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A primary goal of meta-analysis is to improve the estimation of
treatment effects by pooling results of similar studies. This article
explains how the most widely used method for pooling heteroge-
neous studies—the DerSimonian–Laird (DL) estimator—can pro-
duce biased estimates with falsely high precision. A classic example
is presented to show that use of the DL estimator can lead to
erroneous conclusions. Particular problems with the DL estimator
are discussed, and several alternative methods for summarizing
heterogeneous evidence are presented. The authors support replac-

ing universal use of the DL estimator with analyses based on a
critical synthesis that recognizes the uncertainty in the evidence,
focuses on describing and explaining the probable sources of vari-
ation in the evidence, and uses random-effects estimates that pro-
vide more accurate confidence limits than the DL estimator.
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The basic premise of meta-analysis is that the average of
estimates provided by a group of studies is closer to the

truth than the estimate provided by an individual study.
This premise rests on the assumption that each study is a
near-replication of a single experiment and that differences
among study results are due only to chance. The technical
jargon for this fundamental assumption is that each of the
studies is estimating the same “fixed effect,” and the corre-
sponding meta-analytic approach is dubbed the “fixed-
effects model.”

When studies are statistically heterogeneous and dif-
ferences among their results cannot be explained by chance
alone, the meta-analyst faces a conundrum. Qualitative
heterogeneity among study designs, patient characteristics,
and treatment and comparator regimens may be so great
that it does not make sense to combine studies to derive a
single summary estimate. However, when the qualitative
and quantitative heterogeneity is not so great that a single
number summarizing the evidence would be misleading,
statistical models that incorporate the extra variability
across studies not believed to be due to chance may be used
to summarize the data. These models assume that the ob-
served treatment effect for a study is a combination of a
treatment effect common to all studies plus a component
specific to that study alone. This extra, study-specific com-
ponent is assumed to be random, hence the jargon that it is
a “random effect,” with accompanying mathematical mod-
els dubbed “random-effects models.” The most widely used
random-effects model is based on an estimator developed
by DerSimonian and Laird in the mid-1980s and is known
as the DerSimonian–Laird (DL) estimator (1).

AN EXAMPLE

The Figure depicts a statistically heterogeneous set of
studies followed by several methods of estimating their av-
erage effect. The example is from a 1985 meta-analysis by
Collins and colleagues on the effect of administering a di-
uretic to women at risk for preeclampsia (11), and it is

frequently used to illustrate different methods for estimat-
ing a common treatment effect when the body of evidence
is heterogeneous (12, 13). The effect estimates from the
individual studies range from a more than 4-fold statisti-
cally significant decrease in the odds of eclampsia with
diuretics observed in the study by Fallis and colleagues (5)
to an almost 3-fold nonsignificant increase in the study by
Tervilä and Vartiainen (9). A visual clue that these studies
are statistically heterogeneous is that the confidence limits
of several pairs of studies do not overlap.

The Figure shows that different statistical approaches
to combining data can produce results leading to different
conclusions. The fixed-effects model, which is not appro-
priate for these data, shows a summary effect of 0.67, with
95% confidence limits (0.56 and 0.80) that are 19% less
than and greater than that value. The DL random-effects
estimate shows a slightly larger effect (odds ratio, 0.60),
but the confidence limits are substantially wider—33% less
than (0.40) and greater than (0.89) the summary effect,
albeit still highly statistically significant. Use of any of the
other 3 random-effects estimators depicted in the Figure
shows identical point estimates for the odds ratio of 0.60
but dramatically wider confidence limits that are 73% less
than and greater than 0.60, with the upper limits all ex-
ceeding 1.00. The corresponding P values range from less
than 0.001 for the fixed-effects model to 0.011 for the DL
estimator and 0.070 or greater for the other random-effects
models.

STATISTICAL HETEROGENEITY AND UNCERTAINTY

The differences noted in the example are due to the
ways that the models handle statistical heterogeneity. Sta-
tistical heterogeneity refers to variation in the true effects
being estimated by each study. We characterize this varia-
tion by its SD, a statistic called �. Assuming normality, we
expect 95% of true effects to fall within � 2 � � of the
central estimate. When odds ratios or relative risks are
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used, the normality is on a log scale, so that true study
odds ratios or relative risks fall within a range of the esti-
mate multiplied by e�2��. In the example, � equals 0.48,
so the true study effects are estimated to fall within
0.60 � e�0.96, or 2.6 times greater than or less than 0.60
(0.23 to 1.56). This range should be smaller than the ac-
tual smallest and largest study estimates, as is the case in
this example, with the remainder of the variation assumed
to be due to chance.

The models vary in their assumption of how certain
we are about �; this uncertainty is included in the meta-
analytic CIs. The DL method assumes that our guess about
� is exactly correct, with no uncertainty; thus, confidence
limits are too narrow and the P values are too small. In
Collins and colleagues’ meta-analysis, which pooled a mod-
est number of studies (n � 9) with statistically heteroge-
neous effects, the DL estimator provided the narrowest
confidence limits among the random-effects options.

In addition to �, meta-analysts commonly use statisti-
cal tests, such as the Cochran Q test, or indices, such as the
I2 index, to help gauge heterogeneity of effects. Both the
Cochran Q test and the I2 index are dimensionless mea-
sures of statistical heterogeneity. Neither conveys informa-
tion about actual variation in effect size, and both have low
power to detect heterogeneity in situations involving 10 or
fewer studies (14).

THE DL ESTIMATOR AND ALTERNATIVE APPROACHES

The DL method appeared in the literature just as
meta-analytic methods were being adopted to help review-
ers quantitatively summarize evidence about medical inter-
ventions. It was relatively simple to compute and is still the
standard estimator programmed into many meta-analysis
software packages, including the RevMan software devel-
oped by the Cochrane Collaboration (15). As statisticians
began in the 1990s to recognize the problems with the
DL approach, they—including DerSimonian and Kacker
(16)—proposed a wide range of alternatives that better
capture the uncertainty associated with statistical heteroge-
neity. These included random-effects estimators based on
small-sample adjustments, such as the Knapp–Hartung ap-
proach (17), likelihood-based methods (13, 18, 19), and
hierarchical Bayesian models (20).

The Knapp–Hartung approach, one of the more re-
cent methods, assumes that variances are estimated from
small samples, makes small-sample adjustments to the vari-
ance estimates, and constructs confidence limits based on
the t distribution with k � 1 degrees of freedom. This
estimator produces a wider confidence limit than the DL
estimate. It may slightly overestimate the amount of uncer-
tainty in some cases, particularly when dealing with 5 or
fewer studies. It is available in some specialized meta-
analysis programs and packages, such as the metareg pro-
gram (21) in Stata (StataCorp, College Station, Texas) and
the metafor package (22) in R (R Foundation for Statistical
Computing, Vienna, Austria).

Likelihood estimates, which are readily available in
such commonly used statistical packages as SAS (SAS In-
stitute, Cary, North Carolina), are computed using stan-
dard mixed-effects linear models (18, 19). The profile like-
lihood is a good method for computing confidence
bounds. Unlike estimators based on maximum likelihood
or restricted maximum likelihood methods, the profile
likelihood allows for asymmetrical intervals and uncer-
tainty in estimation of the between-study variance (�2).
Simulation studies show that it provides a substantially
better accounting of uncertainty than the DL estimator
(13, 23). The profile likelihood estimates are available in
the metaan package (24) in Stata and the metaLik package
(25) in R. The latter provides a more accurate but possibly
conservative small-sample profile likelihood estimate of un-
certainty (26).

Bayesian random-effects models, which are based on
an exact binomial distribution, perform well in many situ-
ations where others do poorly, particularly with sparse data
and few studies (27, 28). A hierarchical Bayesian equiva-
lent to the mixed-effects model can be fitted using
WinBugs or related packages (OpenBugs or JAGS). A hi-
erarchical Bayesian model augmented by careful consider-
ation of priors on � may provide a better accounting of the
uncertainty than non-Bayesian approaches, particularly
when the number of studies is small (29). Because selection

Key Summary Points

The decision to calculate a summary estimate in a meta-
analysis should be based on clinical judgment, the number
of studies, and the degree of variation among studies.

A random-effects model is a meta-analytic approach that
incorporates study-to-study variability beyond what would
be expected by chance.

The DerSimonian–Laird (DL) method, the earliest and most
commonly used random-effects model, is the default
method in many software packages.

The DL method produces confidence bounds that are too
narrow (and P values that are typically too small) when
the number of studies is small or when there are substan-
tive differences among study estimates.

Alternative random-effects estimates based on small-
sample adjustments, the profile likelihood, or hierarchical
Bayesian models that perform better than the DL method
are readily available in software packages.

When it is appropriate to pool studies whose estimates
vary widely, meta-analytic methods that provide a better
accounting of uncertainty than the DL estimator should
be used.
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of a prior distribution for � or �2 is critical to any Bayesian
analysis (27), it is important to conduct sensitivity analyses
based on different choices for the prior distribution.

RECOMMENDATIONS FOR MOVING FORWARD

None of the random-effects methods provide a univer-
sal solution to the problem of heterogeneity. The decision
to summarize data mathematically depends on critical
judgment, and the reasons for that decision should be ar-
ticulated as part of any meta-analysis. Random-effects esti-
mates are most appropriate when it is difficult to attribute
observed heterogeneity of effects to clinical or methodolog-
ical differences among the studies. Proper selection and
implementation of a random-effects model requires careful
consideration of how many studies are available, the extent
to which estimates vary from study to study (�), and study-
specific clinical and methodological factors that contribute
to heterogeneity. Large variation in study design, conduct,
population, measurements, and analyses suggests that it
may be unwise to estimate an average effect. When the
number of studies is sufficiently large, organizing ana-
lyses around clinically or methodologically important
study-level characteristics through stratification or meta-
regression may be more informative than a single summary

estimate. When there are too few studies to stratify by
study-level characteristics, whether pooling is reasonable
must be addressed. A critical synthesis that highlights the
variations in the evidence and describes the possible sources
of variation will almost always be more useful than one
that averages over these dimensions and can point the way
toward improvement of future studies.

When the decision has been made to pool studies in
the face of heterogeneity, the extra uncertainty due to that
heterogeneity must be adequately represented. All of the
alternative approaches to random-effects modeling more
accurately incorporate the uncertainty associated with sta-
tistical heterogeneity than does the DL estimator. With a
small number of studies, the Knapp–Hartung or small-
sample profile likelihood estimator may be the best choices,
even if they are conservative. The Bayesian methods are
good but require knowledge of Bayesian software and per-
form best with informed choice of a prior distribution for
� (that is, the range of plausible values for �).

Insightful synthesis recognizes the qualitative and
quantitative heterogeneity and uncertainty of evidence; fo-
cuses on describing and explaining the probable sources of
variation in the evidence; and, when summarizing hetero-
geneous evidence quantitatively, uses random-effects esti-

Figure. Heterogeneous evidence from Collins and colleagues’ meta-analysis of the effects of diuretics on preeclampsia (11).

Study, Year (Reference) Odds Ratio (95% CI)

Weseley and Douglas, 1962 (2)

Flowers et al, 1962 (3)

Menzies, 1964 (4)

Fallis et al, 1964 (5)

Cuadros and Tatum, 1964 (6)

Landesman et al, 1965 (7)

Kraus et al, 1966 (8)

Tervilä and Vartiainen, 1971 (9)

Campbell and MacGillivray, 1975 (10)

Analysis

Fixed-effects (  = 0)*

DerSimonian–Laird  (  = 0.48)*

Knapp–Hartung (  = 0.48)†

Profile likelihood (  = 0.49)‡

Hierarchical Bayesian (  = 0.63)§

20.004.000.05 0.25 1.00

Odds Ratio (Log Scale)

1.04 (0.48–2.28)

0.40 (0.20–0.78)

0.33 (0.14–0.74)

0.23 (0.08–0.67)

0.25 (0.13–0.48)

0.74 (0.59–0.94)

0.77 (0.39–1.52)

2.97 (0.59–15.07)

1.14 (0.69–1.91)

0.67 (0.56–0.80)

0.60 (0.40–0.89)

0.60 (0.35–1.03)

0.60 (0.35–1.04)

0.60 (0.34–1.08)

* The metafor package in R was used to compute the fixed-effects estimate and the DerSimonian–Laird random-effects estimate. † The metafor package
in R was used to compute the Knapp–Hartung small-sample adjustments, based on the DerSimonian–Laird estimate. ‡ The small-sample (Skovgaard)
estimate from the metaLik package in R was used to compute the profile likelihood estimate. The large-sample profile likelihood estimate produced a
narrower CI that indicates a statistically significant effect (95% CI, 0.37 to 0.95). § The hierarchical Bayesian estimate was computed using WinBugs and
assumed a vague uniform (10, 10) prior distribution for �. A sensitivity analysis assuming a vague � (0.001, 0.001) on precision (1/� 2) produced a
slightly smaller but statistically significant 95% CI (0.36 to 0.98).
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mates that properly represent statistical uncertainty. The
original DL estimator from 1986 made it easy to calculate
random-effects estimates with computers or spreadsheets,
leading to its rapid adoption and incorporation into meta-
analytic software. However, after more than 25 years of
improvement in methods and software, it is time to move
forward and use random-effects methods that provide a
more adequate accounting of uncertainty in estimating an
average effect when heterogeneity is present.
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