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Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA
sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often
termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and
the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel
methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and
disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or
contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme
phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple
variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific
analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods
may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large
numbers of potential predictors. Genet. Epidemiol. 35:S92–S100, 2011. r 2011 Wiley Periodicals, Inc.
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INTRODUCTION

The overarching theme of Genetic Analysis Workshop
17 (GAW17) was the comparison of statistical methods for
detecting genetic contributions to variability of complex
traits using whole-exome DNA sequence data. The papers
contributed to GAW17 were grouped by theme for
discussion and comparison of performance of methods.
The contributors to Group 14, on regression and data
mining methods for multiple rare variants, addressed
several issues in the 13 papers submitted to the workshop.
These issues included novel methods for analyzing rare
genetic variants in an aggregated manner (often termed
collapsing rare variants), evaluation of various study
designs to increase power to detect effects of rare variants,

and the use of machine learning approaches to model
highly complex heterogeneous traits.

COLLAPSING RARE VARIANTS

Conventionally, rare variants refer to variants (single-
nucleotide polymorphisms [SNPs]) with a minor allele
frequency (MAF) of 0.5–1%, and very rare variants refer to
SNPs with MAF o0.5%. In Mendelian diseases, a single
causal gene or pathway often harbors large numbers of
individually very rare causal variants. Evolutionary theory
suggests that even for complex traits, it is likely that causal
genes (and related pathways) will harbor multiple very
rare variants (in the population) that will contribute to the
susceptibility to the disease, with individual families each
segregating different causal variants in the same gene (or
pathway). Association methods have limited power for
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mapping very rare variants in population studies because
of the small number of sampled individuals carrying such
a variant. For these methods to have adequate efficiency to
detect individual rare variants of moderate effect size, the
sample size needs to increase substantially as the MAF
decreases. In the general context of biostatistics, the
problem is known as the imbalance in the covariate
distributions. For binary traits with categorical covariates,
the problem can be translated into low cell counts in a
cross-tabulation table. Therefore grouping and collapsing
rare variants within genes or pathways is the most feasible
option to improve power when studying rare variants in a
sample of individuals who may each harbor different rare
causal variants.

The remaining question is, What is the most powerful
way to generate a surrogate for the aggregated genetic
effect from a set of rare variants? Usually, grouping is
constructed on the basis of functional relevancy, physical
proximity, or both. Once rare variants are grouped, their
genotypic information is typically combined or collapsed
into a univariate score. Subsequently, the association
between this group of rare variants and the disease is
studied by means of the association between the score and
the disease traits. Dering et al. [2011] provide an excellent
review of various published rare variant association
methods, including single-marker, multimarker, and var-
ious collapsing strategies.

A popular alternative to collapsing genotypic informa-
tion is to combine single-SNP statistics. Six work groups in
Group 14 attempted to address these issues using novel
methods, and two work groups evaluated previously
published methods using the GAW17 data. The new
methods all used weights to aggregate the effects of
multiple markers. Some methods derived weights from the
data simultaneously with the association analysis, whereas
others assumed uniform weights or weights inversely
proportional to MAF before performing the association tests.
One can expect that the derived-weight approaches may lose
some power because some of the data are used to estimate
the weights. The uniform- or inverse-weight approaches rely
on the accuracy of their assumptions concerning the effects of
rare variants to gain power, but if these assumptions are
incorrect, then their power may not be optimal.

STUDY DESIGNS

Sequencing studies are expected to remain fairly
expensive for several years, and large samples are needed
to detect the effects of rare variants of small effect size.
Therefore study designs that can increase power are
desirable. Several contributors to Group 14 proposed ideas
to incorporate information on extreme phenotype values at
the design and analysis stages of their association studies.
In addition, some work groups compared study designs in
which analyses were performed on stratified subpopula-
tions followed by meta-analysis with designs in which
analysis were performed on the complete sample while
adjusting for subpopulation membership. Four work
groups focused in full or in part on optimal study design
methods.

MACHINE LEARNING METHODS

Over the past decade, technological advances have led
to the ability to measure large numbers of possible

predictors (genotypes and environmental exposure values)
that may play a role in variation of a quantitative trait or
risk of a disease. This has led to the so-called small n, large
P problem, where the number of potential predictors P to
be tested for association with the trait is many orders of
magnitude larger than the number of individuals n who
are studied. When one considers possible interactions
among these predictors, the number of tests becomes so
large that traditional frequentist tests have no power after
correction for multiple testing. The various highly non-
parametric methods that model risk of disease or variation
of a quantitative trait and that rely on bootstrapping
approaches to rank potentially causal predictors have been
termed machine learning methods. Dasgupta et al. [2011]
provide a review of the published machine learning
methods that were used at GAW17. Two work groups
applied three existing machine learning methods to the
GAW17 data.

In the remaining sections of this paper, we summarize
the simulation model and the methods and results for each
paper under the three mentioned categories and discuss
the results in light of the data-generating model. Some
interesting observations from the analysis are also high-
lighted for further follow-up.

DATA

Of the two genetic data sets provided for analysis at
GAW17, all contributors to Group 14 used the set that
consisted of 697 unrelated individuals sequenced by the
1000 Genomes Project from seven ethnically homogeneous
samples representing three geographically distinct ances-
tries: Asia, Africa, and Europe. A subset of whole-exome
DNA sequence data from the 1000 Genomes Project was
used to simulate a common, complex disease trait and
three related quantitative traits. All four traits were
modeled to have complex causation, involving both
genetic and environmental factors. The sequence data,
the simulation process, and the generating models for the
one qualitative and three quantitative traits are described
by Almasy et al. [2011]. Briefly, in the trait models, at
causal loci for each trait, all genetic effects were additive
on the quantitative trait or liability scale and the allele with
the lower frequency always had a positive effect on the
quantitative trait value or on the disease risk. Overall, SNP
locus-specific heritability (h2) averaged over 200 replicates
of the complete data were all extremely small, with few
variants having a locus-specific h241% [Wilson and
Ziegler, 2011]. Quantitative trait Q4 had a heritability of
0.7, but none of this was due to genes in the mini-exome
sequencing set. For Q1, a gene-environment interaction
was simulated for the KDR gene and the Smoking
covariate. Although population origin of the 1000 Gen-
omes Project participants was not used in the phenotype
simulations, the causal allele frequencies differed across
the different ethnic groups. No epistatic interactions were
simulated for any of the traits.

METHODS FOR COLLAPSING RARE
VARIANTS

In GAW17 Group 14, six work groups proposed novel
approaches to collapse rare variants, as summarized in
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Table I. In addition, two work groups evaluated previously
published collapsing methods. By collapsing multiple
markers into one unit for analysis, each approach limited
the number of conducted tests in an attempt to increase
power compared to the situation in which all rare variants
were tested individually. Only a short description of the
methods and main results are presented here, and readers
are referred to the original papers for other details of each
method.

Three work groups [Brennan et al., 2011; Niu et al., 2011;
Wang et al., 2011] aimed to generate a linear combination
of genotypes within a gene and relied on various
regression techniques to test for association of the trait
with individual genes. Jung et al. [2011] used the count of
rare variants within a gene as the surrogate for the gene,
but in their association test this count became the response
variable and the phenotype became the independent
variable in a zero-inflated Poisson regression model. Jiang
et al. [2011] proposed a two-step procedure that relied on
classification trees to combine markers into multiple
groups, some containing markers within the same gene
(step 1) and others containing markers in genes physically
close to each other (step 2). Then the collapsed group was
tested for association with the phenotype using traditional
regression analysis. These four methods focused on the
grouping of markers, whereas Liu et al. [2011] aimed to

divide samples into subgroups as well. They proposed a
metric measure, denoted by a genotypic similarity score, to
calculate the pairwise similarity among samples at a given
marker. Then, unsupervised hierarchical clustering was
applied to the aggregated similarity scores among markers
within genes to divide the genes into groups. As a result,
the samples were also divided into a fixed number of
groups. To evaluate the existing collapsing methods,
Culverhouse et al. [2011] used the data sets to compare
the performance of two similar methods proposed by Li
and Leal [2008]. Mägi et al. [2011], on the other hand,
evaluated the effect of missing genotypes and therefore
applied rare variant mutational load analysis on the
provided data sets with some proportions of the genotypes
randomly set as missing.

ZERO-INFLATED POISSON REGRESSION FOR
MULTIPLE RARE VARIANTS

Jung et al. [2011] applied a zero-inflated Poisson
regression model that took into account the excess of 0’s
caused by the extremely low frequency of rare variants. To
implement this, Jung and colleagues created an indicator
variable for each SNP based on the presence or absence of
the rare variant. Then, summation of the variables within a
gene was used to collapse rare variants. The sum is

TABLE I. Novel methods to collapse rare variants proposed by GAW17 Group 14

Group 14
contribution Method Idea

Phenotype
analyzed

Jung et al. [2011] Zero-inflated
Poisson
regression

Yi ¼
Pnj

k¼1 Vijk, where Vijk 5 1 if rare variants are present and 0 otherwise for the

kth SNP of the jth gene for the ith individual and nj is the total number of
SNPs on the jth gene

Affected, Q1,
Q2, Q4

Brennan et al.
[2011]

Least absolute
shrinkage and
selection
operator
(LASSO)

LASSO for generating linear combinations of multi-SNP genotypes Affected

Wang et al.
[2011]

Partial least-
squares and
penalized
orthogonal-
components
regression

For each gene, Y ¼ m1
Pk

j¼1 bjXj1e, where Y is the phenotype vector and
fX1; . . . ;Xkg are the genotypes of k rare variants within the gene. Partial least-
squares finds linear combinations of X that explain the covariance between Y
and X as much as possible. The linear combination here is merely seen as a
construct and is not used for making inferences about the importance of the
rare variants

Affected

Niu et al. [2011] Group iterative
sure
independence
screening
(ISIS)

For all the genes, y ¼
PJ

j¼1 Xjbj1e, where y is the phenotype vector, Xj are the
SNP genotypes within the jth gene, and e is a normally distributed random
noise vector

Q1, Q2

Jiang et al.
[2011]

Classification tree Collapsed markers are defined based on SNP interactions detected by
classification trees.

Affected

Liu et al. [2011] Inverse-
probability
weighted
clustering

The following similarity scores are used: Affected, Q1,
Q2, Q4

Individual 1
a A

Individual 2 a 1=p2
a �1=½pað1� paÞ�

A �1=½pað1� paÞ� 1=ð1� paÞ
2

where pa denotes the minor allele frequency of a; and simði; jÞ ¼
P

k2G simði; j; kÞ,
where sim(i, j; k) is the genotypic similarity score between two individuals i
and j at SNP k.
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essentially a count of all rare SNPs in a gene. Treating the
counts as response variables, Jung and co-workers applied
a zero-inflated Poisson model based on the results of
collapsing the variants, with Affected status (or quantita-
tive traits Q1, Q2, or Q4), Age, Sex, and Smoking status as
covariates, at the same time adjusting for population
substructure using PLINK [Purcell et al., 2007]. This
method had over 90% power to detect FLT1 for both Q1
and the disease trait at a P-value of at least 1.56� 10�5.
KDR was detected at this P-value in more than 50% of
replicates for Q1. However, many noncausal genes were
also significant at these same P-values in large numbers of
replicates.

LASSO FOR COLLAPSING MULTIPLE
VARIANTS

Brennan et al. [2011] considered a two-step approach of
analyzing rare variant data by incorporating the least
absolute shrinkage and selection operator (LASSO) tech-
nique (reviewed by Dasgupta et al., 2011). In the first step,
Brennan and colleagues conducted a gene-level screening
on SNPs within each gene using the LASSO method. In
particular, indicator variables were created on the basis of
the rare variants. A selection model was used to generate a
linear combination of these new constructs, subsequently
producing a new marker that represented the SNP group.
A new marker was accepted only if the corresponding
linear combination was nonzero in at least 5% of the
subjects. In the second step Brennan and colleagues
screened the remaining genes by performing clustering
analysis on the positions of the SNPs in the genes that
were left after the first step. The LASSO method was used
to generate a representative marker for each cluster. In
Brennan and colleagues’ analysis, the first simulated
replicate analyzing the disease trait Affected was used to
generate markers. The other 199 replications were used to
evaluate the set of constructed markers using a classifica-
tion tree method. Two causal genes were identified in 18%
and 28% of replicates, and 16 noncausal genes were
identified as significant in 18–55% of replicates. Future
development of this method could involve the use of more
data to generate markers or incorporation of pathway
information in the second step in lieu of clustering genes
by distance. In nonsimulated data analyses, the data could
be split into training and testing subsets and permutation
could be used to control type I error.

PARTIAL LEAST-SQUARES FOR COLLAPSING
MULTIPLE VARIANTS

Partial least-squares components are also linear combi-
nations of the predictor variables, which are constructed to
maximize an objective criterion based on Cov(X�w, Y), the
sample covariance between X�w (a linear combination of
the original predictors) and the Affected trait. Wang et al.
[2011] adopted partial least-squares components for
collapsing multiple rare variants within genes and
compared the method to analyses of single SNPs.
Specifically, for each gene, Wang and colleagues con-
structed partial least-squares components using cross-
validation. Then, they used the penalized orthogonal
component regression estimation (POCRE) algorithm
[Zhang et al., 2009] to analyze the collapsed ‘‘new
markers’’ along with Age, Sex, and Smoking status as

covariates. FLT1 was the only causal locus that was
estimated to have a nonzero effect in a large number of
replicates (41% in SNP-only analyses and 17.5% in gene-
based analyses) with three other causal loci having
nonzero estimated effects in 3–10% of replicates. False-
positive effects were replicated in at least 3% of replicates
for nine genes. Future work will evaluate whether
inclusion of pathway information improves performance.

GROUP ISIS FOR COLLAPSING RARE
VARIANTS

Niu et al. [2011] used the group iterative sure indepen-
dence screening (group ISIS) approach to select important
genes and the SNPs within. The model considered is given
in Table I. Niu and colleagues assumed that the model was
bilevel sparse [Breheny and Huang, 2009], which means
that only a small number of genes were related to the
phenotype of interest and only a subset of the SNPs in
these related genes were important. This is a reasonable
assumption for high-dimension modeling when there is a
group structure among the predictors. This method
performed well in the low- and medium-noise cases when
results were averaged across multiple replicates. However,
when only a single replicate was used, it had lower power
(e.g., only two causal genes, FLT1 and KDR, were detected
for Q1). As with many other methods, Niu and colleagues
approach exhibited high false-positive rates when only a
single replicate was used.

TREE METHOD FOR MULTIPLE VARIANTS

Jiang et al. [2011] used a two-step supervised recursive
partitioning process to automatically detect SNP interac-
tions and to define markers by these interactions. In the
first step, separate trees were constructed to model
Affected status (Y) using the SNPs contained in each gene
on a chromosome. A new bilevel marker could be
constructed: One level of the marker represented the
paths in the tree that led to terminal nodes with a majority
of case subjects, and the other level of the marker
represented paths that led to terminal nodes with a
majority of control subjects. A new single marker for each
gene was recorded only so long as the least frequent level
was not rare (a user-defined threshold; Jiang and
colleagues used 1�0.992 5 0.0199 in these analyses). In
the second step, Jiang and colleagues performed a
clustering analysis to group SNPs within nearby genes
using the genes that did not result in a marker in step 1; a
tree was built for the phenotype ‘‘Affected’’ for each
cluster group. A new single marker for each group was
recorded so long as it was not rare. In their analysis, Jiang
and colleagues used the first replicate to generate markers.
The remaining 199 phenotype replications were used to
conduct logistic regressions, adjusting for Sex, Age,
Smoking status, and ethnic group cluster covariates. Using
a Bonferroni correction for the number of constructed
markers used in the final analysis, Jiang and colleagues
found that FLT1 was significant in 10 out of 199 analyses
and that many other markers were significant in indivi-
dual replicates but were not replicated more than eight
times. When the false discovery rate was used, FLT1 was
significant in 17 out of 199 replicates but at the expense of
increasing false-positive rates. In nonsimulated data
analyses, the data could be split into training and testing
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subsets, and permutation could be used to control type I
error.

INVERSE-PROBABILITY WEIGHTED
CLUSTERING

Liu et al. [2011] proposed a novel approach for gene-
based grouping and collapsing of SNP genotypes. They
defined inverse-probability weighted similarity scores to
overweight genotypic differences observed for rare var-
iants. Specifically, for an individual 1 with genotype aa and
an individual 2 with genotype Aa, because a is the minor
allele, the (a, a) match will dominate the (a, A) mismatch
and these two individuals will have a high similarity score
according to the proposed weighting scheme. Similarities
at different SNP loci within a gene were aggregated by
summation. Then Liu and colleagues used a bounded
monotone-decreasing exponential transformation to con-
vert the obtained similarity into distance. For each gene,
unsupervised hierarchical clustering was done on the basis
of the resultant multi-SNP weighted distances, and
partitions of individuals were created for that gene by
subsequently cutting the hierarchical clustering tree into a
prespecified number of groups (partition sizes 5 to 10 were
compared). Liu and colleagues then evaluated the associa-
tion between a phenotype trait and the partition con-
structed from the genotypes using three association tests
(one-way analysis of variance, chi-square test, and the
partition retention method [Chernoff et al., 2009; Zheng
et al., 2010]). For Q1, both FLT1 and KDR were identified in
more than 50% of replicates, with FLT1 detected in all the
replicates. For Q2, six genes that contained causal SNPs
were identified as top genes, but only VNN1 (22%) was
identified in more than 5% of replicates. However, as with
all the methods applied to the GAW17 data, some of the
genes that were identified in multiple replicates were false
positives.

EVALUATION OF PREVIOUSLY PUBLISHED
COLLAPSING METHODS

In addition to the novel methods, Culverhouse et al.
[2011] compared the performance of two published
methods [Li and Leal, 2008] on Q1, Q4, and affection
status. The first method was simply a count of how many
rare alleles an individual carried for a particular gene. The
second method was dichotomous, indicating whether or
not an individual carried at least one rare allele in a
particular gene. The two methods performed similarly in
the GAW17 data, particularly for the strongest associa-
tions. This simply suggests that in these data the outliers in
phenotype were not also outliers in terms of the count
variable for any gene. Clearly, this cannot be generalized to
other genetic models. In addition, Culverhouse and
colleagues, like all other investigators using the GAW17
data, observed that there were many more highly
significant false positives than expected for traits Q1 and
affection status. However, in their analysis of Q4, the type
I error rate did not appear inflated. Thus they concluded
that it was unlikely that the inflation of type I error in the
analyses of the other traits was a completely random effect
of using multiple replicates of the same genotypes. They
also noted that one outlier individual (with an extreme
phenotype at Q1 in nearly every replicate) was the only
carrier of rare variants in multiple genes, and this fact

became significant only when this person was included in
the data.

Mägi et al. [2011] used rare variant mutational load
analysis [Li and Leal, 2008; Morris and Zeggini, 2010], as
implemented in the program GRANVIL (http://
www.well.ox.ac.uk/GRANVIL), to examine the 1,297
causal genes with at least two rare variants. Within the
generalized linear model framework, the method collapses
the variants for each individual and uses the counts of
minor alleles divided by the number of called alleles for a
set of markers (e.g., those belonging to the same gene) as
one covariate, denoted as the mutational load, in the
regression analysis. This approach differs from other
collapsing methods using the count of rare variants [Jung
et al., 2011] because of the additional loading weights
based on call rates for each individual. Because rare
variants are more prone to be sequenced unsuccessfully
than common (MAF40.05) variants are, Mägi and
colleagues evaluated the power and type I error of these
methods when various proportions of the genotype data
were missing. As with other methods, at a nominal
Bonferroni-corrected threshold of Pr3.86� 10�5, they
observed association for the Q1 causal FLT1 gene in all
replicates, for the Q1 causal KDR gene in about 23% of
replicates, and for other causal genes in any of the traits in
only small numbers of replicates. The observed power to
detect association with causal genes was not dramatically
affected by call rate. Similarly, the type I error rate for
noncausal genes was relatively unaffected by the rate of
missing genotypes but was somewhat inflated at all levels
of call rates (as observed for all methods). Their results
suggest that the GRANVIL approach for testing associa-
tion with the mutational load of rare variants within a gene
is relatively robust to missing genotype data, which occur
either at random or with differential allele-specific fail-
ures.

STUDY DESIGNS TO INCREASE
POWER TO DETECT RARE CAUSAL

VARIANTS

Several methods were proposed to increase power when
analyzing sequence data by utilizing information on extreme
phenotype values or by stratifying on subpopulations.

OVERSAMPLING SCHEMES BASED ON
EXTREME VALUES

In studies where resources are limited, sequencing
might be restricted to a subset of the entire cohort. One
natural choice is to sequence the upper and lower tails of a
quantitative trait distribution. But is this really the best
sampling design? If a subset is sampled from the entire
cohort, what analysis method should be used? Yilmaz and
Bull [2011] evaluated these questions by comparing the
following sampling schemes, among others: a 50% simple
random sample, an extreme phenotype sampling (taking
the upper and lower 25% of the quantitative trait
distribution), and a 50% sampling design that gave each
individual a nonzero chance to be drawn but with higher
probability assigned to those with extreme values. To
avoid bias and inflation of type I error, statistical methods
have to account for the specific sample ascertainment
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scheme. These methods include an inverse regression
conditioning on the phenotype and standard survey
methods with inverse-probability weighting.

As expected, the simple random sample design could
not be recommended because of a high loss of power. The
quantitative-trait-dependent sampling designs investi-
gated by Yilmaz and Bull [2011], though, did emerge as
cost-effective alternatives with the oversampling or
complete selection of the extremes of the distribution
performing well when analyzed with Poisson regression
or linear regression with inverse-probability weighted
estimation. The simulation study results suggest that the
quantitative-trait-dependent selection designs generally
yield greater than 50% relative efficiency compared to
using the entire cohort, implying cost-effectiveness of 50%
sample selection and worthwhile reduction of sequencing
costs.

It was clear, however, that linear regression using the
complete distribution of the quantitative trait was more
powerful than any of the methods using only 50% of the
data. Was the power loss of extreme-value approaches just
a result of a smaller sample size? Lamina [2011] investi-
gated this question by restricting the analysis to the tails of
the distribution (bottom 10% versus top 10%) using
methods specifically designed for the detection of rare
variants. Rare variants were collapsed within genes by
means of an indicator variable that coded whether the
individual had at least one rare variant in the gene. Within
this analysis, the sample size was increased (1) by
combining pairs of replicates into a single sample, thus
doubling the number of individuals with extreme pheno-
type values in each of 100 combined replicates, and (2) by
widening the tails to include the top and bottom 20 or 30%
of the sample. Thus Lamina analyzed extreme tail
samples, which corresponded to only 20%, 40%, or 60%
of the original sample size. Linear regression approaches
applied to the extreme tail subsets showed inflated type I
error, but methods appropriate for case-control tests and
adjusted for population stratification exhibited better
control of false-positive rates. Linear regression of the
complete data set had higher power than any approach
using only the upper and lower 10% of one sample (i.e.,
using only 20% of the original sample size). However,
when sample size was increased by taking the extreme top
and bottom 10% from a larger sample (i.e., from two
combined replicates; 40% of the original sample size),
Lamina observed comparable or even higher power
compared to analyzing the complete sample. Increasing
the sample size by adding values closer to the median of
the quantitative trait distribution, however, did not
improve the power. Lamina concluded that enriching the
analysis by gathering a greater proportion of individuals
with extreme values in the phenotype of interest than in
the general population led to a higher power to detect rare
variants compared to analyzing a population-based
sample with equivalent sample size.

CANDIDATE GENE ANALYSIS DESIGN
GUIDED BY EXTREME VALUES

Both Yilmaz and Bull [2011] and Lamina [2011]
proposed a specific selection of individuals based on
extreme values. In contrast, Zhang et al. [2011] used
information on extreme values for the selection
of candidate genes. Their proposed hybrid approach

combines an iterative regression strategy with an
extreme-value strategy. The extreme-value strategy is a
gene-based method whereby a gene is identified as a
candidate if at least one individual with extreme values
(495% quantile) has at least one rare variant within the
gene. This strategy addresses the multiple testing problem
by testing only candidate genes. The iterative regression
involves a variant-based multimarker score test aimed at
identifying a group of significant variants. The hybrid
approach combining both strategies was shown to outper-
form the reference method—the combined multivariate
and collapsing (CMC) method [Li and Leal, 2008]—with
regard to power. However, work remains to be done to
determine the optimal value of the number of SNPs to
include in step 1 of the iterative procedure, because too
small a number will exclude causal SNPs but too large a
number will also cause power loss by the addition of noise
terms. More important, the validity of approaches to
utilize extreme trait values to increase power depends on
the degree of truth in the assumption that rare variants
with the largest effect drive the quantitative trait values to
the tail. Depending on the trait, one may run the risk of
missing causal variants that increase the variance, but not
the mean value of the trait, by targeting only variants
associated with the extreme trait values. Zhang and
colleagues also showed that a small number of phenotypic
outlier individuals caused inflated type I errors in Q1. This
problem was resolved after transforming the data, high-
lighting the importance of removing or adjusting for
outliers in these types of analyses.

The papers discussed in this section used information
about extreme phenotype values in the sampling design,
analysis stage, or candidate gene selection process. Over-
all, these work groups showed that it was useful to
incorporate some kind of extreme-value approach for the
detection of rare variants if appropriate statistical methods
were used. The question remains of how extreme values
should be defined. Depending on the phenotype of
interest, one must balance the informative value of
restricting samples to the far extremes with the ability to
obtain an adequate sample size.

META-ANALYSIS DESIGN ADJUSTED FOR
POPULATION SUBSTRUCTURE

Additional questions concerning study design for rare
variants were addressed by Culverhouse et al. [2011]. The
first question examined whether a larger sample of
unrelated individuals would have given more power to
detect rare variants. The second question was whether it
was more powerful to analyze the complete set of
unrelated individuals (a sample that was made up of
distinct population-specific subsamples) while adjusting
for population structure through the use of covariates or to
analyze each subpopulation separately. When analyzing
the complete sample for Q1, only FLT1 was significant at
Po1�10�6 in all replicates, and no other causal gene was
significant in at least 50% of replicates. As sample size was
increased using meta-analysis of 10 and all 200 replicates,
Culverhouse and colleagues detected some additional
causal loci, thus showing that increased sample size can
detect some of the variants with lower locus-specific
heritability. However, when subpopulations were ana-
lyzed (combining 10 replicates by meta-analysis), Culver-
house and colleagues detected additional causal loci in the

S97Regression and Data Mining

Genet. Epidemiol.



subpopulations. FLT1 contained multiple rare variants
with relatively large effect on Q1. Because some causal
variants were present in all subpopulations except the
Luhya (representing more than 84% of the data), pooling
the data and using Population as a covariate maximized
power. However, the single causal variant for Q1 in
VEGFA was a private mutation in the Luhya population.
Meta-analysis of the Luhya subjects alone (total N 5 5,400)
resulted in extremely significant association (P 5 2.1�
10�94), whereas it required meta-analysis of 50 replicates of
the full data (total N 5 34,850) before this gene surpassed
the 10�6 significance threshold (P 5 1.4� 10�14). These
results show that including population as a covariate is not
always an effective substitute for analyzing the subpopu-
lations separately and suggest that population-specific
analyses may help to detect genes with causal variants
private to a single population, as has been suggested by
Keen-Kim et al. [2006].

MACHINE LEARNING METHODS
FOR RARE VARIANT ANALYSIS

It has been suggested that machine learning methods
may be particularly powerful when epistatic interactions
exist between predictors [Dasgupta et al., 2011]. In the
Group 14 contributions, three machine learning methods
were evaluated.

MACHINE LEARNING METHODS TO SCREEN
FOR CAUSAL VARIANTS

Kim et al. [2011] applied random forests [Breiman, 2001]
and logic regression [Ruczinski et al., 2004] to Q2 in the 321
members of the Asian subpopulation (to avoid issues of
population substructure) to screen for loci that contributed
to variation in this trait. Kim and colleagues selected a
subset of predictors that they had determined made the
strongest contributions to the final models and evaluated
the performance of each method by assessing how often
the true causal versus noncausal variants were included in
the top-ranked subset of predictors across 200 replicates.
The same metric was also applied to traditional single-
marker analysis results from simple linear regression for
comparison purposes. They compared analyses of indivi-
dual SNP genotypes using dominant coding (only in
random forests) or additive coding (only in simple linear
regression), using indicator variables generated by collap-
sing rare variants within genes or a pathway [Li and Leal,
2008], and recoding common variants using dominant and
recessive coding.

When rare variants were collapsed within genes,
random forests and logic regression outperformed simple
linear regression when the percentage of causal variants
ranked in the top 10% of predictors across at least 10
replicates was compared. Random forests ranked the same
causal gene among the top 10% of predictors in up to 40%
of replicates, and logic regression selected the same causal
gene among the 10 predictors in the final logic regression
model in up to 53% of replicates. Random forests showed
similar performance, although at lower levels of replica-
tion, for analysis of uncollapsed SNP variants and of
collapsed SNPs by pathway variants. However, for logic
regression, Kim et al. [2011] observed elevated replication
of noncausal genes in the top-ranked predictors; they

showed by small-scale permutation tests that logic regres-
sion had little potential to select the true causal variants
over what was expected by chance in these data.

Kim et al. [2011] found that all three methods selected
larger proportions of causal variants than noncausal
variants in their top-ranked predictors (random forests
and simple linear regression) or in the final logic
regression models across multiple replicates, indicating
statistical validity. However, for all three methods, when
analyzing the uncollapsed and gene-collapsed variants,
most causal variants were not ranked in the top 10% of
predictors in large proportions of replicates. This low
power is most likely due to the simulation model for Q2 in
the Asian population, which was essentially polygenic,
with small locus-specific heritabilities of any causal
variants and no epistatic interactions. One causal variant
had an average (across 200 replicates) locus-specific h2

[Falconer and Mackay, 1996] of 0.04, five causal variants
had locus-specific h2 between 0.011 and 0.017, and the
remaining causal variants had locus-specific h2o0.01.
Thus there was little power to detect causal variants in
this small Asian sample using any statistical method and,
as expected, the loci with higher locus-specific h2 were
included in the top predictors in the largest numbers of
replicates. These results suggest that for polygenic models
with small locus-specific h2, such as the one simulated
here, (1) larger samples would be desirable and (2) in a
similarly small study, at least the top 5–10% of predictors
should be used in follow-up studies to give a reasonably
high probability that at least one causal locus is selected.

BAYESIAN NETWORK STRUCTURE LEARNING
TO DETECT CAUSAL SNPS IN CANDIDATE
GENES

Schlosberg et al. [2011] applied Bayesian network
structure learning (BNSL) [Needham et al., 2007] for a
different purpose. Rather than attempting to screen all
variants to detect those that were most likely to contribute
to the etiology of a trait, they focused on the situation in
which target genes that harbor causal variants for the
disease trait Affected have already been chosen for
resequencing; the goal was to detect true causal SNPs
from among the measured variants in these candidate
genes. Examining all the available SNPs in the known
causal genes, BNSL produced a Bayesian network from
which two subsets (the Markov blanket and the descen-
dants of Affected) of SNPs were extracted and then
measured for statistical significance using the hypergeo-
metric distribution. As applied to these data, overall the
method did not demonstrate the ability to detect more
causal SNPs than would be selected by chance, although
Schlosberg and colleagues’ analyses did suggest that
improved performance for this highly polygenic trait
could be attained in larger sample sizes. Their analyses
of ethnic subgroups also suggests that BNSL may be a
valuable strategy for real data if different causal variants
exist across subpopulations.

DISCUSSION

The traits simulated for GAW17 were extremely com-
plex, exhibiting both locus and allelic heterogeneity, wide
variation in locus-specific allele frequency and effect size,
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and private causal variants in certain subpopulations.
Many of the lessons learned from the analyses of these
data with novel methods are reiterations of classic results
in statistical genetics. Power and type I error depend on
sample size, effect size, degree of heterogeneity, and data
characteristics that violate assumptions of the statistical
methods. Readers should keep the simulation model in
mind as we evaluate the performance of each analysis
method.

The simulated traits were highly polygenic with
different distributions of rare variants across subpopula-
tions and small genetic effects of individual causal
variants. The observed results were highly dependent on
locus-specific heritabilities of the causal variants. For
quantitative trait Q1, there were 39 causal SNPs in 9
genes, with mean SNP locus-specific h2, averaged over 200
replicates of the complete data, ranging from 0.0009 to
0.152 [Wilson and Ziegler, 2011]. Only 11 and 5 of the Q1
causal SNPs exhibited locus-specific h2 greater than 1%
and 3%, respectively. The five SNPs with the largest effect
size were located in the FLT1 gene (h2 5 0.152, 0.083, 0.037)
and the KDR gene (h2 5 0.031, 0.031), For Q2, there
were 72 causal SNPs in 13 genes, with SNP locus-specific
heritability ranging from 0.00098 to 0.016 [Wilson and
Ziegler, 2011], with only 2 SNPs (one in VNN1 and one in
VNN3) having locus-specific h2 greater than 1%. The
Affected status trait is due to a combination of signals
from Q1, Q2, Q4, and a latent disease liability. No
simulated causal SNP is expected to have a large effect
on risk of affection.

RESULTS CONSISTENT WITH LOCUS EFFECT
SIZE

The Affected status trait was analyzed by several work
groups comparing different collapsing methods. Multiple
methods consistently detected causal effects for a few
causal genes, such as FLT1 and KDR, but with different
observed power in the different methods. For example,
partial least-squares identified FLT1 as associated with the
disease trait in 35 out of the 200 replicates, whereas
inverse-probability weighted clustering detected FLT1 and
KDR in more than 50% of the simulated replicates. These
two genes are causal for Q1 and harbor causal variants
with the highest locus-specific h2 in all the GAW17
simulated data. Indeed, most analyses of Q1 tended to
detect FLT1 with adequate power in all replicates at
stringent significance thresholds. Unlike Q1, causal SNPs
for Q2 and those that are specific to Affected status had
much smaller effect sizes and were harder to map. Overall,
one can conclude that power is dependent on locus-
specific heritability, which is dependent on both allele
frequency in the population being studied and on the
effect of the locus on variation of the trait or risk of the
disease (a classic result that applies to the novel methods
presented here).

INCREASED POWER BY COLLAPSING RARE
VARIANTS AND STRATEGIC SAMPLING

As expected, collapsing rare variants either within genes
or within pathways increased the power to detect causal
variants given the extreme allelic heterogeneity simulated
for these traits. Also as expected, increasing sample
sizes did increase power to detect loci with smaller

locus-specific h2, although extremely large samples will
be required to detect effects of rare variants with small
effect sizes. In GAW17 all rare variants have positive
effects. This may not be the case in real association studies.
It is worth applying the collapsing methods utilized in
GAW17 to real sequence data and/or to more complex
simulated data sets and evaluating the performance
therein.

A machine learning method, random forests, performed
as well as or somewhat better than simple linear regression
when analyzing collapsed variants for selecting a fairly
large subset of predictors for follow-up in additional
studies in the extremely polygenic Q2 trait. Additional
evaluation of such methods in the presence of epistatic
interactions would be useful.

Different methods for collapsing or aggregating variants
within a candidate locus were most powerful for different
loci, especially when the genetic signals were not strong.
This suggests that a multiple method approach may be
valuable for future association studies of DNA sequence
data and complex traits.

Furthermore, most of the proposed methods have fewer
underlying assumptions than existing ones [Li and Leal,
2008] and show promise for detecting at least some loci in
realistic situations. Different study designs may be power-
ful to detect different types of loci. In particular, sampling
designs can affect power where sampling from extremes
can be beneficial if analyzed properly by the various
collapsing methods. Analyses from Group 14 showed that
even with the identical genetic model applied to multiple
subpopulations, sample size was not the only factor
determining power. If rare causal variants are private to
a subpopulation, then stratified analysis may be more
powerful than a combined analysis, despite a considerable
decrease in sample size. Thus studies conducted in
different populations may be required to detect many
rare variants. The complex models utilized in GAW17
show clearly that small samples will have low power to
detect loci with small effects on a trait and that even large
samples may not be adequate to reliably detect rare
variants with extremely small effects on variation of the
trait or risk for a disease.

POTENTIAL CULPRITS FOR TYPE I ERROR

An interesting observation is the phenomenon that was
labeled consistent false positives during the GAW17
conference. Specifically, a few noncausal genes were
identified by more than one method consistently. Possible
reasons for this, based on the analysis of different groups,
include (1) population stratification; (2) the detection in
multiple replicates of noncausal SNPs that are strongly
associated with causal variants, because the same geno-
types were used in all of the 200 replications; (3) outliers
and genetic disequilibrium. Given the small sample size
and the large number of SNPs, the contributors to GAW17
observed that a set of noncausal SNPs were perfectly
correlated with some of the rare causal variants, which
thus led to some of the false-positive results. When
applying the various collapsing methods to rare variant
sequence data, as a precaution, one should take additional
steps to address the aforementioned issues. For example,
whenever population information is available, existing
methods such as EigenSoft [Price et al., 2006] or PLINK
[Purcell et al., 2007] can be used to adjust for population
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stratification. Removing outliers or applying appropriate
transformations might also help to improve the perfor-
mance of the proposed methods. The GAW17 results also
suggest that evaluation of the correlation structure among
associated loci is a reasonable strategy when interpreting
the results of analyses of DNA sequence data, particularly
in small samples. If strong correlations are observed
among multiple rare associated variants that are distant
(or on separate chromosomes), this may indicate that
several variants are all highly correlated with a private
causal variant in a single individual in the sample.

CONCLUSIONS

As expected, the different methods used by Group 14
contributors showed variation in the causal loci detected.
Different research groups studied different phenotypes
and used different thresholds for declaring significance.
However, some consistent findings are that (1) power and
type I error depend on sample size, effect size, degree of
heterogeneity, and classic causes of errors; (2) analyses of
very rare variants requires some form of grouping; and (3)
rare variants introduce novel sources of error as a result of
co-occurrence of private mutations within single indivi-
duals in small samples, suggesting that large samples of
sequenced unrelated individuals will be needed to avoid
high false-positive associations of rare variants with
disease.
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