corresponding statisti-

cal criteria for the iQTLs are detailed in Yang et al. (2010).

Real data analysis

Body weight in mouse

An F2 mating population was derived from two strains, the

Large (LG/J) strain and the Small (SM/J) strain (Cheverud

et al. 1996). A total of 502 F2 mice were genotyped for 96

microsatellite markers across 19 autosomal chromosomes.

A linkage map of a total length of 1,780 cm has been

constructed (Vaughn et al. 1999). The body mass was

measured on each mouse at 10-week intervals starting at

the age of 7 days. The raw weights were adjusted for

several covariates such as dam, litter size at birth and

parity, and sex (Vaughn et al. 1999).

We take the body weight growth at the fifth time point as

the mapping subject to illustrate our method. Female-to-male

recombination rate of 1.25:1 is incorporated into mapping

analysis due to no distinguishable reciprocal heterozygotes

for measured maker genotypes. In Bayesian mapping anal-

ysis, the prior number of main-effect QTLs is set at lm = 3

according to a previous interval mapping results (Yang et al.

2010). Since the prior expected number of all QTLs (l0) is set

to lm ? 5, the upper bounds of the number of QTLs, L, are 8

for non-epistatic analysis and 16 for epistatic analysis. The

initial values of all unknown parameters are the same as what

has been done in the simulation study. Since the number of

QTLs is prespecified and is not sampled in Bayesian model

selection, MCMC sampling easily reaches convergence

without any mixing problem. Since the research interest here

is not the determination of MCMC convergence, the length

of burn-in period is empirically determined by visually

inspecting the posterior samples of the plots and then is set to

a sufficiently large number to ensure convergence. Here, the

MCMC sampling is run for 200,000 cycles after a burn-in

period of 6,000 cycles.

There are the five QTLs detected on chromosomes 6, 7,

10, 13, and 15, which all show significant imprinting
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effects. Their imprinting types are statistically identified and

summarized in Table 1 along with parameter estimates.

These detectable QTLs are completely consistent with our

previous findings using Bayesian non-epistatic analysis

(Yang et al. 2010). In comparison, maximum likelihood

method (Cui et al. 2006) only identifies three of the five

QTLs detected by the Bayesian method. Moreover, the

imprinting types for the three QTLs detected (shown in the

final column of Table 1) are quite different from those

identified by the Bayesian method, which may be mainly due

to the difference of the models used in two mapping methods.

Because Cui’s method is based on an additive QTL model,

the method is not able to estimate dominance and imprinting

effects and distinguish between different types of dominance

imprinting, as stated in the section of discussion.

Bayesian epistatic analysis also found 8 pairs of epistatic

QTLs, some of which depend on both main-effect QTLs,

such as the first and the fourth pairs of QTLs, some of

which depend on one main-effect QTL, such as the third,

the seventh, and the eighth pairs of QTLs, and the others do

not depend on any main-effect QTLs. Interestingly, these

interactions mainly occur between additive and dominant

effects, and only one pair of epistatic QTLs is detected as

additive by additive interaction. No interaction with

imprinting effect is found. Parameter estimates for epistatic

QTLs obtained by the Bayesian epistatic analysis for body

weight in mouse are listed in Table 2.

To assess the influence of the sex-biased recombination

rates, we re-analyze the dataset by specifying the female-

to-male recombination rates of 1.30:1 and 1.20:1. As a

result, detected QTLs are the same as what are found

above. Moreover, if female-to-male recombination rates

are set between 1.30:1 and 1.25:1 or between 1.20:1 and

1.25:1, the imprinting types are exactly the same for main-

effect QTLs, and the estimated genetic effects are very

close for either main effect or epistatic QTLs. Therefore,

we conclude that the proposed Bayesian mapping method

is not sensitive to a small change in the sex-specific

recombination fraction (simulation results are not shown).

Fruit weight in tomato

To map the QTLs for yield traits in tomato, an F2 popu-

lation with 142 progenies was generated by crossing of

Lycopersicon esculentum Mill.XF98-7 and Lycopersicon

pimpinellifolium LA2184 (Liu et al. 2005). Based on this

population, a genetic linkage map panning 808.4 cm of the

tomato genome has been constructed using 112 SSR

markers distributed on 16 linkage groups. Fruit weight, as

the trait analyzed, was measured by the average of ten

representative ripe fruits at the end of the growth season.

We locate the iQTLs for fruit weights using maximum

likelihood methods of Cui et al. (2006), Bayesian method

of Yang et al. (2010), and our proposed method, respec-

tively. The female-to-male recombination rates of 1.19:1

(de Vicente and Tanksley, 1991) are used to distinguish

from reciprocal heterozygotes. Maximum likelihood

method identifies 5 QTLs on chromosomes 1, 2, 3, and 12,

among which three are imprinted. Based on this result, the

expected number of main-effect QTLs in Bayesian map-

ping is specified as 5 and the prior expected number of all

QTLs is specified as 10, leading to the maximum number

of QTLs being 19. Initial values of other parameters and

sampling scheme are as the same as those appearing in the

real data analysis. Table 3 tabulates parameter estimates as

well as imprinting types for main-effect QTLs detected by

Bayesian non-epistatic analysis. Actually, both Bayesian

non-epistatic analysis and Bayesian epistatic analysis

identify the same 5 main-effect QTLs. Only one of them is

inherited in Mendelian fashion and all others are imprinted

in different imprinting types, which are considerably dif-

ferent from those estimated by Cui’s maximum likelihood

method (see final column of Table 3). What is more, our

method further detects five pairs of epistatic QTLs (see

Table 4). Additionally, we also re-analyze the dataset by

adjusting the female-to-male recombination rate to 1.25:1

and again confirm that a small change in sex-specific

recombination fraction does not produce more QTLs other

than those detected above and does not affect the size of

Table 1 Estimates for main-effect iQTL parameters and statistical inference for Inheritance modes with Bayesian epistatic analysis for body

weight in mouse

QTL Bayesian method Cui’s method

Chr-position a d i Inheritance mode Inheritance mode

1 6–73.2 0.62 (6.21) 0.57 (0.00) 0.15 (6.62) Complete paternal Complete maternal

2 7–63.1 0.78 (9.25) 0.33 (0.00) -0.35 (8.54) Complete maternal Mendelian

3 10–72.7 0.21 (0.00) 0.46 (5.73) 0.29 (7.34) Polar over-dominance –

4 13–26.3 0.34 (0.00) 0.66 (3.61) 0.54 (3.81) Polar over-dominance –

5 15–12.7 0.51 (4.12) 0.16 (0.00) -0.19 (3.54) Complete maternal Complete paternal

Numbers in the parentheses are 2lnBF values for the corresponding iQTL effects
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estimated QTL effects as well as detected QTL positions

(result not shown).

Simulation studies

The statistical properties of the proposed model are also

investigated through simulation studies. In particular, we

assume that there are 61 equally spaced codominant

markers on a single large chromosome with a length of

500 cm. Three QTLs are assumed on this chromosome,

among which two pairwise interactions exist. We simulate

these QTLs and maker genotypes for individuals in an F2

population, with sample size being 250 or 500, where the

marker and QTL genotypes are generated by mimicking

sex-specific recombination fractions of 1.25:1 in mouse.

The imprinting type of each QTL depends on the additive

or dominant effect (listed in Table 5). The proportion of

phenotypic variance contributed by an individual QTL

ranges from 4.14 to 28.54%, and the population mean and

residual variance are l = 5.0 and r2 = 5.0, respectively.

Given these parameters, the phenotypic value of the

quantitative trait is randomly generated for each individual

according to model (1).

Prior to Bayesian sampling, we set the prior number of

main-effect QTLs as lm = 3 and the prior expected number

of epistatic QTLs as 3, which implies the upper bound of

the number of QTLs is L ¼ 6þ 3
ffiffiffi
6
p
¼ 13. The values of

hyperparameters are taken as ve = 0 and se = 1. The initial

values of all variables are sampled from their prior distri-

butions. The MCMC procedure run for 6,000 cycles as a

burn-in period (discarded) and then run additional 100,000

cycles after the burn-in period. To reduce serial correlation,

we save one observation out of every 40 cycles and

therefore obtain independent posterior sample of 2,500

observations for the post-MCMC analysis. Fifty simula-

tions of the same setting are carried out to evaluate sta-

tistical power of QTL detection.

The identified imprinting loci positions, estimated

effects as well as relative statistical powers of these iQTLs

detection based on Bayesian epistatic analysis are shown in

Table 5. Using BF statistic, the imprinting type of the

detected locus can be identified more completely and

accurately. Bayesian mapping of genome-wide imprinting

interacting loci is able to better estimate the effects and

positions of detected QTLs. As expected, the estimation

precision of parameters and the statistical power of QTL

detection increase as the genetic contribution of QTL

measured by true effect and sample size increase. In

addition, we notice that the Bayesian model selection is

more sensitive to the iQTLs with relatively small genetic

Table 2 Estimates for epistatic iQTL parameters obtained with

Bayesian epistatic analysis for body weight in mouse

QTL no. QTL type Chr-position Effect

1 a 9 a 6–73.1 9 7–63.1 2.19 (4.06)

2 a 9 d 2–104.3 9 9–50.1 2.17 (4.95)

3 a 9 d 5–50.8 9 10–72.7 0.82 (3.08)

4 a 9 d 7–63.1 9 10–72.7 1.24 (3.29)

5 a 9 d 9–50.1 9 13–82.7 1.20 (2.89)

6 d 9 a 2–104.3 9 3–10.2 -0.83 (2.91)

7 d 9 a 2–104.3 9 7–63.1 1.54 (3.81)

8 d 9 a 6–73.2 9 16–23.7 1.49 (4.12)

Numbers in the parentheses are 2lnBF values for the corresponding

QTL effects

Table 3 Estimates for main-effect QTL parameters and statistical inference for Inheritance modes with Bayesian epistatic analysis for fruit

weight in tomato

QTL No. Bayesian method Cui’s method

Chr-position a d i Inherence node Inherence mode

1 1–10.5 -1.38 (9.13) 0.12 (0.00) 1.17 (8.73) Complete paternal Complete paternal

2 2–8.0 0.07 (0.00) 1.15 (3.318) -1.83 (2.28) Polar over-dominance Mendelian

3 2–28.3 -1.13 (7.75) 0.09 (0.00) 0.98 (7.93) Partial paternal Mendelian

4 3–67.8 1.04 (10.47) -0.05 (0.00) 0.87 (9.73) Complete paternal Partial paternal

5 12–20.2 0.06 (0.00) 1.21 (8.96) -0.31 (0.00) Mendelian dominance Mendelian

Numbers in the parentheses are 2lnBF values for the corresponding QTL effects

Table 4 Estimates for epistatic QTL parameters obtained with

Bayesian epistatic analysis for fruit weight in tomato

QTL no. QTL type Chr-position Effect

1 a 9 a 3–67.8 9 1–10.5 0.18 (4.43)

2 a 9 a 7–20.3 9 8–15.4 -0.21 (4.98)

3 a 9 d 3–67.8 9 12–20.2 0.16 (4.76)

4 a 9 d 2–8 9 12–20.2 0.26 (4.72)

5 d 9 a 1–10.5 9 12–20.2 0.04 (3.69)

Numbers in the parentheses are 2lnBF values for the corresponding

QTL effects
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contribution, as opposed to Mendelian QTLs (Yi et al.

2005, 2007). The same datasets simulated are also analyzed

using Bayesian non-epistatic analysis. The results show

that Bayesian non-epistatic analysis can also precisely map

all the main-effect iQTLs simulated with the same or

slightly higher power than Bayesian epistatic analysis, but

effects of iQTLs are somewhat overestimated (see

Table 6). Additionally, simulations specifying various

expected numbers of iQTLs consistently support the sta-

tistical power and robustness of our method in estimating

parameters of iQTLs (results not shown).

By increasing the sex-specific difference in recombina-

tion fractions to 1.6:1, which is a reasonable estimate for

humans, we perform additional simulation experiments to

investigate the impact of difference in sex-specific recom-

bination fraction on iQTLs detections of our method.

Comparison of simulation results in Table 5 indicates that

statistical power to detect iQTLs and the estimating preci-

sion of effects of iQTLs increase moderately as the differ-

ence in sex-specific recombination increases, but this

improvement is more evident to the iQTL than that inherited

in Mendelian fashion. This suggests that larger sex-specific

difference in recombination fraction contributes to better

distinguishing between two different formations of QTL

heterozygotes based on the two flanking markers.

Discussion

In this study, we extend Bayesian mapping for multiple

main-effect iQTLs (Yang et al. 2010) to interacting iQTLs.

Bayesian model selection for mapping interacting Mende-

lian QTLs (Yi et al. 2005) is employed to analyze the

interacting iQTLs for quantitative traits. Our proposed

approach is not only capable of identifying the main effect

of iQTLs, but also capable of estimating the pairwise

interactions among iQTLs, even if the interactions among

iQTLs cannot be well explained with our current knowl-

edge of biological processes and metabolic pathways. The

imprinting types of main-effect QTLs detected by our

model can be estimated based on the BF statistic formu-

lated by the posterior probabilities for various imprinting

genetic effects. Simulation studies demonstrate the per-

formance of this method under different experimental

designs, where various genetically contributed proportion

by iQTL and different sample sizes are considered. A real

data analysis validates the flexibility of our method by

comparing the result of our approach with the results from

a full model containing only main effect and another model

based on maximum likelihood.

Cui et al. (2006) have proposed the single imprinting

QTL model within the framework of maximum likelihood,

which may better detect which parent the imprinting effect

was originated from according to respective estimators for

the paternally and maternal inherited effects. In fact, the

imprinting can also lead to the change of interaction between

alleles. Cheverud et al. (2008) illustrated a scheme for

characterizing the potential diversity of imprinting patterns,

where imprinting patterns were classified as either parental

expression (paternal or maternal) or dominance (bipolar and

polar). The model by Cui et al. (2006) can also estimate the

dominant effect, but such a dominant effect was merely an

interaction between the paternally and maternally inherited

effects (see assigned values for the indicator variables in

formula (3)). Therefore, their model can be treated as

additive genetic effect model and thus cannot be used to

adjudge the imprinting type related to dominance.

Most imprinted genes play important roles in controlling

embryonic and postnatal growth and development in

mammal (Constancia et al. 2004; Isles and Holland 2005;

Tycko and Morison 2002). As a highly complex process,

genomic imprinting is involved in a number of growth axes

operating coordinately at different developmental stages

(Bartolomei and Tilghman 1997), and shows time-varying

Table 6 Parameter estimates (standard deviations) and statistical powers of QTLs detection obtained with Bayesian nonepistatic analysis for the

simulated data by mimicking sex-specific recombination fraction of 1.25:1 in mouse

Sample size QTL parameter QTL No.

1 2 3

Additive Imprinting Dominant Imprinting Additive Dominant

True Position 23 148 308

Effect 1.3 1.3 0.6 0.6 0.5 -1.0

250 Position 22.8 (2.03) 146.8 (3.42) 306.9 (6.01)

Effect 1.36 (0.33) 1.39 (0.25) 0.76 (0.26) 0.79 (0.29) 0.62 (0.33) -1.17 (0.39)

Power 100% 84% 92%

500 Position 23.3 (1.79) 147.5 (2.98) 308.4 (4.96)

Effect 1.40 (0.27) 1.37 (0.18) 0.66 (0.19) 0.69 (0.23) 0.65 (0.27) -1.21 (0.29)

Power 100% 94% 98%
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effect during development (Villar et al. 1995). The unbal-

anced expression of an imprinted gene that occurs during a

developmental stage challenges the traditional paradigm of

inheritance and mapping methods. Since our Bayesian

mapping method treats a trait measured at a certain

developmental stage as mapping subject, and does not

consider the correlation information at different develop-

mental stages, it is less powerful in dissecting the dynamic

iQTL effects. Cui et al. (2008) recently proposed a func-

tional iQTL mapping framework underlying developmental

characteristics, which incorporated a mathematical func-

tion that best describes a developmental feature into an

iQTL mapping framework. Such approach can estimate

and test time-specific imprinting effect at specific devel-

opmental stages, and is expected to display several merits

over traditional iQTL mapping methods. Nevertheless, this

mapping procedure is still a single QTL model that esti-

mates and tests one locus at a time without considering the

effects of other QTLs. Hence, it is necessary to develop a

Bayesian mapping method that can simultaneously map

multiple QTLs for growth trajectory or developmental

pattern in the spirit of our approach.
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Appendix A: Specification of priors

The maximal number of QTLs is estimated as L ¼ l0þ
3
ffiffiffiffi
l0
p

, where l0 is the prior expected number of all QTLs

including main-effect (lm) and epistatic QTLs that are deter-

mined based on Bayesian model proposed by Yi et al. (2005).

The binary indicator cfor each genetic effect is assigned

to be independent prior pðcÞ ¼
Q

wcð1� wÞð1�cÞ
, where

w = p(c = 1) is the prior inclusion probability for the jth

effect. According to derivation of Yi et al. (2005), given

the prior expected numbers of main-effect and all QTLs we

obtain wm ¼ 1� 1� lm
L

� �1=K
for main effect and we ¼

1� 1�l0=L

ð1�wmÞK
h i1=K2ðL�1Þ

for epistatic effect, where K = 3 is

the number of possible main effects for each QTL and

K2 = 9 is the number of possible epistatic effects of any

two QTLs.

The population mean l is assumed to have a prior which

is proportional to a constant. The prior distribution for

each genetic effect is proposed as bj ðcj; r
2; x�jÞ

�� �N

0; cjcr
2
Pn

k¼1 x2
kjÞ
�1

� �� �
, where c takes to be n. A scaled

inverse-v2 distribution with hyper-parameters ve and se is

adopted as a prior forr2, i.e., r2 ve; sej � IC ve; veseð Þ�1
� �

.

Prior probabilities of genotypes for each possible locus

can be inferred from two flanking markers (Rao and Xu

1998), denoted as pðGgÞ for g ¼ 1; 2; 3; 4 corresponding to

QMQP, QMqP, qMQP, and qMqP.

Appendix B: Derivation of conditional posterior

distribution

Given unknown parameters, the conditional density of all

phenotypes, called likelihood of model (5), is

pðyjX; k; l;C; b; r2Þ / ðr2Þ�
n
2

exp � 1

2r2

Xn

k¼1

yk � l�xkCbÞ2
�" #

Then, we can form joint posterior density by multiplying

priors for all unknown parameters and likelihood. The

conditional posterior distributions of all parameters need to

be derived from the joint posterior density by keeping other

parameters fixed.

The full conditional posterior density of the population

mean l, given all other parameters, follows a normal dis-

tribution with mean 1
n

Pn

k¼1

yk � xkCbð Þ, and variance 1
n r2.

The fully conditional posterior distribution for QTL

genetic effect bj is also normal distribution with mean b̂j ¼

c
cþ1

Pn

k¼1

x2
kj

� 	�1Pn

k¼1

xkjðyk � l� xkCbþ xkjbjÞ and variance

r̂2
j ¼ c

cþ1

Pn

k¼1

x2
kj

� 	�1

r2.

For the residual variance r2, the corresponding full

conditional distribution can be shown to be an inverse

v2 distribution with parameters df = ve ? n and SS ¼

ðve þ nÞse þ
Pn

k¼1

ðyk � l� xkCbÞ2.

Although a Bernoulli distribution can be constructed as

the conditional posterior for c, for improving sampling

efficiency, we adopt an efficient Metropolis–Hastings

algorithm (Kohn et al. 2001; Yi et al. 2007) with accep-

tance rate

a ¼
pðy cj ¼ 1;C�cj

��� ;X; b�bj
Þ

pðy cj ¼ 0;C�cj

��� ;X; b�bj
Þ
� 1� w

w

¼
pðy cj ¼ 1;C�cj

;X; b�bj
; bjÞ

��� pðbj cj ¼ 1;C�cj
;X;b�bj

Þ
���

pðy cj ¼ 0;C�cj

��� ;X; b�bj
Þpðbj cj ¼ 1;C�cj

;X; b�bj
; yÞ

���

� 1� w

w
¼

ffiffiffiffiffiffiffiffiffiffiffi
c

cþ 1

r
exp �

b̂2
j

2r̂2
j

 !
� 1� w

w
ðB1Þ
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where pðbj cj ¼ 1;C�cj
;X; b�bj

��� Þ and pðbj cj ¼ 1;C�cj
;

���
X; b�bj

; y:Þ are prior and posterior probabilities for bj,

respectively. C�cj
stands for all elements of C except for cj

and b�bj
denotes all elements of b except for bj. The fact

that cj = 1 is accepted with a probability of min (1, a).

The conditional posterior distribution of QTL genotypes

for the kth individual is multinomial with the probabilities

p�kðGgÞ ¼
pðykjxkð�GgÞ; xkj Ggj ; k;C; l; b;r2ÞpkðGgÞ

P4
l¼1 pðykjxkð�GgÞ; xkj Ggj ; k;C; l; b; r2ÞpkðGgÞ

g ¼ 1; 2; 3; 4ð Þ ðB2Þ

where xkð�GgÞ represents all elements of xk except those

associated with QTL genotype Gg, k is a vector of L QTL

positions and xkj Ggj is a vector consisting of known main-

effect indicators and relative epistatic dummy variables

that are conditional on QTL genotype Gg for the kth

individual.

The conditional posterior distribution for position of

QTL does not have a closed form, so Metropolis–Hastings

algorithm will be used to sample QTL positions. Consid-

ering that the genotypes of QTLs closely depend on the

QTL positions, we decide to jointly sample QTL position

and relative genotype for one locus at a time. Each locus is

sampled from a variable interval (Wang et al. 2005; Zhang

and Xu 2005) whose boundaries are the positions of

adjoining QTLs. It is assumed that not more than one QTL

exists in each marker interval. We sample a new position

kj
*(j = 1, 2,…, L) from two placed loci on the left and right

of existing position kj
0 with the same probability; then the

new position is accepted with a probability of min (1, a)

with

a ¼

Qn

k¼1

pðykjk�j ; . . .ÞpkðGg k0
j

��� Þ

Qn

k¼1

pðykjk0
j ; . . .ÞpkðGg k�j

��� Þ
ðB3Þ

where pðykjkj; � � �Þ ¼
P4

g¼1 pðykjxkð�GgÞ; xkj Ggj ; kj; l;C; b;
r2ÞpkðGg kj

�� Þ.

References

Alleman M, Doctor J (2000) Genomic imprinting in plants: obser-

vations and evolutionary implications. Plant Mol Biol

43(2–3):147–161

Allis CD, Jenuwein T, Reinberg D (2007) Epigenetics. Cold Spring

Harbor Laboratory Press, New York

Bartolomei MS, Tilghman SM (1997) Genomic imprinting in

mammals. Annu Rev Genet 31:493–525

Carlin BP, Chib S (1995) Bayesian model choice via Markov chain

Monte Carlo. J Am Stat Assoc 57(3):473–484

Cattanach BM, Beechey CV, Peters J (2004) Interactions between

imprinting effects in the mouse. Genetics 168(1):397–413

Cheverud JM, Routman EJ, Duarte FA, van Swinderen B, Cothran K,

Perel C (1996) Quantitative trait loci for murine growth.

Genetics 142(4):1305–1319

Cheverud JM, Hager R, Roseman C, Fawcett G, Wang B, Wolf JB

(2008) Genomic imprinting effects on adult body composition in

mice. Proc Natl Acad Sci USA 105(11):4253–4258

Constancia M, Kelsey G, Reik W (2004) Resourceful imprinting.

Nature 432(7013):53–57

Cui Y, Lu Q, Cheverud JM, Littell RC, Wu R (2006) Model for

mapping imprinted quantitative trait loci in an inbred F2 design.

Genomics 87(4):543–551

Cui Y, Li S, Li G (2008) Functional mapping imprinted quantitative

trait loci underlying developmental characteristics. Theor Biol

Med Model 5:6

de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp

EW, Groenen MA (2000) Genome-wide scan for body compo-

sition in pigs reveals important role of imprinting. Proc Natl

Acad Sci USA 97(14):7947–7950

de Koning DJ, Bovenhuis H, van Arendonk JA (2002) On the

detection of imprinted quantitative trait loci in experimental

crosses of outbred species. Genetics 161(2):931–938

De Vicente MC, Tanksley SD (1991) Genome-wide reduction in

recombination of backcross progeny derived from male versus

female gametes in an interspecific cross of tomato. Theor Appl

Genet 83(2):173–178

Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A,

Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G,

Morissette J, Weissenbach J (1996) A comprehensive genetic

map of the human genome based on 5,264 microsatellites.

Nature 380(6570):152–154

Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D,

Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor TJ (1996)

A comprehensive genetic map of the mouse genome. Nature

380(6570):149–152

Falls JG, Pulford DJ, Wylie AA, Jirtle RL (1999) Genomic imprinting:

implications for human disease. Am J Pathol 154(3):635–647

George EI, McMullochr RE (1997) Approaches for Bayesian variable

selection. Stat Sin 7(2):339–373

Groover AT, Williams CG, Devey ME, Lee LM, Neale DB (1995)

Sex related differences in meiotic recombination frequency in

Pinus taeda. J Hered 86(2):157–158

Hager R, Cheverud JM, Wolf JB (2009) Relative contribution of

additive, dominance, and imprinting effects to phenotypic

variation in body size and growth between divergent selection

lines of mice. Evolution 63(5):1118–1128

Haghighi F, Hodge SE (2002) Likelihood formulation of parent-of-

origin effects on segregation analysis, including ascertainment.

Am J Hum Genet 70(1):142–156

Haldane JBS (1992) The part played by recurrent mutation in

evolution. Am Nat 67(708):5–19

Hanson RL, Kobes S, Lindsay RS, Knowler WC (2001) Assessment

of parent-of-origin effects in linkage analysis of quantitative

traits. Am J Hum Genet 68(4):951–962

Hayashi T, Awata T (2008) A Bayesian method for simultaneously

detecting Mendelian and imprinted quantitative trait loci in

experimental crosses of outbred species. Genetics 178(1):527–

538

Huxley JS (1928) Sexual difference of linkage Grammarus chereuxi.
J Genet 20(2):145–156

Isles AR, Holland AJ (2005) Imprinted genes and mother–offspring

interactions. Early Hum Dev 81(1):73–77

Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P,

Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K,

Andersson L (1999) A paternally expressed QTL affecting

skeletal and cardiac muscle mass in pigs maps to the IGF2 locus.

Nat Genet 21(2):157–158

1570 Theor Appl Genet (2012) 124:1561–1571

123



Kass RE, Raftery AE (1995) Bayes Factors. J Am Stat Assoc

90(430):773–795

Kiefer JC (2007) Epigenetics in development. Dev Dyn 236(4):

1144–1156

Knott SA, Elsen JM, Haley CS (1996) Methods for multiple-marker

mapping of quantitative trait loci in half-sib populations. Theor

Appl Genet 93(1–2):71–80

Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren

H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller

M, Andersson L (1998) Multiple marker mapping of quantitative

trait loci in a cross between outbred wild boar and large white

pigs. Genetics 149(2):1069–1080

Kohn R, Smith M, Chan D (2001) Nonparametric regression using

linear combinations of basis functions. Stat Comput 11(4):313–

322

Kuo L, Mallick B (1998) Variable selection for regression models.
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